Advanced Algorithms (Fall 2025) Greedy Algorithms

Lecturers: 尹一通,刘景铖,<mark>栗师</mark>

Nanjing University

Outline

- Greedy Algorithms and Matroids
 - Recap: Maximum-Weight Spanning Tree Problem
 - Maximum-Weight Independent Set in Matroids
 - Examples of Matroids
- Greedy Approximation Algorithms
 - $(\ln n + 1)$ -Approximation for Set-Cover
 - $(1-\frac{1}{e})$ -Approximation for Maximum Coverage
 - Submodular Functions
 - $(1-\frac{1}{e})$ -Approximation for Cardinality-Constrained Submodular Maximization

Outline

- Greedy Algorithms and Matroids
 - Recap: Maximum-Weight Spanning Tree Problem
 - Maximum-Weight Independent Set in Matroids
 - Examples of Matroids
- 2 Greedy Approximation Algorithms
 - $(\ln n + 1)$ -Approximation for Set-Cover
 - $(1-\frac{1}{e})$ -Approximation for Maximum Coverage
 - Submodular Functions
 - $(1-\frac{1}{e})$ -Approximation for Cardinality-Constrained Submodular Maximization

Maximum-Weight Spanning Tree Problem

Input: Graph G = (V, E) and edge weights $w \in \mathbb{Z}_{>0}^E$

 $\mbox{\bf Output:}\,$ the spanning tree T of G with the maximum total

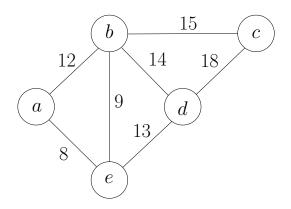
weight

Maximum-Weight Spanning Tree Problem

Input: Graph G = (V, E) and edge weights $w \in \mathbb{Z}_{>0}^E$

Output: the spanning tree T of G with the maximum total

weight

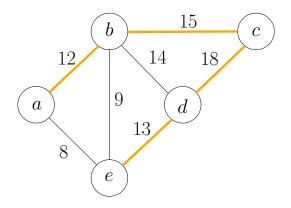


Maximum-Weight Spanning Tree Problem

Input: Graph G = (V, E) and edge weights $w \in \mathbb{Z}_{>0}^E$

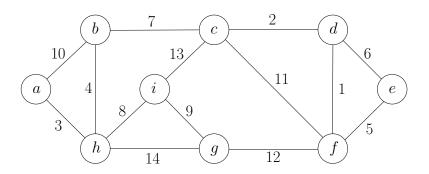
Output: the spanning tree T of G with the maximum total

weight

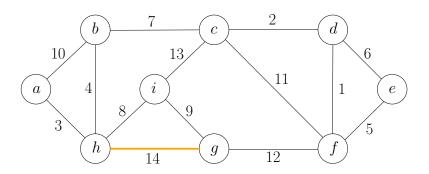


- 1: $F \leftarrow \emptyset$
- 2: sort edges in ${\cal E}$ in non-increasing order of weights w
- 3: **for** each edge (u, v) in the order **do**
- 4: **if** u and v are not connected by a path of edges in F **then**
- 5: $F \leftarrow F \cup \{(u, v)\}$
- 6: **return** (V, F)

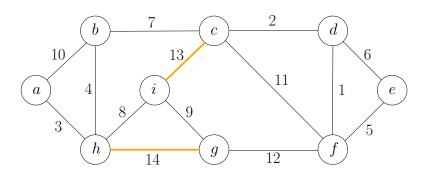
- 1: $F \leftarrow \emptyset$
- 2: sort edges in ${\cal E}$ in non-increasing order of weights ${\it w}$
- 3: **for** each edge (u, v) in the order **do**
- 4: **if** u and v are not connected by a path of edges in F **then**
- 5: $F \leftarrow F \cup \{(u, v)\}$
- 6: **return** (V, F)



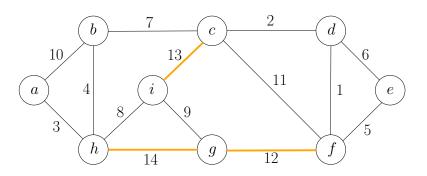
- 1: $F \leftarrow \emptyset$
- 2: sort edges in ${\cal E}$ in non-increasing order of weights ${\it w}$
- 3: **for** each edge (u, v) in the order **do**
- 4: **if** u and v are not connected by a path of edges in F **then**
- 5: $F \leftarrow F \cup \{(u, v)\}$
- 6: return (V, F)



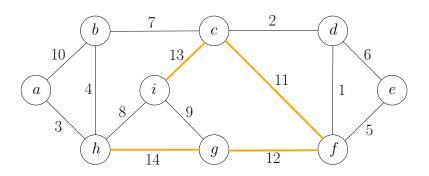
- 1: $F \leftarrow \emptyset$
- 2: sort edges in ${\cal E}$ in non-increasing order of weights ${\it w}$
- 3: **for** each edge (u, v) in the order **do**
- 4: **if** u and v are not connected by a path of edges in F **then**
- 5: $F \leftarrow F \cup \{(u, v)\}$
- 6: return (V, F)



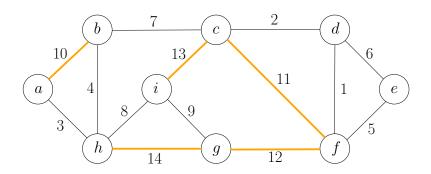
- 1: $F \leftarrow \emptyset$
- 2: sort edges in ${\cal E}$ in non-increasing order of weights ${\it w}$
- 3: **for** each edge (u, v) in the order **do**
- 4: **if** u and v are not connected by a path of edges in F **then**
- 5: $F \leftarrow F \cup \{(u, v)\}$
- 6: **return** (V, F)



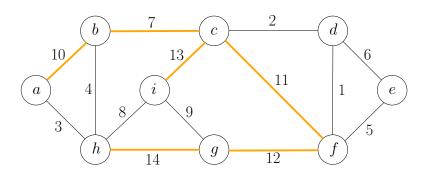
- 1: $F \leftarrow \emptyset$
- 2: sort edges in ${\cal E}$ in non-increasing order of weights ${\it w}$
- 3: **for** each edge (u, v) in the order **do**
- 4: **if** u and v are not connected by a path of edges in F **then**
- 5: $F \leftarrow F \cup \{(u, v)\}$
- 6: return (V, F)



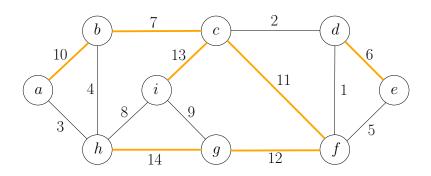
- 1: $F \leftarrow \emptyset$
- 2: sort edges in ${\cal E}$ in non-increasing order of weights ${\it w}$
- 3: **for** each edge (u, v) in the order **do**
- 4: **if** u and v are not connected by a path of edges in F **then**
- 5: $F \leftarrow F \cup \{(u, v)\}$
- 6: return (V, F)



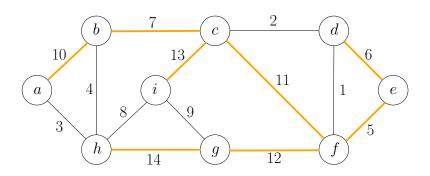
- 1: $F \leftarrow \emptyset$
- 2: sort edges in ${\cal E}$ in non-increasing order of weights ${\it w}$
- 3: **for** each edge (u, v) in the order **do**
- 4: **if** u and v are not connected by a path of edges in F **then**
- 5: $F \leftarrow F \cup \{(u, v)\}$
- 6: return (V, F)



- 1: $F \leftarrow \emptyset$
- 2: sort edges in ${\cal E}$ in non-increasing order of weights ${\it w}$
- 3: **for** each edge (u, v) in the order **do**
- 4: **if** u and v are not connected by a path of edges in F **then**
- 5: $F \leftarrow F \cup \{(u, v)\}$
- 6: return (V, F)



- 1: $F \leftarrow \emptyset$
- 2: sort edges in ${\cal E}$ in non-increasing order of weights ${\it w}$
- 3: **for** each edge (u, v) in the order **do**
- 4: **if** u and v are not connected by a path of edges in F **then**
- 5: $F \leftarrow F \cup \{(u, v)\}$
- 6: return (V, F)



Maximum-Weight Spanning Tree (MST) with Pre-Selected Edges

Input: Graph G = (V, E) and edge weights $w \in \mathbb{Z}_{>0}^E$ a set $F_0 \subseteq E$ of edges, that does not contain a cycle

Output: the maximum-weight spanning tree $T=(V,E_T)$ of G

satisfying $F_0 \subseteq E_T$

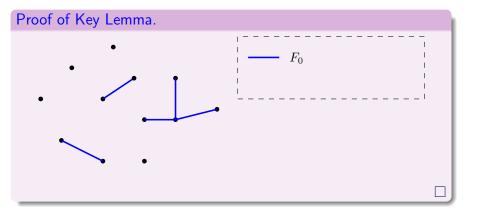
Maximum-Weight Spanning Tree (MST) with Pre-Selected Edges

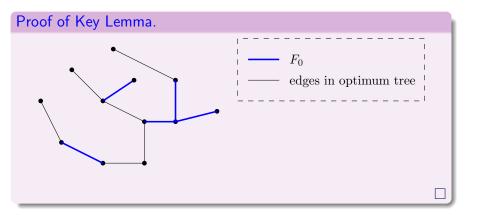
Input: Graph G=(V,E) and edge weights $w\in\mathbb{Z}_{>0}^E$ a set $F_0\subseteq E$ of edges, that does not contain a cycle

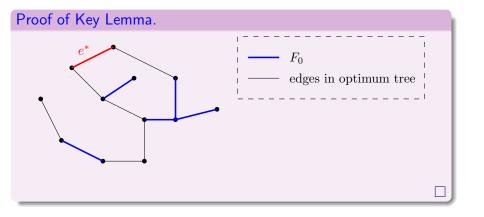
Output: the maximum-weight spanning tree $T=(V,E_T)$ of G

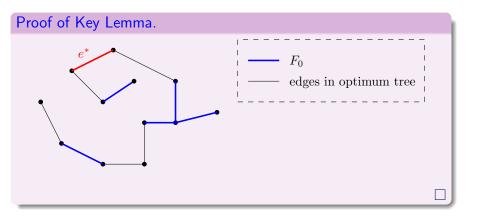
satisfying $F_0 \subseteq E_T$

Lemma (Key Lemma) Given an instance $(G=(V,E),w,F_0)$ of the MST with pre-selected edges problem, let e^* be the maximum weight edge in $E\setminus F_0$ such that $F_0\cup\{e^*\}$ does not contain a cycle. Then there is an optimum solution $T=(V,E_T)$ to the instance with $e^*\in E_T$.









Outline

- Greedy Algorithms and Matroids
 - Recap: Maximum-Weight Spanning Tree Problem
 - Maximum-Weight Independent Set in Matroids
 - Examples of Matroids
- Greedy Approximation Algorithms
 - $(\ln n + 1)$ -Approximation for Set-Cover
 - $(1-\frac{1}{e})$ -Approximation for Maximum Coverage
 - Submodular Functions
 - $(1-\frac{1}{e})$ -Approximation for Cardinality-Constrained Submodular Maximization

Q: Does the greedy algorithm work for more general problems?

Q: Does the greedy algorithm work for more general problems?

A General Maximization Problem

Input: *E*: the ground set of elements

 $w \in \mathbb{Z}_{>0}^E$: weight vector on elements

S: an (implicitly given) family of subsets of E

- $\bullet \ \emptyset \in \mathcal{S}$
- S is downward closed: if $A \in S, B \subsetneq A$, then $B \in S$.

Output: $A \in \mathcal{S}$ that maximizes $\sum_{e \in A} w_e$

Q: Does the greedy algorithm work for more general problems?

A General Maximization Problem

Input: *E*: the ground set of elements

 $w \in \mathbb{Z}_{>0}^E$: weight vector on elements

 \mathcal{S} : an (implicitly given) family of subsets of E

- $\bullet \ \emptyset \in \mathcal{S}$
- S is downward closed: if $A \in S, B \subsetneq A$, then $B \in S$.

Output: $A \in \mathcal{S}$ that maximizes $\sum_{e \in A} w_e$

• maximum-weight spanning tree: S = family of forests

- 1: $A \leftarrow \emptyset$
- 2: sort elements in ${\cal E}$ in non-decreasing order of weights ${\it w}$
- 3: **for** each element e in the order **do**
- 4: **if** $A \cup \{e\} \in \mathcal{S}$ **then** $A \leftarrow A \cup \{e\}$
- 5: return A

- 1: $A \leftarrow \emptyset$
- 2: sort elements in E in non-decreasing order of weights w
- 3: **for** each element e in the order **do**
- 4: **if** $A \cup \{e\} \in \mathcal{S}$ **then** $A \leftarrow A \cup \{e\}$
- 5: **return** A

Examples where Greedy Algorithm is Not Optimum

• Knapsack Packing: given elements E, where every element has a value and a cost, and a cost budget C, the goal is to find a maximum value subset of items with cost at most C

- 1: $A \leftarrow \emptyset$
- 2: sort elements in E in non-decreasing order of weights w
- 3: **for** each element e in the order **do**
- 4: **if** $A \cup \{e\} \in \mathcal{S}$ **then** $A \leftarrow A \cup \{e\}$
- 5: **return** A

Examples where Greedy Algorithm is Not Optimum

- Knapsack Packing: given elements E, where every element has
 a value and a cost, and a cost budget C, the goal is to find a
 maximum value subset of items with cost at most C
- Maximum Weight Bipartite Graph Matching

- 1: $A \leftarrow \emptyset$
- 2: sort elements in E in non-decreasing order of weights w
- 3: **for** each element e in the order **do**
- 4: **if** $A \cup \{e\} \in \mathcal{S}$ **then** $A \leftarrow A \cup \{e\}$
- 5: **return** A

Examples where Greedy Algorithm is Not Optimum

- Knapsack Packing: given elements E, where every element has
 a value and a cost, and a cost budget C, the goal is to find a
 maximum value subset of items with cost at most C
- Maximum Weight Bipartite Graph Matching
- Matroids: cases where greedy algorithm is optimum

Def. A (finite) matroid \mathcal{M} is a pair (E, \mathcal{I}) , where E is a finite set (called the ground set) and \mathcal{I} is a family of subsets of E (called independent sets) with the following properties:

- ② (downward-closed property) If $B \subsetneq A \in \mathcal{I}$, then $B \in \mathcal{I}$.
- **③** (augmentation/exchange property) If $A, B \in \mathcal{I}$ and |B| < |A|, then there exists $e \in A \setminus B$ such that $B \cup \{e\} \in \mathcal{I}$.

Def. A (finite) matroid \mathcal{M} is a pair (E, \mathcal{I}) , where E is a finite set (called the ground set) and \mathcal{I} is a family of subsets of E (called independent sets) with the following properties:

- ② (downward-closed property) If $B \subsetneq A \in \mathcal{I}$, then $B \in \mathcal{I}$.
- $\textbf{(augmentation/exchange property)} \ \text{If} \ A,B \in \mathcal{I} \ \text{and} \ |B| < |A|, \\ \text{then there exists} \ e \in A \setminus B \ \text{such that} \ B \cup \{e\} \in \mathcal{I}.$

Lemma Let G=(V,E). $F\subseteq E$ is in $\mathcal I$ iff (V,F) is a forest. Then $(E,\mathcal I)$ is a matroid, and it is called a graphic matroid.

Def. A (finite) matroid \mathcal{M} is a pair (E, \mathcal{I}) , where E is a finite set (called the ground set) and \mathcal{I} is a family of subsets of E (called independent sets) with the following properties:

- ② (downward-closed property) If $B \subsetneq A \in \mathcal{I}$, then $B \in \mathcal{I}$.
- $\textbf{(augmentation/exchange property)} \ \text{If} \ A,B \in \mathcal{I} \ \text{and} \ |B| < |A|, \\ \text{then there exists} \ e \in A \setminus B \ \text{such that} \ B \cup \{e\} \in \mathcal{I}.$

Lemma Let G = (V, E). $F \subseteq E$ is in \mathcal{I} iff (V, F) is a forest. Then (E, \mathcal{I}) is a matroid, and it is called a graphic matroid.

Proof of Exchange Property.

- $|B| < |A| \Rightarrow (V, B)$ has more CC than (V, A).
- Some edge in A connects two different CC of (V, B).

Feasible Family for Knapsack Packing Does Not Satisfy Augmentation Property

- $c_1 = c_2 = 10, c_3 = 20, C = 20.$
- $\{1,2\},\{3\} \in \mathcal{I}$, but $\{1,3\},\{2,3\} \notin \mathcal{I}$.

Feasible Family for Knapsack Packing Does Not Satisfy Augmentation Property

- $c_1 = c_2 = 10, c_3 = 20, C = 20.$
- $\{1,2\},\{3\} \in \mathcal{I}$, but $\{1,3\},\{2,3\} \notin \mathcal{I}$.

Feasible Family for Bipartite Matching Does Not Satisfy Augmentation Property

- Complete bipartite graph between $\{a_1, a_2\}$ and $\{b_1, b_2\}$.
- $\{(a_1,b_1),(a_2,b_2)\},\{(a_1,b_2)\}\in\mathcal{I}.$

Feasible Family for Knapsack Packing Does Not Satisfy Augmentation Property

- $c_1 = c_2 = 10, c_3 = 20, C = 20.$
- $\{1,2\},\{3\} \in \mathcal{I}$, but $\{1,3\},\{2,3\} \notin \mathcal{I}$.

Feasible Family for Bipartite Matching Does Not Satisfy Augmentation Property

- Complete bipartite graph between $\{a_1, a_2\}$ and $\{b_1, b_2\}$.
- $\{(a_1,b_1),(a_2,b_2)\},\{(a_1,b_2)\}\in\mathcal{I}.$

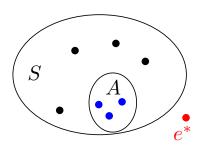
Theorem The greedy algorithm gives optimum solution for the maximum-weight independent set problem in a matroid.

- given: matroid $\mathcal{M}=(E,\mathcal{I})$, weights $w\in\mathbb{Z}_{>0}^E$, $A\in\mathcal{I}$,
- ullet goal: find a maximum weight independent set containing A
- $e^* = \arg \max_{e \in E \setminus A: A \cup \{e\} \in \mathcal{I}} w_e$, assuming e^* exists

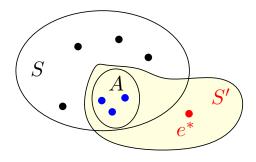
- given: matroid $\mathcal{M}=(E,\mathcal{I})$, weights $w\in\mathbb{Z}_{>0}^E$, $A\in\mathcal{I}$,
- ullet goal: find a maximum weight independent set containing A
- $e^* = \arg \max_{e \in E \setminus A: A \cup \{e\} \in \mathcal{I}} w_e$, assuming e^* exists
- ullet Then, some optimum solution contains e^*

- given: matroid $\mathcal{M}=(E,\mathcal{I})$, weights $w\in\mathbb{Z}_{>0}^E$, $A\in\mathcal{I}$,
- ullet goal: find a maximum weight independent set containing A
- $e^* = \arg \max_{e \in E \setminus A: A \cup \{e\} \in \mathcal{I}} w_e$, assuming e^* exists
- ullet Then, some optimum solution contains e^*
- \bullet let $S\supseteq A, S\in \mathcal{I}$ be an optimum solution, $e^*\notin S$

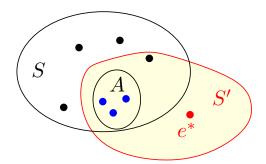
- ullet given: matroid $\mathcal{M}=(E,\mathcal{I})$, weights $w\in\mathbb{Z}^E_{>0}$, $A\in\mathcal{I}$,
- ullet goal: find a maximum weight independent set containing A
- $e^* = \arg \max_{e \in E \setminus A: A \cup \{e\} \in \mathcal{I}} w_e$, assuming e^* exists
- ullet Then, some optimum solution contains e^*
- let $S \supseteq A, S \in \mathcal{I}$ be an optimum solution, $e^* \notin S$



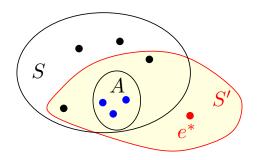
- ullet given: matroid $\mathcal{M}=(E,\mathcal{I})$, weights $w\in\mathbb{Z}_{>0}^E$, $A\in\mathcal{I}$,
- ullet goal: find a maximum weight independent set containing A
- $e^* = \arg \max_{e \in E \setminus A: A \cup \{e\} \in \mathcal{I}} w_e$, assuming e^* exists
- ullet Then, some optimum solution contains e^*
- let $S \supseteq A, S \in \mathcal{I}$ be an optimum solution, $e^* \notin S$



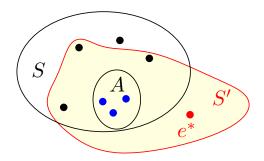
- ullet given: matroid $\mathcal{M}=(E,\mathcal{I})$, weights $w\in\mathbb{Z}_{>0}^E$, $A\in\mathcal{I}$,
- ullet goal: find a maximum weight independent set containing A
- $e^* = \arg\max_{e \in E \setminus A: A \cup \{e\} \in \mathcal{I}} w_e$, assuming e^* exists
- ullet Then, some optimum solution contains e^*
- let $S \supseteq A, S \in \mathcal{I}$ be an optimum solution, $e^* \notin S$



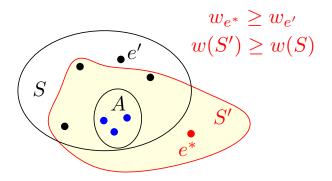
- ullet given: matroid $\mathcal{M}=(E,\mathcal{I})$, weights $w\in\mathbb{Z}_{>0}^E$, $A\in\mathcal{I}$,
- ullet goal: find a maximum weight independent set containing A
- $e^* = \arg\max_{e \in E \setminus A: A \cup \{e\} \in \mathcal{I}} w_e$, assuming e^* exists
- ullet Then, some optimum solution contains e^*
- let $S \supseteq A, S \in \mathcal{I}$ be an optimum solution, $e^* \notin S$



- ullet given: matroid $\mathcal{M}=(E,\mathcal{I})$, weights $w\in\mathbb{Z}^E_{>0}$, $A\in\mathcal{I}$,
- ullet goal: find a maximum weight independent set containing A
- $e^* = \arg \max_{e \in E \setminus A: A \cup \{e\} \in \mathcal{I}} w_e$, assuming e^* exists
- ullet Then, some optimum solution contains e^*
- ullet let $S\supseteq A,S\in\mathcal{I}$ be an optimum solution, $e^*\notin S$



- ullet given: matroid $\mathcal{M}=(E,\mathcal{I})$, weights $w\in\mathbb{Z}_{>0}^E$, $A\in\mathcal{I}$,
- ullet goal: find a maximum weight independent set containing A
- $e^* = \arg \max_{e \in E \setminus A: A \cup \{e\} \in \mathcal{I}} w_e$, assuming e^* exists
- Then, some optimum solution contains e^*
- let $S \supseteq A, S \in \mathcal{I}$ be an optimum solution, $e^* \notin S$



- given: matroid $\mathcal{M}=(E,\mathcal{I})$, weights $w\in\mathbb{Z}_{>0}^E$, $A\in\mathcal{I}$,
- ullet goal: find a maximum weight independent set containing A
- $e^* = \arg\max_{e \in E \setminus A: A \cup \{e\} \in \mathcal{I}} w_e$, assuming e^* exists
- ullet Then, some optimum solution contains e^*

Proof.

• let $S \supseteq A, S \in \mathcal{I}$ be an optimum solution, $e^* \notin S$

- ullet given: matroid $\mathcal{M}=(E,\mathcal{I})$, weights $w\in\mathbb{Z}_{>0}^E$, $A\in\mathcal{I}$,
- ullet goal: find a maximum weight independent set containing A
- $e^* = \arg \max_{e \in E \setminus A: A \cup \{e\} \in \mathcal{I}} w_e$, assuming e^* exists
- ullet Then, some optimum solution contains e^*

- ullet let $S\supseteq A,S\in\mathcal{I}$ be an optimum solution, $e^*\notin S$
 - 1: $S' \leftarrow A \cup \{e^*\}$
 - 2: **while** |S'| < |S| **do**
 - 3: let e be any element in $S \setminus S'$ with $S' \cup \{e\} \in \mathcal{I}$
 - $\triangleright e$ exists due to exchange property
 - 4: $S' \leftarrow S' \cup \{e\}$

- ullet given: matroid $\mathcal{M}=(E,\mathcal{I})$, weights $w\in\mathbb{Z}_{>0}^E$, $A\in\mathcal{I}$,
- ullet goal: find a maximum weight independent set containing A
- $e^* = \arg\max_{e \in E \setminus A: A \cup \{e\} \in \mathcal{I}} w_e$, assuming e^* exists
- \bullet Then, some optimum solution contains e^{\ast}

- let $S \supseteq A, S \in \mathcal{I}$ be an optimum solution, $e^* \notin S$
 - 1: $S' \leftarrow A \cup \{e^*\}$
 - 2: **while** |S'| < |S| **do**
 - 3: let e be any element in $S \setminus S'$ with $S' \cup \{e\} \in \mathcal{I}$
 - $\triangleright e$ exists due to exchange property
 - 4: $S' \leftarrow S' \cup \{e\}$
- ullet S' and S differ by exactly one element

- given: matroid $\mathcal{M}=(E,\mathcal{I})$, weights $w\in\mathbb{Z}_{>0}^E$, $A\in\mathcal{I}$,
- ullet goal: find a maximum weight independent set containing A
- $e^* = \arg \max_{e \in E \setminus A: A \cup \{e\} \in \mathcal{I}} w_e$, assuming e^* exists
- ullet Then, some optimum solution contains e^*

- let $S \supseteq A, S \in \mathcal{I}$ be an optimum solution, $e^* \notin S$
 - 1: $S' \leftarrow A \cup \{e^*\}$
 - 2: while |S'| < |S| do
 - 3: let e be any element in $S \setminus S'$ with $S' \cup \{e\} \in \mathcal{I}$
 - $\triangleright e$ exists due to exchange property
 - 4: $S' \leftarrow S' \cup \{e\}$
- ullet S' and S differ by exactly one element
- $w(S') := \sum_{e \in S'} w_e \ge w(S) \implies S'$ is also optimum

Outline

- Greedy Algorithms and Matroids
 - Recap: Maximum-Weight Spanning Tree Problem
 - Maximum-Weight Independent Set in Matroids
 - Examples of Matroids
- Greedy Approximation Algorithms
 - $(\ln n + 1)$ -Approximation for Set-Cover
 - $(1-\frac{1}{e})$ -Approximation for Maximum Coverage
 - Submodular Functions
 - $(1-\frac{1}{e})$ -Approximation for Cardinality-Constrained Submodular Maximization

 \bullet E: the ground set

 \mathcal{I} : the family of independent sets

 \bullet E: the ground set

- \mathcal{I} : the family of independent sets
- Uniform Matroid: $k \in \mathbb{Z}_{>0}$.

$$\mathcal{I} = \{ A \subseteq E : |A| \le k \}.$$

 \bullet E: the ground set

- \mathcal{I} : the family of independent sets
- Uniform Matroid: $k \in \mathbb{Z}_{>0}$.

$$\mathcal{I} = \{ A \subseteq E : |A| \le k \}.$$

• Partition Matroid: partition (E_1, E_2, \cdots, E_t) of E, positive integers k_1, k_2, \cdots, k_t

$$\mathcal{I} = \{ A \subseteq E : |A \cap E_i| \le k_i, \forall i \in [t] \}.$$

• *E*: the ground set

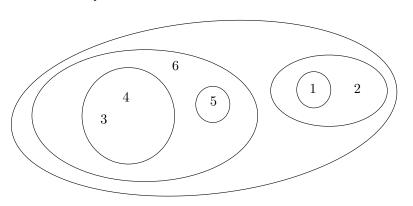
- \mathcal{I} : the family of independent sets
- Uniform Matroid: $k \in \mathbb{Z}_{>0}$.

$$\mathcal{I} = \{ A \subseteq E : |A| \le k \}.$$

• Partition Matroid: partition (E_1, E_2, \cdots, E_t) of E, positive integers k_1, k_2, \cdots, k_t

$$\mathcal{I} = \{ A \subseteq E : |A \cap E_i| \le k_i, \forall i \in [t] \}.$$

- Laminar Matroid: laminar family of subsets of E $\{E_1, E_2, \cdots, E_t\}$, positive integers k_1, k_2, \cdots, k_t $\mathcal{I} = \{A \subseteq E : |A \cap E_i| \le k_i, \forall i \in [t]\}.$
- **Def.** A family $\{E_1, E_2, \cdots, E_t\}$ of subsets of E is said to be laminar if for every two distinct subsets E_i, E_j in the family, we have $E_i \cap E_j = \emptyset$ or $E_i \subsetneq E_j$ or $E_j \subsetneq E_i$.



- ullet E: the ground set ${\cal I}$: the family of independent sets
- Graphic Matroid: graph G = (V, E) $\mathcal{I} = \{A \subseteq E : (V, A) \text{ is a forest}\}$

- ullet E: the ground set \mathcal{I} : the family of independent sets
- Graphic Matroid: graph G = (V, E)

$$\mathcal{I} = \{A \subseteq E : (V, A) \text{ is a forest}\}$$

ullet Transversal Matroid: a bipartite graph $G=(E\uplus B,\mathcal{E})$

$$\mathcal{I} = \{A \subseteq E : \text{there is a matching in } G \text{ covering } A\}$$

- ullet E: the ground set \mathcal{I} : the family of independent sets
- Graphic Matroid: graph G = (V, E) $\mathcal{I} = \{A \subseteq E : (V, A) \text{ is a forest}\}$
- Transversal Matroid: a bipartite graph $G = (E \uplus B, \mathcal{E})$

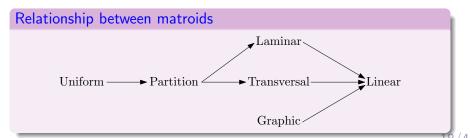
$$\mathcal{I} = \{A \subseteq E : \text{there is a matching in } G \text{ covering } A\}$$

- Linear Matroid: a vector $\vec{v}_e \in \mathbb{R}^d$ for every $e \in E$
 - $\mathcal{I} = \{ A \subseteq E : \text{vectors } \{ \vec{v}_e \}_{e \in A} \text{ are linearly independent} \}$

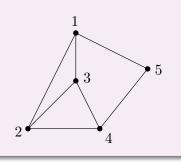
- ullet E: the ground set \mathcal{I} : the family of independent sets
- Graphic Matroid: graph G = (V, E) $\mathcal{I} = \{A \subset E : (V, A) \text{ is a forest}\}$
- Transversal Matroid: a bipartite graph $G = (E \uplus B, \mathcal{E})$

$$\mathcal{I} = \{A \subseteq E : \mathsf{there} \mathsf{ is a matching in } G \mathsf{ covering } A\}$$

- Linear Matroid: a vector $\vec{v}_e \in \mathbb{R}^d$ for every $e \in E$
 - $\mathcal{I} = \{A \subseteq E : \mathsf{vectors}\ \{\vec{v}_e\}_{e \in A} \ \mathsf{are\ linearly\ independent}\}$



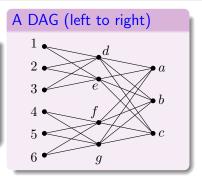
A Graphic Matroid is A Linear Matroid



edges	vectors
(1,2)	(1,-1,0,0,0)
(1,3)	(1,0,-1,0,0)
(1,5)	(1,0,0,0,-1)
(2,3)	(0,1,-1,0,0)
(2,4)	(0,1,0,-1,0)
(3,4)	(0,0,1,-1,0)
(4,5)	(0,0,0,1,-1)

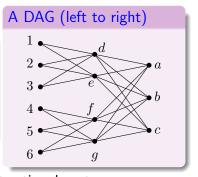
A Laminar Matroid is A Linear Matroid

$\begin{tabular}{c|c|c} Example & & sets & upper bounds \\ \hline \hline $\{1,2,3\}$ & 2 \\ \hline $\{4,5,6\}$ & 2 \\ \hline $\{1,2,3,4,5,6\}$ & 3 \\ \hline \end{tabular}$



A Laminar Matroid is A Linear Matroid

Example		
sets	upper bounds	
$\{1, 2, 3\}$	2	
$\{4, 5, 6\}$	2	
$\{1, 2, 3, 4, 5, 6\}$	3	



- $x^a, x^b, x^c \in \mathbb{R}^3$ are linearly independent rational vectors
- $\bullet \ x^d, x^e, x^f, x^g \colon \operatorname{rand}(0,1) \cdot x^a + \operatorname{rand}(0,1) \cdot x^b + \operatorname{rand}(0,1) \cdot x^c$
- x^1, x^2, x^3 : rand $(0,1) \cdot x^d + \text{rand}(0,1) \cdot x^e$
- x^4, x^5, x^6 : rand $(0, 1) \cdot x^f + \text{rand}(0, 1) \cdot x^g$
- ullet each rand(0,1) gives an independent random real in [0,1]
- almost surely, all the random numbers are algebraically independent

Outline

- Greedy Algorithms and Matroids
 - Recap: Maximum-Weight Spanning Tree Problem
 - Maximum-Weight Independent Set in Matroids
 - Examples of Matroids
- Greedy Approximation Algorithms
 - $(\ln n + 1)$ -Approximation for Set-Cover
 - $(1-\frac{1}{e})$ -Approximation for Maximum Coverage
 - Submodular Functions
 - $(1 \frac{1}{e})$ -Approximation for Cardinality-Constrained Submodular Maximization

Recap: Approximation Algorithms

• For minimization problems:

$$\text{approximation ratio} := \frac{\text{cost of our solution}}{\text{cost of optimum solution}} \geq 1$$

• For maximization problems:

$$\mbox{approximation ratio} := \frac{\mbox{value of our solution}}{\mbox{value of optimum solution}} \leq 1$$

or

$$\mbox{approximation ratio} := \frac{\mbox{value of optimum solution}}{\mbox{value of our solution}} \geq 1$$

Outline

- Greedy Algorithms and Matroids
 - Recap: Maximum-Weight Spanning Tree Problem
 - Maximum-Weight Independent Set in Matroids
 - Examples of Matroids
- Greedy Approximation Algorithms
 - $(\ln n + 1)$ -Approximation for Set-Cover
 - $(1 \frac{1}{e})$ -Approximation for Maximum Coverage
 - Submodular Functions
 - $(1-\frac{1}{e})$ -Approximation for Cardinality-Constrained Submodular Maximization

Set Cover

Input: U, |U| = n: ground set

 $S_1, S_2, \cdots, S_m \subseteq U$

Output: minimum size set $C \subseteq [m]$ such that $\bigcup_{i \in C} S_i = U$

Set Cover

Input: U, |U| = n: ground set

$$S_1, S_2, \cdots, S_m \subseteq U$$

Output: minimum size set $C \subseteq [m]$ such that $\bigcup_{i \in C} S_i = U$

Greedy Algorithm for Set Cover

- 1: $C \leftarrow \emptyset, U' \leftarrow U$
- 2: while $U' \neq \emptyset$ do
- 3: choose the i that maximizes $|U' \cap S_i|$
- 4: $C \leftarrow C \cup \{i\}, U' \leftarrow U' \setminus S_i$
- 5: return C

ullet g: minimum number of sets needed to cover U

Lemma Let $u_t, t \in \mathbb{Z}_{\geq 0}$ be the number of uncovered elements after t steps. Then for every $t \geq 1$, we have

$$u_t \le \left(1 - \frac{1}{g}\right) \cdot u_{t-1}.$$

ullet g: minimum number of sets needed to cover U

Lemma Let $u_t, t \in \mathbb{Z}_{\geq 0}$ be the number of uncovered elements after t steps. Then for every $t \geq 1$, we have

$$u_t \le \left(1 - \frac{1}{g}\right) \cdot u_{t-1}.$$

- Consider the g sets $S_1^*, S_2^*, \cdots, S_q^*$ in optimum solution
- $\bullet \ S_1^* \cup S_2^* \cup \dots \cup S_g^* = U$

• g: minimum number of sets needed to cover U

Lemma Let $u_t, t \in \mathbb{Z}_{\geq 0}$ be the number of uncovered elements after t steps. Then for every $t \geq 1$, we have

$$u_t \le \left(1 - \frac{1}{g}\right) \cdot u_{t-1}.$$

- Consider the g sets $S_1^*, S_2^*, \cdots, S_q^*$ in optimum solution
- $\bullet \ S_1^* \cup S_2^* \cup \cdots \cup S_q^* = U$
- at beginning of step t, some set in $S_1^*, S_2^*, \cdots, S_g^*$ must contain $\geq \frac{u_{t-1}}{g}$ uncovered elements
- $u_t \le u_{t-1} \frac{u_{t-1}}{g} = \left(1 \frac{1}{g}\right) u_{t-1}.$

Proof of $(\ln n + 1)$ -approximation.

• Let $t = \lceil g \cdot \ln n \rceil$. $u_0 = n$. Then

$$u_t \le \left(1 - \frac{1}{a}\right)^{g \cdot \ln n} \cdot n < e^{-\ln n} \cdot n = n \cdot \frac{1}{n} = 1.$$

• So $u_t = 0$, approximation ratio $\leq \frac{|g \cdot \ln n|}{g} \leq \ln n + 1$.

Proof of $(\ln n + 1)$ -approximation.

• Let $t = \lceil g \cdot \ln n \rceil$. $u_0 = n$. Then

$$u_t \le \left(1 - \frac{1}{q}\right)^{g \cdot \ln n} \cdot n < e^{-\ln n} \cdot n = n \cdot \frac{1}{n} = 1.$$

- So $u_t = 0$, approximation ratio $\leq \frac{\lceil g \cdot \ln n \rceil}{g} \leq \ln n + 1$.
- A more careful analysis gives a H_n -approximation, where $H_n = 1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n}$ is the n-th harmonic number.
- $\ln(n+1) < H_n < \ln n + 1$.

Proof of $(\ln n + 1)$ -approximation.

• Let $t = \lceil g \cdot \ln n \rceil$. $u_0 = n$. Then

$$u_t \le \left(1 - \frac{1}{q}\right)^{g \cdot \ln n} \cdot n < e^{-\ln n} \cdot n = n \cdot \frac{1}{n} = 1.$$

- So $u_t = 0$, approximation ratio $\leq \frac{\lceil g \cdot \ln n \rceil}{g} \leq \ln n + 1$.
- A more careful analysis gives a H_n -approximation, where $H_n = 1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n}$ is the n-th harmonic number.
- $\ln(n+1) < H_n < \ln n + 1$.

$(1-c) \ln n$ -hardness for any $c = \Omega(1)$

Let c>0 be any constant. There is no polynomial-time $(1-c)\ln n$ -approximation algorithm for set-cover, unless

- ullet NP \subseteq quasi-poly-time, [Lund, Yannakakis 1994; Feige 1998]
- P = NP. [Dinur, Steuer 2014]

Outline

- Greedy Algorithms and Matroids
 - Recap: Maximum-Weight Spanning Tree Problem
 - Maximum-Weight Independent Set in Matroids
 - Examples of Matroids
- Greedy Approximation Algorithms
 - $(\ln n + 1)$ -Approximation for Set-Cover
 - $(1-\frac{1}{e})$ -Approximation for Maximum Coverage
 - Submodular Functions
 - $(1-\frac{1}{e})$ -Approximation for Cardinality-Constrained Submodular Maximization

- set cover: use smallest number of sets to cover all elements.
- ullet maximum coverage: use k sets to cover maximum number of elements

- set cover: use smallest number of sets to cover all elements.
- maximum coverage: use k sets to cover maximum number of elements

Maximum Coverage

Input: U, |U| = n: ground set,

 $S_1, S_2, \cdots, S_m \subseteq U, \qquad k \in [m]$

Output: $C \subseteq [m], |C| = k$ with the maximum $\bigcup_{i \in C} S_i$

- set cover: use smallest number of sets to cover all elements.
- maximum coverage: use k sets to cover maximum number of elements

Maximum Coverage

Input: U, |U| = n: ground set,

$$S_1, S_2, \cdots, S_m \subseteq U, \qquad k \in [m]$$

Output: $C \subseteq [m], |C| = k$ with the maximum $\bigcup_{i \in C} S_i$

Greedy Algorithm for Maximum Coverage

- 1: $C \leftarrow \emptyset, U' \leftarrow U$
- 2: for $t \leftarrow 1$ to k do
- 3: choose the i that maximizes $|U' \cap S_i|$
- 4: $C \leftarrow C \cup \{i\}, U' \leftarrow U' \setminus S_i$
- 5: return C

- ullet o: max. number of elements that can be covered by k sets.
- p_t : #(covered elements) by greedy algorithm after step t

- ullet o: max. number of elements that can be covered by k sets.
- \bullet p_t : #(covered elements) by greedy algorithm after step t

$$\bullet \ p_t \ge p_{t-1} + \frac{o - p_{t-1}}{k}$$

- ullet o: max. number of elements that can be covered by k sets.
- p_t : #(covered elements) by greedy algorithm after step t

•
$$p_t \ge p_{t-1} + \frac{o - p_{t-1}}{k}$$

•
$$o - p_t \le o - p_{t-1} - \frac{o - p_{t-1}}{k} = \left(1 - \frac{1}{k}\right)(o - p_{t-1})$$

- ullet o: max. number of elements that can be covered by k sets.
- p_t : #(covered elements) by greedy algorithm after step t

$$\bullet \ p_t \ge p_{t-1} + \frac{o - p_{t-1}}{k}$$

•
$$o - p_t \le o - p_{t-1} - \frac{o - p_{t-1}}{k} = \left(1 - \frac{1}{k}\right)(o - p_{t-1})$$

$$\bullet \ o - p_k \le \left(1 - \frac{1}{k}\right)^k (o - p_0) \le \frac{1}{e} \cdot o$$

- ullet o: max. number of elements that can be covered by k sets.
- p_t : #(covered elements) by greedy algorithm after step t

•
$$p_t \ge p_{t-1} + \frac{o - p_{t-1}}{k}$$

•
$$o - p_t \le o - p_{t-1} - \frac{o - p_{t-1}}{k} = \left(1 - \frac{1}{k}\right)(o - p_{t-1})$$

•
$$o - p_k \le \left(1 - \frac{1}{k}\right)^k (o - p_0) \le \frac{1}{e} \cdot o$$

$$p_k \ge \left(1 - \frac{1}{e}\right) \cdot o$$

Proof.

- ullet o: max. number of elements that can be covered by k sets.
- \bullet p_t : #(covered elements) by greedy algorithm after step t

$$\bullet \ p_t \ge p_{t-1} + \frac{o - p_{t-1}}{k}$$

•
$$o - p_t \le o - p_{t-1} - \frac{o - p_{t-1}}{k} = \left(1 - \frac{1}{k}\right)(o - p_{t-1})$$

•
$$o - p_k \le \left(1 - \frac{1}{k}\right)^k (o - p_0) \le \frac{1}{e} \cdot o$$

$$\bullet \ p_k \ge \left(1 - \frac{1}{e}\right) \cdot o$$

• The $(1-\frac{1}{e})$ -approximation extends to a more general problem.

Outline

- Greedy Algorithms and Matroids
 - Recap: Maximum-Weight Spanning Tree Problem
 - Maximum-Weight Independent Set in Matroids
 - Examples of Matroids
- Greedy Approximation Algorithms
 - $(\ln n + 1)$ -Approximation for Set-Cover
 - $(1-\frac{1}{e})$ -Approximation for Maximum Coverage
 - Submodular Functions
 - $(1-\frac{1}{e})$ -Approximation for Cardinality-Constrained Submodular Maximization

Def. Let $n \in \mathbb{Z}_{>0}$. A set function $f: 2^{[n]} \to \mathbb{R}$ is called submodular if it satisfies one of the following three equivalent conditions:

(1)
$$\forall A, B \subseteq [n]$$
:
 $f(A \cup B) + f(A \cap B) \le f(A) + f(B)$.

(2)
$$\forall A \subseteq B \subsetneq [n], i \in [n] \setminus B$$
:
 $f(B \cup \{i\}) - f(B) \leq f(A \cup \{i\}) - f(A)$.

(3)
$$\forall A \subseteq [n], i, j \in [n] \setminus A, i \neq j$$
:

$$f(A \cup \{i, j\}) + f(A) \leq f(A \cup \{i\}) + f(A \cup \{j\}).$$

Def. Let $n \in \mathbb{Z}_{>0}$. A set function $f: 2^{[n]} \to \mathbb{R}$ is called submodular if it satisfies one of the following three equivalent conditions:

- (1) $\forall A, B \subseteq [n]$: $f(A \cup B) + f(A \cap B) \le f(A) + f(B)$.
- (2) $\forall A \subseteq B \subsetneq [n], i \in [n] \setminus B$: $f(B \cup \{i\}) - f(B) \leq f(A \cup \{i\}) - f(A)$.
- (3) $\forall A \subseteq [n], i, j \in [n] \setminus A, i \neq j:$ $f(A \cup \{i, j\}) + f(A) \leq f(A \cup \{i\}) + f(A \cup \{j\}).$
- (2): diminishing marginal values: the marginal value by getting i when I have B is at most that when I have $A \subseteq B$.

Def. Let $n \in \mathbb{Z}_{>0}$. A set function $f: 2^{[n]} \to \mathbb{R}$ is called submodular if it satisfies one of the following three equivalent conditions:

- (1) $\forall A, B \subseteq [n]$: $f(A \cup B) + f(A \cap B) \leq f(A) + f(B)$.
- (2) $\forall A \subseteq B \subsetneq [n], i \in [n] \setminus B$: $f(B \cup \{i\}) - f(B) \leq f(A \cup \{i\}) - f(A)$.
- (3) $\forall A \subseteq [n], i, j \in [n] \setminus A, i \neq j$: $f(A \cup \{i, j\}) + f(A) \leq f(A \cup \{i\}) + f(A \cup \{j\}).$
- (2): diminishing marginal values: the marginal value by getting i when I have B is at most that when I have $A \subseteq B$.
- $(1) \Rightarrow (2) \Rightarrow (3)$, $(3) \Rightarrow (2) \Rightarrow (1)$

• linear function: $f(S) = \sum_{i \in S} w_i, \forall S \subseteq [n]$

- linear function: $f(S) = \sum w_i, \forall S \subseteq [n]$
- $\bullet \ \ \text{budget-additive function:} \ f(S) = \min \Big\{ \sum_{i \in S} w_i, B \Big\}, \forall S \subseteq [n]$

- linear function: $f(S) = \sum w_i, \forall S \subseteq [n]$
- $\bullet \ \ \text{budget-additive function:} \ \ f(S) = \min \Big\{ \sum_{i \in S} w_i, B \Big\}, \forall S \subseteq [n]$
- ullet coverage function: given sets $S_1, S_2, \cdots, \widetilde{S_n} \subseteq \Omega$,

$$f(C) := \left| \bigcup_{i \in C} S_i \right|, \forall C \subseteq [n]$$

- linear function: $f(S) = \sum_{i \in S} w_i, \forall S \subseteq [n]$
- ullet budget-additive function: $f(S) = \min\Big\{\sum_{i \in S} w_i, B\Big\}, \forall S \subseteq [n]$
- coverage function: given sets $S_1, S_2, \cdots, \widetilde{S_n} \subseteq \Omega$,

$$f(C) := \left| \bigcup_{i \in C} S_i \right|, \forall C \subseteq [n]$$

matroid rank function:

Def. Given a matroid $\mathcal{M}=(E,\mathcal{I})$, the rank of any $A\subseteq E$ is defined as

$$r_{\mathcal{M}}(A) = \max\{|A'| : A' \subseteq A, A' \in \mathcal{I}\}.$$

The function $r_{\mathcal{M}}: 2^E \to \mathbb{Z}_{\geq 0}$ is called the rank function of \mathcal{M} .

- linear function: $f(S) = \sum_{i \in S} w_i, \forall S \subseteq [n]$
- ullet budget-additive function: $f(S) = \min\Big\{\sum_{i \in S} w_i, B\Big\}, \forall S \subseteq [n]$
- coverage function: given sets $S_1, S_2, \cdots, \widetilde{S_n} \subseteq \Omega$,

$$f(C) := \left| \bigcup_{i \in C} S_i \right|, \forall C \subseteq [n]$$

matroid rank function:

Def. Given a matroid $\mathcal{M}=(E,\mathcal{I})$, the rank of any $A\subseteq E$ is defined as

$$r_{\mathcal{M}}(A) = \max\{|A'| : A' \subseteq A, A' \in \mathcal{I}\}.$$

The function $r_{\mathcal{M}}: 2^E \to \mathbb{Z}_{>0}$ is called the rank function of \mathcal{M} .

• cut function: given graph
$$G = ([n], E)$$

$$f(A) = |E(A, [n] \setminus A)|, \forall A \subseteq [n]$$

• linear function, budget-additive function, coverage function,

- linear function, budget-additive function, coverage function,
- matroid rank function, cut function

- linear function, budget-additive function, coverage function,
- matroid rank function, cut function
- ullet entropy function: given random variables X_1, X_2, \cdots, X_n

$$f(S) := H(X_i : i \in S), \forall S \subseteq [n]$$

- linear function, budget-additive function, coverage function,
- matroid rank function, cut function
- ullet entropy function: given random variables X_1, X_2, \cdots, X_n

$$f(S) := H(X_i : i \in S), \forall S \subseteq [n]$$

Def. A submodular function $f: 2^{[n]} \to \mathbb{R}$ is said to be monotone if $f(A) \le f(B)$ for every $A \subseteq B \subseteq [n]$.

- linear function, budget-additive function, coverage function,
- matroid rank function, cut function
- ullet entropy function: given random variables X_1, X_2, \cdots, X_n

$$f(S) := H(X_i : i \in S), \forall S \subseteq [n]$$

Def. A submodular function $f:2^{[n]}\to\mathbb{R}$ is said to be monotone if $f(A)\leq f(B)$ for every $A\subseteq B\subseteq [n]$.

Def. A submodular function $f: 2^{[n]} \to \mathbb{R}$ is said to be symmetric if $f(A) = f([n] \setminus A)$ for every $A \subseteq [n]$.

- linear function, budget-additive function, coverage function,
- matroid rank function, cut function
- ullet entropy function: given random variables X_1, X_2, \cdots, X_n

$$f(S) := H(X_i : i \in S), \forall S \subseteq [n]$$

Def. A submodular function $f:2^{[n]}\to\mathbb{R}$ is said to be monotone if $f(A)\leq f(B)$ for every $A\subseteq B\subseteq [n]$.

Def. A submodular function $f:2^{[n]}\to\mathbb{R}$ is said to be symmetric if $f(A)=f([n]\setminus A)$ for every $A\subseteq [n]$.

• coverage, matroid rank and entropy functions are monotone

- linear function, budget-additive function, coverage function,
- matroid rank function, cut function
- ullet entropy function: given random variables X_1, X_2, \cdots, X_n

$$f(S) := H(X_i : i \in S), \forall S \subseteq [n]$$

Def. A submodular function $f:2^{[n]}\to\mathbb{R}$ is said to be monotone if $f(A)\leq f(B)$ for every $A\subseteq B\subseteq [n]$.

Def. A submodular function $f: 2^{[n]} \to \mathbb{R}$ is said to be symmetric if $f(A) = f([n] \setminus A)$ for every $A \subseteq [n]$.

- coverage, matroid rank and entropy functions are monotone
- cut function is symmetric

Outline

- Greedy Algorithms and Matroids
 - Recap: Maximum-Weight Spanning Tree Problem
 - Maximum-Weight Independent Set in Matroids
 - Examples of Matroids
- Greedy Approximation Algorithms
 - $(\ln n + 1)$ -Approximation for Set-Cover
 - $(1-\frac{1}{e})$ -Approximation for Maximum Coverage
 - Submodular Functions
 - $(1-\frac{1}{e})$ -Approximation for Cardinality-Constrained Submodular Maximization

$\left(1-\frac{1}{e}\right)$ -Approximation for Submodular Maximization with Cardinality Constraint

Submodular Maximization under a Cardinality Constraint

Input: An oracle to a non-negative monotone submodular

function $f: 2^{[n]} \to \mathbb{R}_{\geq 0}$, $k \in [n]$

Output: A subset $S \subseteq [n]$ with |S| = k, so as to maximize f(S)

$\left(1-\frac{1}{e}\right)$ -Approximation for Submodular Maximization with Cardinality Constraint

Submodular Maximization under a Cardinality Constraint

Input: An oracle to a non-negative monotone submodular function $f: 2^{[n]} \to \mathbb{R}_{>0}$, $k \in [n]$

Output: A subset $S \subseteq [n]$ with |S| = k, so as to maximize f(S)

• We can assume $f(\emptyset) = 0$

$\left(1-\frac{1}{e}\right)$ -Approximation for Submodular Maximization with Cardinality Constraint

Submodular Maximization under a Cardinality Constraint

Input: An oracle to a non-negative monotone submodular function $f: 2^{[n]} \to \mathbb{R}_{>0}$, $k \in [n]$

Output: A subset $S \subseteq [n]$ with |S| = k, so as to maximize f(S)

• We can assume $f(\emptyset) = 0$

Greedy Algorithm for the Problem

- 1: $S \leftarrow \emptyset$
- 2: **for** $t \leftarrow 1$ to k **do**
- 3: choose the i that maximizes $f(S \cup \{i\})$
- 4: $S \leftarrow S \cup \{i\}$
- 5: return S

Theorem Greedy algorithm gives $(1-\frac{1}{e})$ -approximation for submodular-maximization under a cardinality constraint.

Theorem Greedy algorithm gives $(1 - \frac{1}{e})$ -approximation for submodular-maximization under a cardinality constraint.

- o: optimum value
- ullet p_t : value obtained by greedy algorithm after step t
- need to prove: $p_t \ge p_{t-1} + \frac{o p_{t-1}}{k}$
- $o p_t \le o p_{t-1} \frac{o p_{t-1}}{k} = \left(1 \frac{1}{k}\right)(o p_{t-1})$
- $\bullet o p_k \le \left(1 \frac{1}{k}\right)^k (o p_0) \le \frac{1}{e} \cdot o$
- $p_k \ge \left(1 \frac{1}{e}\right) \cdot o$

Def. A set function $f:2^{[n]}\to\mathbb{R}_{\geq 0}$ is sub-additive if for every two sets $A,B\subseteq [n]$, we have $f(A\cup B)\leq f(A)+f(B)$.

Def. A set function $f: 2^{[n]} \to \mathbb{R}_{\geq 0}$ is sub-additive if for every two sets $A, B \subseteq [n]$, we have $f(A \cup B) \leq f(A) + f(B)$.

Lemma A non-negative submodular set function $f: 2^{[n]} \to \mathbb{R}_{\geq 0}$ is sub-additive.

Def. A set function $f: 2^{[n]} \to \mathbb{R}_{\geq 0}$ is sub-additive if for every two sets $A, B \subseteq [n]$, we have $f(A \cup B) \leq f(A) + f(B)$.

Lemma A non-negative submodular set function $f: 2^{[n]} \to \mathbb{R}_{\geq 0}$ is sub-additive.

For
$$A, B \subseteq [n]$$
, we have $f(A \cup B) + f(A \cap B) \le f(A) + f(B)$. So, $f(A \cup B) \le f(A) + f(B)$ as $f(A \cap B) \ge 0$.

Lemma Let $f: 2^{[n]} \to \mathbb{R}$ be submodular. Let $S \subseteq [n]$, and $f_S(A) = f(S \cup A) - f(S)$ for every $A \subseteq [n]$. (f_S is the marginal value function for set S.) Then f_S is also submodular.

Lemma Let $f: 2^{[n]} \to \mathbb{R}$ be submodular. Let $S \subseteq [n]$, and $f_S(A) = f(S \cup A) - f(S)$ for every $A \subseteq [n]$. (f_S is the marginal value function for set S.) Then f_S is also submodular.

Proof.

• Let $A, B \subseteq [n] \setminus S$; it suffices to consider ground set $[n] \setminus S$.

$$f_{S}(A \cup B) + f_{S}(A \cap B) - (f_{S}(A) + f_{S}(B))$$

$$= f(S \cup A \cup B) - f(S) + f(S \cup (A \cap B)) - f(S)$$

$$- (f(S \cup A) - f(S) + f(S \cup B) - f(S))$$

$$= f(S \cup A \cup B) + f(S \cup (A \cap B)) - f(S \cup A) - f(S \cup B)$$

$$\leq 0$$

• The last inequality is by $S \cup A \cup B = (S \cup A) \cup (S \cup B)$, $S \cup (A \cap B) = (S \cup A) \cap (S \cup B)$ and submodularity of f.

Proof of $p_t \geq p_{t-1} + \frac{o-p_{t-1}}{k}$.

- $S^* \subseteq [n]$: optimum set, $|S^*| = k$, $o = f(S^*)$
- S: set chosen by the algorithm at beginning of time step t|S| = t - 1, $p_{t-1} = f(S)$

Proof of $p_t \geq p_{t-1} + \frac{o - p_{t-1}}{k}$.

- $S^* \subseteq [n]$: optimum set, $|S^*| = k$, $o = f(S^*)$
- S: set chosen by the algorithm at beginning of time step t|S| = t - 1, $p_{t-1} = f(S)$
- \bullet f_S is submodular and thus sub-additive

$$f_S(S^*) \le \sum_{i \in S^*} f_S(i) \quad \Rightarrow \quad \exists i \in S^*, f_S(i) \ge \frac{1}{k} f_S(S^*)$$

Proof of $p_t \geq p_{t-1} + \frac{o-p_{t-1}}{k}$.

- $S^* \subseteq [n]$: optimum set, $|S^*| = k$, $o = f(S^*)$
- S: set chosen by the algorithm at beginning of time step t|S| = t - 1, $p_{t-1} = f(S)$
- ullet f_S is submodular and thus sub-additive

$$f_S(S^*) \le \sum_{i \in S^*} f_S(i) \quad \Rightarrow \quad \exists i \in S^*, f_S(i) \ge \frac{1}{k} f_S(S^*)$$

• for the i, we have

$$f(S \cup \{i\}) - f(S) \ge \frac{1}{k} (f(S^*) - f(S))$$
$$p_t \ge f(S \cup \{i\}) \ge p_{t-1} + \frac{1}{k} (o - p_{t-1})$$

Submodular Maximization for Monotone Functions:

Constraint	Approx.	Hardness	Technique
$ S \le k$	1 - 1/e	1 - 1/e	greedy
matroid	1 - 1/e	1 - 1/e	multilinear ext.
O(1) knapsacks	1 - 1/e	1 - 1/e	multilinear ext.
k matroids	$k + \epsilon$	$\Omega(k/\log k)$	local search
k matroids	O(k)	$\Omega(k/\log k)$	multilinear ext.
O(1) knapsacks	$O(\kappa)$	22(K/ log K)	multilinear ext.

Submodular Maximization for Non-Monotone Functions:

Constraint	Approx.	Hardness	Technique
Unconstrained	1/2	1/2	combinatorial
matroid	1/e	0.48	multilinear ext.
O(1) knapsacks	1/e	0.49	multilinear ext.
k matroids	k + O(1)	$\Omega(k/\log k)$	local search
k matroids	O(k)	$\Omega(k/\log k)$	multilinear ext.
O(1) knapsacks	O(k)	22(k/ log k)	multilinear ext.

Submodular Minimization

Constraint	Approx.	Hardness	Technique
Unconstrained	1	1	combinatorial
$ S \ge k$, Monotone	$\tilde{O}(\sqrt{n})$ *	$\Omega(\sqrt{n})^*$	combinatorial

• * bounds are for query complexity under oracle model.