Advanced Algorithms (Fall 2025) Linear Programming

Lecturers: 尹一通,刘景铖,<mark>栗师</mark> Nanjing University

Outline

- Linear Programming
 - Introduction
 - Methods for Solving Linear Programs
- Polytope with Polynomial Number of Facets
 - Bipartite Matching Polytope
 - Polytopes with Totally Unimodular Coefficient Matrices
- 3 Polytopes with Efficient Separation Oracles
 - s-t Cut Polytope
 - Spanning Tree Polytope
 - General Graph (Perfect) Matching Polytope
- Matroid, Matroid Basis and Matroid Intersection Polytopes *
 - Preliminaries on Matroid Theory
 - Matroid Polytope
 - Matroid Basis and Matroid Intersection Polytope

Outline

- Linear Programming
 - Introduction
 - Methods for Solving Linear Programs
- Polytope with Polynomial Number of Facets
 - Bipartite Matching Polytope
 - Polytopes with Totally Unimodular Coefficient Matrices
- 3 Polytopes with Efficient Separation Oracles
 - s-t Cut Polytope
 - Spanning Tree Polytope
 - General Graph (Perfect) Matching Polytope
- Matroid, Matroid Basis and Matroid Intersection Polytopes *
 - Preliminaries on Matroid Theory
 - Matroid Polytope
 - Matroid Basis and Matroid Intersection Polytope

Typical Combinatorial Optimization Problem

Input: [n]: ground set

 ${\cal S}$: feasible sets: a family of subsets of U, often

implicitly given

 $w_i, i \in [n]$: values/costs of elements

Output: the set $S \in \mathcal{S}$ with the minimum/maximum

 $w(S) := \sum_{i \in S} w_i$

Example:

- Shortest Path, Minimum Spanning Tree
- Maximum Independent Set, Maximum Matching, Knapsack Packing

Typical Combinatorial Optimization Problem

Input: [n]: ground set

 ${\cal S}$: feasible sets: a family of subsets of U, often

implicitly given

 $w_i, i \in [n]$: values/costs of elements

Output: the set $S \in \mathcal{S}$ with the minimum/maximum

$$w(S) := \sum_{i \in S} w_i$$

Example:

- Shortest Path, Minimum Spanning Tree
- Maximum Independent Set, Maximum Matching, Knapsack Packing
- CO problem \iff Integer Program (IP) $\stackrel{\text{relax?}}{\Longrightarrow}$ Linear Program (LP)

Typical Combinatorial Optimization Problem

Input: [n]: ground set

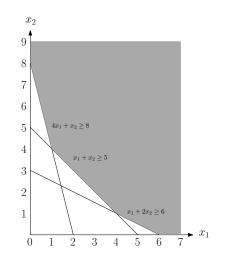
S: feasible sets: a family of subsets of U, often implicitly given

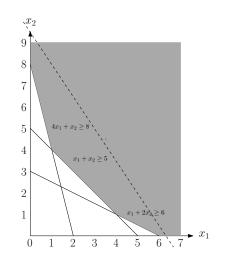
 $w_i, i \in [n]$: values/costs of elements

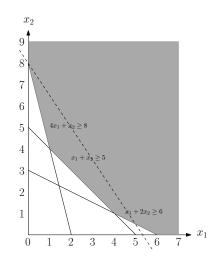
Output: the set $S \in \mathcal{S}$ with the minimum/maximum $w(S) := \sum_{i \in S} w_i$

Example:

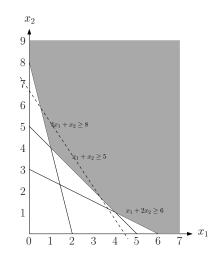
- Shortest Path, Minimum Spanning Tree
- Maximum Independent Set, Maximum Matching, Knapsack Packing
- CO problem \iff Integer Program (IP) $\xrightarrow{\text{relax?}}$ Linear Program (LP)
- In general: Integer programming is NP-hard; linear programming is in P



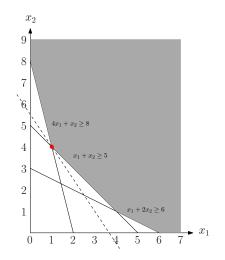




$$\min \quad 7x_1 + 4x_2
x_1 + x_2 \ge 5
x_1 + 2x_2 \ge 6
4x_1 + x_2 \ge 8
x_1, x_2 > 0$$



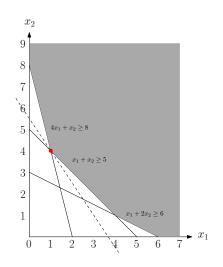
$$\min \quad 7x_1 + 4x_2
x_1 + x_2 \ge 5
x_1 + 2x_2 \ge 6
4x_1 + x_2 \ge 8
x_1, x_2 > 0$$



optimum solution:

$$x_1 = 1, x_2 = 4$$

• optimum value = $7 \times 1 + 4 \times 4 = 23$



$$\min c_1 x_1 + c_2 x_2 + \dots + c_n x_n
a_{1,1} x_1 + a_{1,2} x_2 + \dots + a_{1,n} x_n \ge b_1
a_{2,1} x_1 + a_{2,2} x_2 + \dots + a_{2,n} x_n \ge b_2
\vdots
a_{m,1} x_1 + a_{m,2} x_2 + \dots + a_{m,n} x_n \ge b_m
x_1, x_2, \dots, x_n \ge 0$$

• n: number of variables m: number of constraints

$$\min c_1 x_1 + c_2 x_2 + \dots + c_n x_n
a_{1,1} x_1 + a_{1,2} x_2 + \dots + a_{1,n} x_n \ge b_1
a_{2,1} x_1 + a_{2,2} x_2 + \dots + a_{2,n} x_n \ge b_2
\vdots
a_{m,1} x_1 + a_{m,2} x_2 + \dots + a_{m,n} x_n \ge b_m
x_1, x_2, \dots, x_n \ge 0$$

- n: number of variables m: number of constraints
- Other considerations: \leq constraints? equlities?

$$\min c_1 x_1 + c_2 x_2 + \dots + c_n x_n$$

$$a_{1,1} x_1 + a_{1,2} x_2 + \dots + a_{1,n} x_n \ge b_1$$

$$a_{2,1} x_1 + a_{2,2} x_2 + \dots + a_{2,n} x_n \ge b_2$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$a_{m,1} x_1 + a_{m,2} x_2 + \dots + a_{m,n} x_n \ge b_m$$

$$x_1, x_2, \dots, x_n \ge 0$$

- n: number of variables m: number of constraints
- Other considerations: < constraints? equlities?
- variables can be negative? maximization problem?

$$x := \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{R}^n, \qquad c := \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix} \in \mathbb{R}^n,$$

$$A := \begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m,1} & a_{m,2} & \cdots & a_{m,n} \end{pmatrix} \in \mathbb{R}^{n \times m}, \quad b := \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix} \in \mathbb{R}^m.$$

$$\min c_1 x_1 + c_2 x_2 + \dots + c_n x_n$$

$$a_{1,1} x_1 + a_{1,2} x_2 + \dots + a_{1,n} x_n \ge b_1$$

$$a_{2,1} x_1 + a_{2,2} x_2 + \dots + a_{2,n} x_n \ge b_2$$

$$\vdots \qquad \vdots \qquad \vdots$$

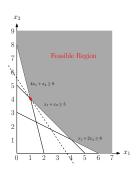
$$a_{m,1} x_1 + a_{m,2} x_2 + \dots + a_{m,n} x_n \ge b_m$$

$$x_1, x_2, \dots, x_n \ge 0$$

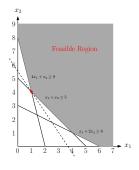
 $\begin{array}{cc}
\min & c^{\mathrm{T}} x \\
Ax \ge b \\
x > 0
\end{array}$

 \bullet \geq : coordinate-wise less than or equal to

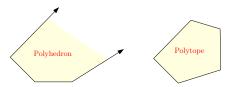
• feasible region: the set of x's satisfying $Ax \ge b, x \ge 0$

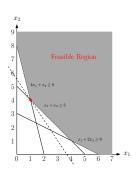


- feasible region: the set of x's satisfying $Ax \ge b, x \ge 0$
- a polyhedron is the intersection of finite number of closed half-spaces
- so, feasible region is a polyhedron



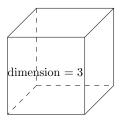
- feasible region: the set of x's satisfying $Ax \ge b, x \ge 0$
- a polyhedron is the intersection of finite number of closed half-spaces
- so, feasible region is a polyhedron
- if every coordinate has an upper and lower bound in the polyhedron, then the polyhedron is a polytope



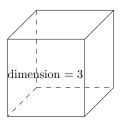


• The dimension of \mathcal{P} is n minus the maximum number of linearly-independent equalities satisfied by all points in \mathcal{P} .

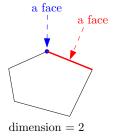
• The dimension of \mathcal{P} is n minus the maximum number of linearly-independent equalities satisfied by all points in \mathcal{P} .

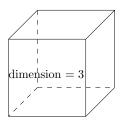


- The dimension of \mathcal{P} is n minus the maximum number of linearly-independent equalities satisfied by all points in \mathcal{P} .
- Assume the linear inequality $a^{\mathrm{T}}x \leq b$ holds for every $x \in \mathcal{P}$, and some $x \in \mathcal{P}$ satisfies $a^{\mathrm{T}}x = b$. Then $\{x \in \mathcal{P} : a^{\mathrm{T}}x = b\}$ is said to be a face of \mathcal{P} .

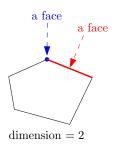


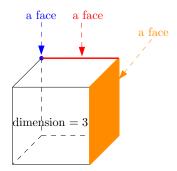
- The dimension of \mathcal{P} is n minus the maximum number of linearly-independent equalities satisfied by all points in \mathcal{P} .
- Assume the linear inequality $a^{\mathrm{T}}x \leq b$ holds for every $x \in \mathcal{P}$, and some $x \in \mathcal{P}$ satisfies $a^{\mathrm{T}}x = b$. Then $\{x \in \mathcal{P} : a^{\mathrm{T}}x = b\}$ is said to be a face of \mathcal{P} .



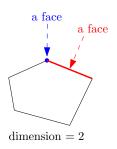


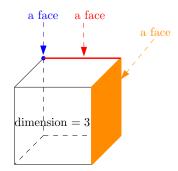
- The dimension of \mathcal{P} is n minus the maximum number of linearly-independent equalities satisfied by all points in \mathcal{P} .
- Assume the linear inequality $a^{\mathrm{T}}x \leq b$ holds for every $x \in \mathcal{P}$, and some $x \in \mathcal{P}$ satisfies $a^{\mathrm{T}}x = b$. Then $\{x \in \mathcal{P} : a^{\mathrm{T}}x = b\}$ is said to be a face of \mathcal{P} .



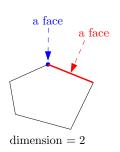


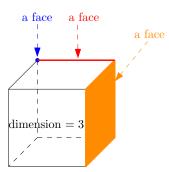
- The dimension of \mathcal{P} is n minus the maximum number of linearly-independent equalities satisfied by all points in \mathcal{P} .
- Assume the linear inequality $a^{\mathrm{T}}x \leq b$ holds for every $x \in \mathcal{P}$, and some $x \in \mathcal{P}$ satisfies $a^{\mathrm{T}}x = b$. Then $\{x \in \mathcal{P} : a^{\mathrm{T}}x = b\}$ is said to be a face of \mathcal{P} .
- ullet A face of ${\mathcal P}$ is also a polytope.



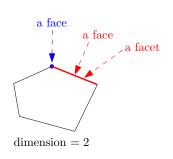


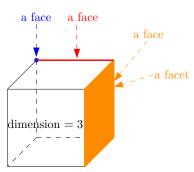
- The dimension of \mathcal{P} is n minus the maximum number of linearly-independent equalities satisfied by all points in \mathcal{P} .
- Assume the linear inequality $a^{\mathrm{T}}x \leq b$ holds for every $x \in \mathcal{P}$, and some $x \in \mathcal{P}$ satisfies $a^{\mathrm{T}}x = b$. Then $\{x \in \mathcal{P} : a^{\mathrm{T}}x = b\}$ is said to be a face of \mathcal{P} .
- ullet A face of ${\mathcal P}$ is also a polytope.
- Assume the dimension of \mathcal{P} is d. Then a face of \mathcal{P} of dimension d-1 is said to be a facet of \mathcal{P} .





- The dimension of \mathcal{P} is n minus the maximum number of linearly-independent equalities satisfied by all points in \mathcal{P} .
- Assume the linear inequality $a^{\mathrm{T}}x \leq b$ holds for every $x \in \mathcal{P}$, and some $x \in \mathcal{P}$ satisfies $a^{\mathrm{T}}x = b$. Then $\{x \in \mathcal{P} : a^{\mathrm{T}}x = b\}$ is said to be a face of \mathcal{P} .
- ullet A face of ${\mathcal P}$ is also a polytope.
- Assume the dimension of \mathcal{P} is d. Then a face of \mathcal{P} of dimension d-1 is said to be a facet of \mathcal{P} .





$$\lambda_1 + \lambda_2 + \dots + \lambda_t = 1, \qquad \lambda_1 x^{(1)} + \lambda_2 x^{(2)} + \dots + \lambda_t x^{(t)} = x$$

• x is a convex combination of $\{x^{(1)}, x^{(2)}, \cdots, x^{(t)}\}$ if the following condition holds: there exist $\lambda_1, \lambda_2, \cdots, \lambda_t \in [0, 1]$ such that

$$\lambda_1 + \lambda_2 + \dots + \lambda_t = 1, \qquad \lambda_1 x^{(1)} + \lambda_2 x^{(2)} + \dots + \lambda_t x^{(t)} = x$$

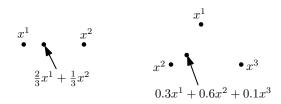
 r^1 3

$$\lambda_1 + \lambda_2 + \dots + \lambda_t = 1, \qquad \lambda_1 x^{(1)} + \lambda_2 x^{(2)} + \dots + \lambda_t x^{(t)} = x$$

$$\lambda_1 + \lambda_2 + \dots + \lambda_t = 1, \qquad \lambda_1 x^{(1)} + \lambda_2 x^{(2)} + \dots + \lambda_t x^{(t)} = x$$



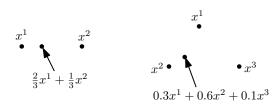
$$\lambda_1 + \lambda_2 + \dots + \lambda_t = 1, \qquad \lambda_1 x^{(1)} + \lambda_2 x^{(2)} + \dots + \lambda_t x^{(t)} = x$$



• x is a convex combination of $\{x^{(1)}, x^{(2)}, \cdots, x^{(t)}\}$ if the following condition holds: there exist $\lambda_1, \lambda_2, \cdots, \lambda_t \in [0, 1]$ such that

$$\lambda_1 + \lambda_2 + \dots + \lambda_t = 1, \qquad \lambda_1 x^{(1)} + \lambda_2 x^{(2)} + \dots + \lambda_t x^{(t)} = x$$

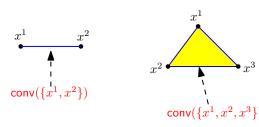
• the convex hull of a set of S of points in \mathbb{R}^n , denoted as $\operatorname{conv}(S)$, is the set of convex combinations of S



• x is a convex combination of $\{x^{(1)}, x^{(2)}, \cdots, x^{(t)}\}$ if the following condition holds: there exist $\lambda_1, \lambda_2, \cdots, \lambda_t \in [0, 1]$ such that

$$\lambda_1 + \lambda_2 + \dots + \lambda_t = 1, \qquad \lambda_1 x^{(1)} + \lambda_2 x^{(2)} + \dots + \lambda_t x^{(t)} = x$$

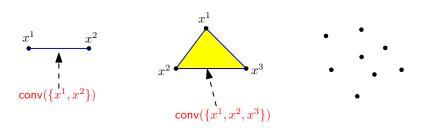
• the convex hull of a set of S of points in \mathbb{R}^n , denoted as $\operatorname{conv}(S)$, is the set of convex combinations of S



• x is a convex combination of $\{x^{(1)}, x^{(2)}, \cdots, x^{(t)}\}$ if the following condition holds: there exist $\lambda_1, \lambda_2, \cdots, \lambda_t \in [0, 1]$ such that

$$\lambda_1 + \lambda_2 + \dots + \lambda_t = 1, \qquad \lambda_1 x^{(1)} + \lambda_2 x^{(2)} + \dots + \lambda_t x^{(t)} = x$$

• the convex hull of a set of S of points in \mathbb{R}^n , denoted as $\operatorname{conv}(S)$, is the set of convex combinations of S

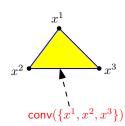


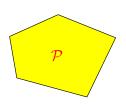
Preliminaries

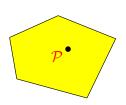
• x is a convex combination of $\{x^{(1)}, x^{(2)}, \cdots, x^{(t)}\}$ if the following condition holds: there exist $\lambda_1, \lambda_2, \cdots, \lambda_t \in [0, 1]$ such that

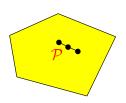
$$\lambda_1 + \lambda_2 + \dots + \lambda_t = 1, \qquad \lambda_1 x^{(1)} + \lambda_2 x^{(2)} + \dots + \lambda_t x^{(t)} = x$$

• the convex hull of a set of S of points in \mathbb{R}^n , denoted as $\operatorname{conv}(S)$, is the set of convex combinations of S

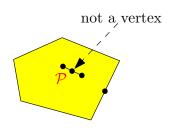


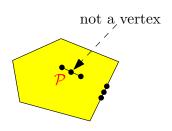


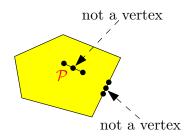


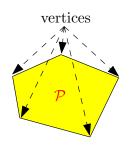






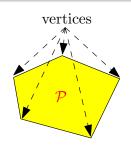






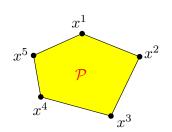
• let \mathcal{P} be polytope, $x \in \mathcal{P}$. If there are no other points $x', x'' \in \mathcal{P}$ such that x is a convex combination of x' and x'', then x is called a vertex/extreme point of \mathcal{P}

Lemma A polytope has finite number of vertices, and it is the convex hull of the vertices.



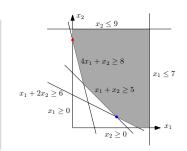
• let \mathcal{P} be polytope, $x \in \mathcal{P}$. If there are no other points $x', x'' \in \mathcal{P}$ such that x is a convex combination of x' and x'', then x is called a vertex/extreme point of \mathcal{P}

Lemma A polytope has finite number of vertices, and it is the convex hull of the vertices.

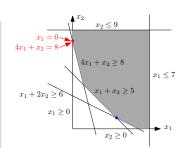


$$\mathcal{P} = \mathsf{conv}(\{x^1, x^2, x^3, x^4, x^5\})$$

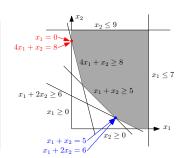
Lemma Let $x \in \mathbb{R}^n$ be a vertex of a polytope. Then, there are n constraints in the definition of the polytope, such that x is the unique solution to the linear system obtained from the n constraints by replacing inequalities to equalities.



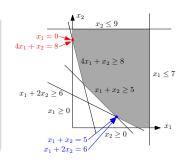
Lemma Let $x \in \mathbb{R}^n$ be a vertex of a polytope. Then, there are n constraints in the definition of the polytope, such that x is the unique solution to the linear system obtained from the n constraints by replacing inequalities to equalities.



Lemma Let $x \in \mathbb{R}^n$ be a vertex of a polytope. Then, there are n constraints in the definition of the polytope, such that x is the unique solution to the linear system obtained from the n constraints by replacing inequalities to equalities.

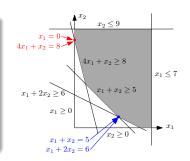


Lemma Let $x \in \mathbb{R}^n$ be a vertex of a polytope. Then, there are n constraints in the definition of the polytope, such that x is the unique solution to the linear system obtained from the n constraints by replacing inequalities to equalities.



Lemma If the feasible region of a linear program is a polytope, then the opimum value can be attained at some vertex of the polytope.

Lemma Let $x \in \mathbb{R}^n$ be a vertex of a polytope. Then, there are n constraints in the definition of the polytope, such that x is the unique solution to the linear system obtained from the n constraints by replacing inequalities to equalities.



Lemma If the feasible region of a linear program is a polytope, then the opimum value can be attained at some vertex of the polytope.

Special cases (for minimization linear programs):

- ullet if feasible region is empty, then its value is ∞
- ullet if the feasible region is unbounded, then its value can be $-\infty$

Outline

- Linear Programming
 - Introduction
 - Methods for Solving Linear Programs
- 2 Polytope with Polynomial Number of Facets
 - Bipartite Matching Polytope
 - Polytopes with Totally Unimodular Coefficient Matrices
- 3 Polytopes with Efficient Separation Oracles
 - s-t Cut Polytope
 - Spanning Tree Polytope
 - General Graph (Perfect) Matching Polytope
- Matroid, Matroid Basis and Matroid Intersection Polytopes *
 - Preliminaries on Matroid Theory
 - Matroid Polytope
 - Matroid Basis and Matroid Intersection Polytope

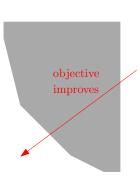
Algorithms for Linear Programming

algorithm	running time	practice
Simplex Method	exponential time	fast
Ellipsoid Method	polynomial time	slow
Interior Point Method	polynomial time	fast

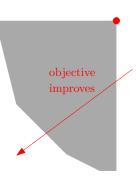
- [Dantzig, 1946]
- move from one vertex to another, so as to improve the objective
- repeat until we reach an optimum vertex

- [Dantzig, 1946]
- move from one vertex to another, so as to improve the objective
- repeat until we reach an optimum vertex

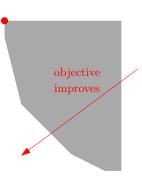
- [Dantzig, 1946]
- move from one vertex to another, so as to improve the objective
- repeat until we reach an optimum vertex



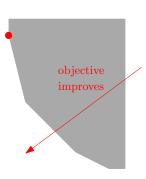
- [Dantzig, 1946]
- move from one vertex to another, so as to improve the objective
- repeat until we reach an optimum vertex



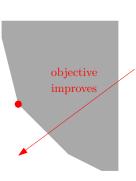
- [Dantzig, 1946]
- move from one vertex to another, so as to improve the objective
- repeat until we reach an optimum vertex



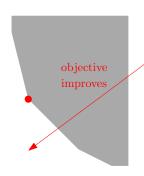
- [Dantzig, 1946]
- move from one vertex to another, so as to improve the objective
- repeat until we reach an optimum vertex



- [Dantzig, 1946]
- move from one vertex to another, so as to improve the objective
- repeat until we reach an optimum vertex

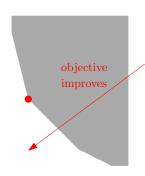


- [Dantzig, 1946]
- move from one vertex to another, so as to improve the objective
- repeat until we reach an optimum vertex



 the number of iterations might be expoentially large; but algorithm runs fast in practice

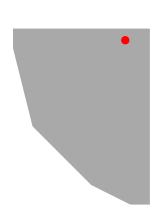
- [Dantzig, 1946]
- move from one vertex to another, so as to improve the objective
- repeat until we reach an optimum vertex



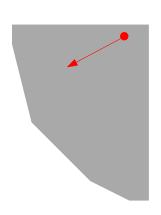
- the number of iterations might be expoentially large; but algorithm runs fast in practice
- [Spielman-Teng, 2002]: smoothed analysis

- [Karmarkar, 1984]
- keep the solution inside the polytope
- design penalty function so that the solution is not too close to the boundary
- the final solution will be arbitrarily close to the optimum solution

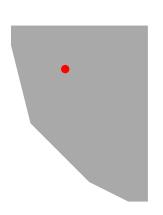
- [Karmarkar, 1984]
- keep the solution inside the polytope
- design penalty function so that the solution is not too close to the boundary
- the final solution will be arbitrarily close to the optimum solution



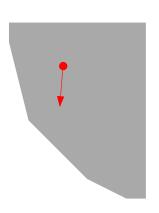
- [Karmarkar, 1984]
- keep the solution inside the polytope
- design penalty function so that the solution is not too close to the boundary
- the final solution will be arbitrarily close to the optimum solution



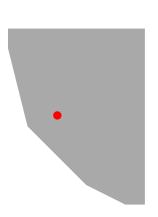
- [Karmarkar, 1984]
- keep the solution inside the polytope
- design penalty function so that the solution is not too close to the boundary
- the final solution will be arbitrarily close to the optimum solution



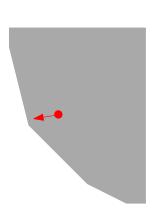
- [Karmarkar, 1984]
- keep the solution inside the polytope
- design penalty function so that the solution is not too close to the boundary
- the final solution will be arbitrarily close to the optimum solution



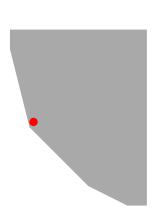
- [Karmarkar, 1984]
- keep the solution inside the polytope
- design penalty function so that the solution is not too close to the boundary
- the final solution will be arbitrarily close to the optimum solution



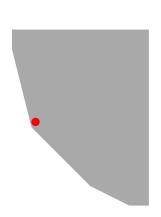
- [Karmarkar, 1984]
- keep the solution inside the polytope
- design penalty function so that the solution is not too close to the boundary
- the final solution will be arbitrarily close to the optimum solution



- [Karmarkar, 1984]
- keep the solution inside the polytope
- design penalty function so that the solution is not too close to the boundary
- the final solution will be arbitrarily close to the optimum solution



- [Karmarkar, 1984]
- keep the solution inside the polytope
- design penalty function so that the solution is not too close to the boundary
- the final solution will be arbitrarily close to the optimum solution
- polynomial time



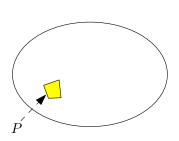
• [Khachiyan, 1979]

- [Khachiyan, 1979]
- used to decide if the feasible region is empty or not

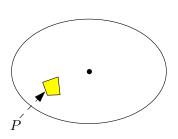
- [Khachiyan, 1979]
- used to decide if the feasible region is empty or not
- maintain an ellipsoid that contains the feasible region

- [Khachiyan, 1979]
- used to decide if the feasible region is empty or not
- maintain an ellipsoid that contains the feasible region
- query a separation oracle if the center of ellipsid is in the feasible region:
 - yes: then the feasible region is not empty
 - no: cut the elliposid in half, find smaller ellipsoid to enclose the half-ellipsoid, and repeat

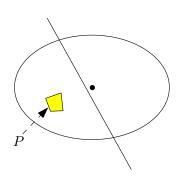
- [Khachiyan, 1979]
- used to decide if the feasible region is empty or not
- maintain an ellipsoid that contains the feasible region
- query a separation oracle if the center of ellipsid is in the feasible region:
 - yes: then the feasible region is not empty
 - no: cut the elliposid in half, find smaller ellipsoid to enclose the half-ellipsoid, and repeat



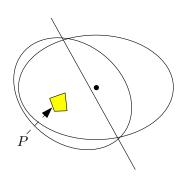
- [Khachiyan, 1979]
- used to decide if the feasible region is empty or not
- maintain an ellipsoid that contains the feasible region
- query a separation oracle if the center of ellipsid is in the feasible region:
 - yes: then the feasible region is not empty
 - no: cut the elliposid in half, find smaller ellipsoid to enclose the half-ellipsoid, and repeat



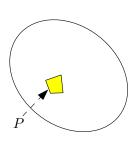
- [Khachiyan, 1979]
- used to decide if the feasible region is empty or not
- maintain an ellipsoid that contains the feasible region
- query a separation oracle if the center of ellipsid is in the feasible region:
 - yes: then the feasible region is not empty
 - no: cut the elliposid in half, find smaller ellipsoid to enclose the half-ellipsoid, and repeat



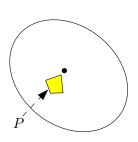
- [Khachiyan, 1979]
- used to decide if the feasible region is empty or not
- maintain an ellipsoid that contains the feasible region
- query a separation oracle if the center of ellipsid is in the feasible region:
 - yes: then the feasible region is not empty
 - no: cut the elliposid in half, find smaller ellipsoid to enclose the half-ellipsoid, and repeat



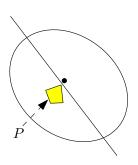
- [Khachiyan, 1979]
- used to decide if the feasible region is empty or not
- maintain an ellipsoid that contains the feasible region
- query a separation oracle if the center of ellipsid is in the feasible region:
 - yes: then the feasible region is not empty
 - no: cut the elliposid in half, find smaller ellipsoid to enclose the half-ellipsoid, and repeat



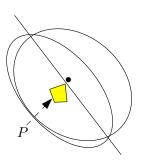
- [Khachiyan, 1979]
- used to decide if the feasible region is empty or not
- maintain an ellipsoid that contains the feasible region
- query a separation oracle if the center of ellipsid is in the feasible region:
 - yes: then the feasible region is not empty
 - no: cut the elliposid in half, find smaller ellipsoid to enclose the half-ellipsoid, and repeat



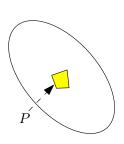
- [Khachiyan, 1979]
- used to decide if the feasible region is empty or not
- maintain an ellipsoid that contains the feasible region
- query a separation oracle if the center of ellipsid is in the feasible region:
 - yes: then the feasible region is not empty
 - no: cut the elliposid in half, find smaller ellipsoid to enclose the half-ellipsoid, and repeat



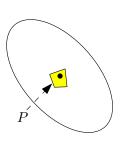
- [Khachiyan, 1979]
- used to decide if the feasible region is empty or not
- maintain an ellipsoid that contains the feasible region
- query a separation oracle if the center of ellipsid is in the feasible region:
 - yes: then the feasible region is not empty
 - no: cut the elliposid in half, find smaller ellipsoid to enclose the half-ellipsoid, and repeat



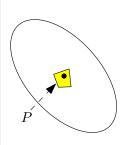
- [Khachiyan, 1979]
- used to decide if the feasible region is empty or not
- maintain an ellipsoid that contains the feasible region
- query a separation oracle if the center of ellipsid is in the feasible region:
 - yes: then the feasible region is not empty
 - no: cut the elliposid in half, find smaller ellipsoid to enclose the half-ellipsoid, and repeat



- [Khachiyan, 1979]
- used to decide if the feasible region is empty or not
- maintain an ellipsoid that contains the feasible region
- query a separation oracle if the center of ellipsid is in the feasible region:
 - yes: then the feasible region is not empty
 - no: cut the elliposid in half, find smaller ellipsoid to enclose the half-ellipsoid, and repeat



- [Khachiyan, 1979]
- used to decide if the feasible region is empty or not
- maintain an ellipsoid that contains the feasible region
- query a separation oracle if the center of ellipsid is in the feasible region:
 - yes: then the feasible region is not empty
 - no: cut the elliposid in half, find smaller ellipsoid to enclose the half-ellipsoid, and repeat



polynomial time, but impractical

Q: The exact running time of these algorithms?

Q: The exact running time of these algorithms?

- it depends on many parameters: #variables, #constraints, #(non-zero coefficients), magnitude of integers
- precision issue

Q: The exact running time of these algorithms?

- it depends on many parameters: #variables, #constraints, #(non-zero coefficients), magnitude of integers
- precision issue

Open Problem

Can linear programming be solved in strongly polynomial time algorithm?

Applications of Linear Programming

- domain: computer science, mathematics, operations research, economics
- types of problems: transportation, scheduling, clustering, network routing, resource allocation, facility location

Applications of Linear Programming

- domain: computer science, mathematics, operations research, economics
- types of problems: transportation, scheduling, clustering, network routing, resource allocation, facility location

Research Directions

- polynomial time exact algorithm
- polynomial time approximation algorithm
- sub-routines for the branch-and-bound metheod for integer programming
- other algorithmic models: online algorithm, distributed algorithms, dynamic algorithms, fast algorithms

Typical Combinatorial Optimization Problem

Input: [n]: ground set

 ${\cal S}$: feasible sets: a family of subsets of U, often implicitly given

 $w_i, i \in [n]$: values/costs of elements

Output: the set $S \in \mathcal{S}$ with the minimum/maximum $w(S) := \sum_{i \in S} w_i$

Def. For any $S \subseteq [n]$, we use $\chi^S \in \{0,1\}^{[n]}$ to denote the indicator vector for S:

$$\chi_i^S = \begin{cases} 0 & \text{if } i \notin S \\ 1 & \text{if } i \in S \end{cases}$$

polytope of interest: $\mathcal{P} = \text{conv}(\{\chi^S : S \in \mathcal{S}\})$

Examples

Bipartite Matching Polytope

- Given bipartite graph $G = (L \cup R, E)$
- $\mathcal{P}_{BM} := \operatorname{conv}(\{\chi^M : M \text{ is a matching in } G\})$

General Matching Polytope

- Given a graph G = (V, E)
- $\mathcal{P}_{\mathrm{GM}} := \mathsf{conv}\left(\left\{\chi^M : M \subseteq E \text{ is a matching in } G\right\}\right)$

Spanning Tree Polytope

- Given a connected graph G = (V, E)
- $\mathcal{P}_{\mathrm{ST}} := \mathsf{conv}\left(\left\{\chi^T : T \subseteq E \text{ is a spanning tree of } G\right\}\right)$

Examples

Travelling Salesman Problem (TSP) Polytope

- Given the complete graph $G = (V, \binom{V}{2})$
- $\bullet \ \mathcal{P}_{\mathrm{TSP}} := \mathrm{conv}(\{\chi^S, S \subseteq {V \choose 2} \text{ is a TSP tour of V}\})$

polytope of interest:
$$\mathcal{P} = \text{conv}(\{\chi^S : S \in \mathcal{S}\})$$

• Mechanic description of \mathcal{P} :

$$\sum_{i \in S} w_i x_i \le \max_{S \in \mathcal{S}} \sum_{i \in S} w_i \qquad \forall w \in \mathbb{R}^{[n]}$$

polytope of interest:
$$\mathcal{P} = \text{conv}(\{\chi^S : S \in \mathcal{S}\})$$

• Mechanic description of \mathcal{P} :

$$\sum_{i \in S} w_i x_i \le \max_{S \in \mathcal{S}} \sum_{i \in S} w_i \qquad \forall w \in \mathbb{R}^{[n]}$$

- However, the description is often useless; many constraints are redundant
- It is often interesting and important to find the facet-defining constraints; those are the constraints that can not be removed

polytope of interest:
$$\mathcal{P} = \text{conv}(\{\chi^S : S \in \mathcal{S}\})$$

• Mechanic description of \mathcal{P} :

$$\sum_{i \in S} w_i x_i \le \max_{S \in \mathcal{S}} \sum_{i \in S} w_i \qquad \forall w \in \mathbb{R}^{[n]}$$

- However, the description is often useless; many constraints are redundant
- It is often interesting and important to find the facet-defining constraints; those are the constraints that can not be removed
- lacktriangledown In some cases, $\mathcal P$ has polynomial number of facets
- ② In some cases, \mathcal{P} has exponential number of facets, but has an efficient separation oracle.
- $oldsymbol{3}$ In some cases, $\mathcal P$ does not have an efficient separation oracle, unless $\mathsf P = \mathsf N\mathsf P.$

23/85

Def. A polytope $\mathcal{P} \subseteq [0,1]^n$ is said to be integral, if all vertices of \mathcal{P} are in $\{0,1\}^n$.

Lemma For a $\mathcal{Q}\subseteq [0,1]^n$, if $\mathcal{Q}\cap \{0,1\}^n=\{\chi^S:S\in\mathcal{S}\}$ and \mathcal{Q} is integral, then $\mathcal{Q}=\mathcal{P}.$

Def. A polytope $\mathcal{P}\subseteq [0,1]^n$ is said to be integral, if all vertices of \mathcal{P} are in $\{0,1\}^n$.

Lemma For a $\mathcal{Q}\subseteq [0,1]^n$, if $\mathcal{Q}\cap \{0,1\}^n=\{\chi^S:S\in\mathcal{S}\}$ and \mathcal{Q} is integral, then $\mathcal{Q}=\mathcal{P}.$

Proof.

- $\mathcal{P} \subseteq \mathcal{Q}$, as every vertex of \mathcal{P} is χ^S for some $S \in \mathcal{S}$, and $\chi^S \in \mathcal{Q}$.
- $\mathcal{Q} \subseteq \mathcal{P}$: take some vertex x of \mathcal{Q}
- ullet $\mathcal Q$ is integral $\implies x$ is integral $\implies x = \chi^S$ for some $S \subseteq [n]$
- As $Q \cap \{0,1\}^n = \{\chi^S : S \in \mathcal{S}\}$, $x = \chi^S$ for some $S \in \mathcal{S}$
- $\bullet \ x \in \mathcal{P}$

Lemma For a $\mathcal{Q} \subseteq [0,1]^n$, if $\mathcal{Q} \cap \{0,1\}^n = \{\chi^S : S \in \mathcal{S}\}$ and \mathcal{Q} is integral, then $\mathcal{Q} = \mathcal{P}$.

Lemma For a $\mathcal{Q}\subseteq [0,1]^n$, if $\mathcal{Q}\cap \{0,1\}^n=\{\chi^S:S\in\mathcal{S}\}$ and \mathcal{Q} is integral, then $\mathcal{Q}=\mathcal{P}.$

- ullet Often, it is easy to guarantee $\mathcal{Q}\cap\{0,1\}^n=\{\chi^S:S\in\mathcal{S}\}$
- ullet The linear program that defines such a ${\cal Q}$ is often called a LP relaxation for the problem.

Lemma For a $\mathcal{Q}\subseteq [0,1]^n$, if $\mathcal{Q}\cap \{0,1\}^n=\{\chi^S:S\in\mathcal{S}\}$ and \mathcal{Q} is integral, then $\mathcal{Q}=\mathcal{P}.$

- ullet Often, it is easy to guarantee $\mathcal{Q}\cap\{0,1\}^n=\{\chi^S:S\in\mathcal{S}\}$
- ullet The linear program that defines such a ${\cal Q}$ is often called a LP relaxation for the problem.
- ullet The harder part is often to prove that ${\mathcal Q}$ is integral.

Outline

- Linear Programming
 - Introduction
 - Methods for Solving Linear Programs
- Polytope with Polynomial Number of Facets
 - Bipartite Matching Polytope
 - Polytopes with Totally Unimodular Coefficient Matrices
- 3 Polytopes with Efficient Separation Oracles
 - s-t Cut Polytope
 - Spanning Tree Polytope
 - General Graph (Perfect) Matching Polytope
- Matroid, Matroid Basis and Matroid Intersection Polytopes *
 - Preliminaries on Matroid Theory
 - Matroid Polytope
 - Matroid Basis and Matroid Intersection Polytope

Outline

- Linear Programming
 - Introduction
 - Methods for Solving Linear Programs
- Polytope with Polynomial Number of Facets
 - Bipartite Matching Polytope
 - Polytopes with Totally Unimodular Coefficient Matrices
- 3 Polytopes with Efficient Separation Oracles
 - s-t Cut Polytope
 - Spanning Tree Polytope
 - General Graph (Perfect) Matching Polytope
- Matroid, Matroid Basis and Matroid Intersection Polytopes *
 - Preliminaries on Matroid Theory
 - Matroid Polytope
 - Matroid Basis and Matroid Intersection Polytope

Bipartite Matching Polytope

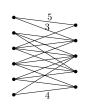
Maximum Weight Bipartite Matching

Input: bipartite graph $G = (L \uplus R, E)$

edge weights $\mathbf{w} \in \mathbb{Z}_{>0}^E$

Output: a matching $M \subseteq E$ so as to

maximize $\sum_{e \in M} w_e$



Bipartite Matching Polytope

- ullet Given bipartite graph $G=(L\cup R,E)$
- $\mathcal{P}_{\mathrm{BM}} := \mathrm{conv} \big(\{ \chi^{\mathbf{M}} : M \text{ is a matching in } G \} \big)$

Bipartite Matching Polytope

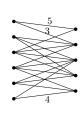
Maximum Weight Bipartite Matching

Input: bipartite graph $G = (L \uplus R, E)$

edge weights ${\color{red} w} \in \mathbb{Z}_{>0}^E$

Output: a matching $M \subseteq E$ so as to

maximize $\sum_{e \in M} w_e$



Bipartite Matching Polytope

- Given bipartite graph $G = (L \cup R, E)$
- $\mathcal{P}_{\mathrm{BM}} := \mathrm{conv} \big(\{ \chi^{M} : M \text{ is a matching in } G \} \big)$

Theorem \mathcal{P}_{BM} is the set of $x \in \mathbb{R}^E$ satisfying the following constraints:

$$\sum_{e \in \delta(v)} x_e \le 1, \forall v \in L \cup R; \qquad x_e \ge 0, \forall e \in E.$$

Bipartite Matching Polytope

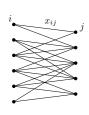
Maximum Weight Bipartite Matching

Input: bipartite graph $G = (L \uplus R, E)$

edge weights $\mathbf{w} \in \mathbb{Z}_{>0}^E$

Output: a matching $M \subseteq E$ so as to

maximize $\sum_{e \in M} w_e$



Bipartite Matching Polytope

- Given bipartite graph $G = (L \cup R, E)$
- $\mathcal{P}_{\mathrm{BM}} := \mathrm{conv} \big(\{ \chi^{M} : M \text{ is a matching in } G \} \big)$

Theorem \mathcal{P}_{BM} is the set of $x \in \mathbb{R}^E$ satisfying the following constraints:

$$\sum_{e \in \delta(v)} x_e \le 1, \forall v \in L \cup R; \qquad x_e \ge 0, \forall e \in E.$$

Bipartite Matching Polytope

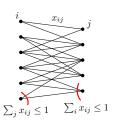
Maximum Weight Bipartite Matching

Input: bipartite graph $G = (L \uplus R, E)$

edge weights $\mathbf{w} \in \mathbb{Z}_{>0}^E$

Output: a matching $M \subseteq E$ so as to

maximize $\sum_{e \in M} w_e$



Bipartite Matching Polytope

- Given bipartite graph $G = (L \cup R, E)$
- $\mathcal{P}_{\mathrm{BM}} := \mathrm{conv} \big(\{ \chi^{M} : M \text{ is a matching in } G \} \big)$

Theorem $\mathcal{P}_{\mathrm{BM}}$ is the set of $x \in \mathbb{R}^E$ satisfying the following constraints:

$$\sum_{e \in \delta(v)} x_e \le 1, \forall v \in L \cup R; \qquad x_e \ge 0, \forall e \in E.$$

$$\sum_{e \in \delta(v)} x_e \le 1, \forall v \in L \cup R; \qquad x_e \ge 0, \forall e \in E.$$

$$\sum_{e \in \delta(v)} x_e \le 1, \forall v \in L \cup R; \qquad x_e \ge 0, \forall e \in E.$$

Proof.

ullet take any x that satisfies the constraints

$$\sum_{e \in \delta(v)} x_e \le 1, \forall v \in L \cup R; \qquad x_e \ge 0, \forall e \in E.$$

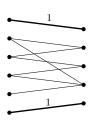
- take any x that satisfies the constraints
- prove: x non integral $\implies x$ non-vertex

$$\sum_{e \in \delta(v)} x_e \le 1, \forall v \in L \cup R; \qquad x_e \ge 0, \forall e \in E.$$

- ullet take any x that satisfies the constraints
- ullet prove: x non integral $\Longrightarrow x$ non-vertex
- find $x', x'' \in \mathcal{P}$: $x' \neq x'', x = \frac{1}{2}(x' + x'')$

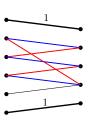
$$\sum_{e \in \delta(v)} x_e \le 1, \forall v \in L \cup R; \qquad x_e \ge 0, \forall e \in E.$$

- ullet take any x that satisfies the constraints
- prove: x non integral $\implies x$ non-vertex
- find $x', x'' \in \mathcal{P}$: $x' \neq x'', x = \frac{1}{2}(x' + x'')$
- case 1: fractional edges contain a cycle



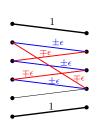
$$\sum_{e \in \delta(v)} x_e \le 1, \forall v \in L \cup R; \qquad x_e \ge 0, \forall e \in E.$$

- ullet take any x that satisfies the constraints
- prove: x non integral $\implies x$ non-vertex
- find $x', x'' \in \mathcal{P}$: $x' \neq x'', x = \frac{1}{2}(x' + x'')$
- case 1: fractional edges contain a cycle
 - color edges in cycle blue and red



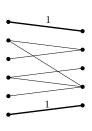
$$\sum_{e \in \delta(v)} x_e \le 1, \forall v \in L \cup R; \qquad x_e \ge 0, \forall e \in E.$$

- ullet take any x that satisfies the constraints
- prove: x non integral $\implies x$ non-vertex
- find $x', x'' \in \mathcal{P}$: $x' \neq x'', x = \frac{1}{2}(x' + x'')$
- case 1: fractional edges contain a cycle
 - · color edges in cycle blue and red
 - x': $+\epsilon$ for blue edges, $-\epsilon$ for red edges
 - \bullet x'': $-\epsilon$ for blue edges, $+\epsilon$ for red edges



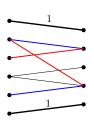
$$\sum_{e \in \delta(v)} x_e \le 1, \forall v \in L \cup R; \qquad x_e \ge 0, \forall e \in E.$$

- ullet take any x that satisfies the constraints
- prove: x non integral $\implies x$ non-vertex
- find $x', x'' \in \mathcal{P}$: $x' \neq x'', x = \frac{1}{2}(x' + x'')$
- case 1: fractional edges contain a cycle
 - · color edges in cycle blue and red
 - x': $+\epsilon$ for blue edges, $-\epsilon$ for red edges
 - $\bullet \ x^{\prime\prime} \colon -\epsilon$ for blue edges, $+\epsilon$ for red edges
- case 2: fractional edges form a forest



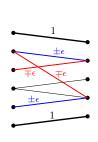
$$\sum_{e \in \delta(v)} x_e \le 1, \forall v \in L \cup R; \qquad x_e \ge 0, \forall e \in E.$$

- ullet take any x that satisfies the constraints
- prove: x non integral $\implies x$ non-vertex
- find $x', x'' \in \mathcal{P}$: $x' \neq x'', x = \frac{1}{2}(x' + x'')$
- case 1: fractional edges contain a cycle
 - color edges in cycle blue and red
 - x': $+\epsilon$ for blue edges, $-\epsilon$ for red edges
 - x'': $-\epsilon$ for blue edges, $+\epsilon$ for red edges
- case 2: fractional edges form a forest
 - color edges in leaf-leaf path blue and red



$$\sum_{e \in \delta(v)} x_e \le 1, \forall v \in L \cup R; \qquad x_e \ge 0, \forall e \in E.$$

- ullet take any x that satisfies the constraints
- prove: x non integral $\implies x$ non-vertex
- find $x', x'' \in \mathcal{P}$: $x' \neq x'', x = \frac{1}{2}(x' + x'')$
- case 1: fractional edges contain a cycle
 - · color edges in cycle blue and red
 - x': $+\epsilon$ for blue edges, $-\epsilon$ for red edges
 - x'': $-\epsilon$ for blue edges, $+\epsilon$ for red edges
- case 2: fractional edges form a forest
 - color edges in leaf-leaf path blue and red
 - \bullet x': $+\epsilon$ for blue edges, $-\epsilon$ for red edges
 - x'': $-\epsilon$ for blue edges, $+\epsilon$ for red edges



Outline

- Linear Programming
 - Introduction
 - Methods for Solving Linear Programs
- Polytope with Polynomial Number of Facets
 - Bipartite Matching Polytope
 - Polytopes with Totally Unimodular Coefficient Matrices
- 3 Polytopes with Efficient Separation Oracles
 - s-t Cut Polytope
 - Spanning Tree Polytope
 - General Graph (Perfect) Matching Polytope
- Matroid, Matroid Basis and Matroid Intersection Polytopes *
 - Preliminaries on Matroid Theory
 - Matroid Polytope
 - Matroid Basis and Matroid Intersection Polytope

Def. A matrix $A \in \mathbb{R}^{m \times n}$ is said to be totally unimodular (TUM), if every sub-square of A has determinant in $\{-1,0,1\}$.

Theorem If a polytope $\mathcal P$ is defined by $Ax \geq b, x \geq 0$ with a totally unimodular matrix A and integral b, then $\mathcal P$ is integral.

Def. A matrix $A \in \mathbb{R}^{m \times n}$ is said to be totally unimodular (TUM), if every sub-square of A has determinant in $\{-1, 0, 1\}$.

Theorem If a polytope \mathcal{P} is defined by $Ax \geq b, x \geq 0$ with a totally unimodular matrix A and integral b, then \mathcal{P} is integral.

- Every vertex $x \in \mathcal{P}$ is the unique solution to the linear system (after permuting coordinates): $\begin{pmatrix} A' & 0 \\ 0 & I \end{pmatrix} x = \begin{pmatrix} b' \\ 0 \end{pmatrix}$, where
 - A' is a square submatrix of A with $\det(A') = \pm 1$, b' is a sub-vector of b.
 - ullet and the rows for b' are the same as the rows for A'.

Def. A matrix $A \in \mathbb{R}^{m \times n}$ is said to be totally unimodular (TUM), if every sub-square of A has determinant in $\{-1,0,1\}$.

Theorem If a polytope $\mathcal P$ is defined by $Ax \geq b, x \geq 0$ with a totally unimodular matrix A and integral b, then $\mathcal P$ is integral.

- Every vertex $x \in \mathcal{P}$ is the unique solution to the linear system (after permuting coordinates): $\begin{pmatrix} A' & 0 \\ 0 & I \end{pmatrix} x = \begin{pmatrix} b' \\ 0 \end{pmatrix}$, where
 - A' is a square submatrix of A with $\det(A')=\pm 1,\ b'$ is a sub-vector of b,
 - ullet and the rows for b' are the same as the rows for A'.
- Let $x = \begin{pmatrix} x^1 \\ x^2 \end{pmatrix}$, so that $A'x^1 = b'$ and $x^2 = 0$.

Def. A matrix $A \in \mathbb{R}^{m \times n}$ is said to be totally unimodular (TUM), if every sub-square of A has determinant in $\{-1, 0, 1\}$.

Theorem If a polytope $\mathcal P$ is defined by $Ax \geq b, x \geq 0$ with a totally unimodular matrix A and integral b, then $\mathcal P$ is integral.

- Every vertex $x \in \mathcal{P}$ is the unique solution to the linear system (after permuting coordinates): $\begin{pmatrix} A' & 0 \\ 0 & I \end{pmatrix} x = \begin{pmatrix} b' \\ 0 \end{pmatrix}$, where
 - A' is a square submatrix of A with $\det(A') = \pm 1$, b' is a sub-vector of b.
 - ullet and the rows for b' are the same as the rows for A'.
- Let $x = \begin{pmatrix} x^1 \\ x^2 \end{pmatrix}$, so that $A'x^1 = b'$ and $x^2 = 0$.
- Cramer's rule: $x_i^1 = \frac{\det(A_i'|b)}{\det(A')}$ for every $i \implies x_i^1$ is integer $A_i'|b$: the matrix of A' with the i-th column replaced by b

$$\begin{pmatrix} a_{1,1} & a_{1,2} & a_{1,3} & a_{1,4} & a_{1,5} \\ a_{2,1} & a_{2,2} & a_{2,3} & a_{2,4} & a_{2,5} \\ a_{3,1} & a_{3,2} & a_{3,3} & a_{3,4} & a_{3,5} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} \ge \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$$

$$x_1, x_2, x_3, x_4, x_5 > 0$$

$$\begin{pmatrix} a_{1,1} & a_{1,2} & a_{1,3} & a_{1,4} & a_{1,5} \\ a_{2,1} & a_{2,2} & a_{2,3} & a_{2,4} & a_{2,5} \\ a_{3,1} & a_{3,2} & a_{3,3} & a_{3,4} & a_{3,5} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} \ge \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$$

$$x_1, x_2, x_3, x_4, x_5 \ge 0$$

The following equation system may give a vertex:

$$\begin{pmatrix} a_{1,1} & a_{1,2} & a_{1,3} & a_{1,4} & a_{1,5} \\ a_{3,1} & a_{3,2} & a_{3,3} & a_{3,4} & a_{3,5} \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} b_1 \\ b_3 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} a_{1,1} & a_{1,2} & a_{1,3} & a_{1,4} & a_{1,5} \\ a_{3,1} & a_{3,2} & a_{3,3} & a_{3,4} & a_{3,5} \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} b_1 \\ b_3 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} a_{1,1} & a_{1,2} & a_{1,3} & a_{1,4} & a_{1,5} \\ a_{3,1} & a_{3,2} & a_{3,3} & a_{3,4} & a_{3,5} \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} b_1 \\ b_3 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

Equivalently, the vertex satisfies

$$\begin{pmatrix} a_{1,2} & a_{1,3} & 0 & 0 & 0 \\ a_{3,2} & a_{3,3} & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_2 \\ x_3 \\ x_1 \\ x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} b_1 \\ b_3 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

Proof.

ullet wlog assume every row of A' contains one 1 and one -1

- wlog assume every row of A' contains one 1 and one -1
 - otherwise, we can reduce the matrix

- wlog assume every row of A' contains one 1 and one -1
 - otherwise, we can reduce the matrix
- treat A' as a directed graph: columns \equiv vertices, rows \equiv arcs

- ullet wlog assume every row of A' contains one 1 and one -1
 - otherwise, we can reduce the matrix
- ullet treat A' as a directed graph: columns \equiv vertices, rows \equiv arcs

Proof.

- ullet wlog assume every row of A' contains one 1 and one -1
 - otherwise, we can reduce the matrix
- treat A' as a directed graph: columns \equiv vertices, rows \equiv arcs

Lemma Let $A \in \{0, \pm 1\}^{m \times n}$ such that every row of A contains at most one 1 and one -1. Then A is TUM.

Proof.

- ullet wlog assume every row of A^\prime contains one 1 and one -1
 - otherwise, we can reduce the matrix
- ullet treat A' as a directed graph: columns \equiv vertices, rows \equiv arcs

Lemma Let $A \in \{0, \pm 1\}^{m \times n}$ such that every row of A contains at most one 1 and one -1. Then A is TUM.

Coro. In the LP for s-t network flow problem with integer capacities, every vertex solution to the LP is integral.

```
egin{pmatrix} 1 & -1 & 0 & 0 & 0 & 0 & 0 \ 0 & -1 & 0 & 1 & 0 & 0 & 0 \ 0 & 0 & 1 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 1 & -1 & 0 & 0 \ 0 & 0 & -1 & 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 0 & -1 & 0 & 1 \ 1 & 0 & 0 & 0 & -1 & 0 & 0 \ \end{pmatrix}
```

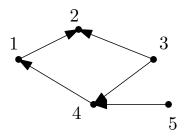
```
\begin{pmatrix} 1 & -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & -1 & 0 & 1 \\ 1 & 0 & 0 & 0 & -1 & 0 & 0 \end{pmatrix}
```

```
\begin{pmatrix} 1 & -1 & 0 & 0 & 0 & 0 \\ 0 & -1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 & 0 & 1 \\ 1 & 0 & 0 & -1 & 0 & 0 \end{pmatrix}
```

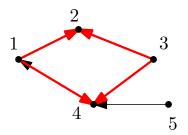
```
\begin{pmatrix} 1 & -1 & 0 & 0 & 0 & 0 \\ 0 & -1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 & 0 & 1 \\ 1 & 0 & 0 & -1 & 0 & 0 \end{pmatrix}
```

$$\begin{pmatrix} 1 & -1 & 0 & 0 & 0 \\ 0 & -1 & 1 & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & -1 & 1 \\ 1 & 0 & 0 & -1 & 0 \end{pmatrix}$$

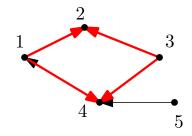
$$\begin{pmatrix} 1 & -1 & 0 & 0 & 0 \\ 0 & -1 & 1 & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & -1 & 1 \\ 1 & 0 & 0 & -1 & 0 \end{pmatrix}$$



$$egin{pmatrix} 1 & -1 & 0 & 0 & 0 \ 0 & -1 & 1 & 0 & 0 \ 0 & 0 & 1 & -1 & 0 \ 0 & 0 & 0 & -1 & 1 \ 1 & 0 & 0 & -1 & 0 \ \end{pmatrix}$$



$$\begin{pmatrix} 1 & -1 & 0 & 0 & 0 \\ 0 & -1 & 1 & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & -1 & 1 \\ 1 & 0 & 0 & -1 & 0 \end{pmatrix}$$



Proof.

Proof.

ullet take any square submatrix A' of A,

Proof.

- ullet take any square submatrix A' of A,
- the 1's on every row of A' form an interval.

Proof.

- \bullet take any square submatrix A' of A,
- the 1's on every row of A' form an interval.
- ullet A'M is a matrix satisfying condition of first lemma, where

$$M = \begin{pmatrix} 1 & -1 & 0 & \cdots & 0 \\ 0 & 1 & -1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & -1 \\ 0 & 0 & \cdots & 0 & 1 \end{pmatrix}. \ \det(M) = 1.$$

Proof.

- \bullet take any square submatrix A' of A,
- the 1's on every row of A' form an interval.
- ullet A'M is a matrix satisfying condition of first lemma, where

$$M = \begin{pmatrix} 1 & -1 & 0 & \cdots & 0 \\ 0 & 1 & -1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & -1 \\ 0 & 0 & \cdots & 0 & 1 \end{pmatrix}. \ \det(M) = 1.$$

 $\bullet \ \det(A'M) \in \{0, \pm 1\} \implies \det(A') \in \{0, \pm 1\}.$

$$\begin{pmatrix} 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 1 & 0 \end{pmatrix}$$

```
\begin{pmatrix} 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 1 & 0 \end{pmatrix}
```

$$\begin{pmatrix} 0 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \end{pmatrix}$$

• (col 1, col 2 - col 1, col 3 - col 2, col 4 - col 3, col 5 - col 4)

$$\begin{pmatrix} 0 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \end{pmatrix} \implies \begin{pmatrix} 0 & 1 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{pmatrix}$$

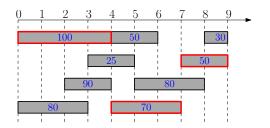
• (col 1, col 2 - col 1, col 3 - col 2, col 4 - col 3, col 5 - col 4)

$$\begin{pmatrix} 0 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \end{pmatrix} \implies \begin{pmatrix} 0 & 1 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{pmatrix}$$

- (col 1, col 2 col 1, col 3 col 2, col 4 col 3, col 5 col 4)
- ullet every row has at most one 1, at most one -1

Input: n activities, activity i starts at time s_i , finishes at time f_i , and has weight $w_i > 0$ $i \text{ and } j \text{ can be scheduled together iff } [s_i, f_i) \text{ and } [s_j, f_j) \text{ are disjoint}$

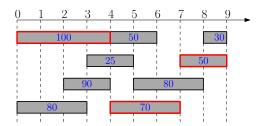
Output: maximum weight subset of jobs that can be scheduled



• optimum value= 220

Input: n activities, activity i starts at time s_i , finishes at time f_i , and has weight $w_i > 0$ i and j can be scheduled together iff $[s_i, f_i)$ and $[s_j, f_j)$ are disjoint

Output: maximum weight subset of jobs that can be scheduled



- optimum value= 220
- Classic Problem for Dynamic Programming

Linear Program $\max \sum_{j \in [n]} x_j w_j$ $\sum_{j \in [n]: t \in [s_j, f_j)} x_j \le 1 \qquad \forall t \in [T]$ $x_j \ge 0 \qquad \forall j \in [n]$

Linear Program $\max \sum_{j \in [n]} x_j w_j$ $\sum_{j \in [n]: t \in [s_j, f_j)} x_j \le 1 \qquad \forall t \in [T]$ $x_j \ge 0 \qquad \forall j \in [n]$

 The polytope is integral as the 1's in every column are consecutive.

Linear Program $\max \sum_{j \in [n]} x_j w_j$ $\sum_{j \in [n]: t \in [s_j, f_j)} x_j \le 1 \qquad \forall t \in [T]$ $x_j \ge 0 \qquad \forall j \in [n]$

 The polytope is integral as the 1's in every column are consecutive.

Lemma	The edge-vertex	incidence	matrix	$A {\rm of} $	a	bipartite	graph
is totally-unimodular.							

Proof.

 $\begin{tabular}{ll} \textbf{Lemma} & The edge-vertex incidence matrix A of a bipartite graph is totally-unimodular. \end{tabular}$

Proof.

• $G = (L \uplus R, E)$: the bipartite graph

Proof.

- $G = (L \uplus R, E)$: the bipartite graph
- ullet A': obtained from A by negating columns correspondent to R

Proof.

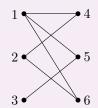
- $G = (L \uplus R, E)$: the bipartite graph
- \bullet A': obtained from A by negating columns correspondent to R
- ullet each row of A' has exactly one +1, and exactly one -1

Proof.

- $G = (L \uplus R, E)$: the bipartite graph
- \bullet A': obtained from A by negating columns correspondent to R
- ullet each row of A' has exactly one +1, and exactly one -1
- $\bullet \implies A' \text{ is TUM} \iff A \text{ is TUM}$

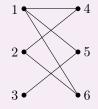
Proof.

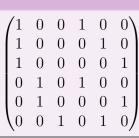
- $G = (L \uplus R, E)$: the bipartite graph
- \bullet A': obtained from A by negating columns correspondent to R
- ullet each row of A' has exactly one +1, and exactly one -1
- $\bullet \implies A' \text{ is TUM} \iff A \text{ is TUM}$



Proof.

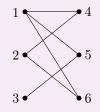
- $G = (L \uplus R, E)$: the bipartite graph
- \bullet A': obtained from A by negating columns correspondent to R
- ullet each row of A' has exactly one +1, and exactly one -1
- $\bullet \implies A' \text{ is TUM} \iff A \text{ is TUM}$

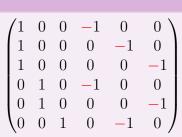




Proof.

- $G = (L \uplus R, E)$: the bipartite graph
- \bullet A': obtained from A by negating columns correspondent to R
- ullet each row of A' has exactly one +1, and exactly one -1
- $\bullet \implies A' \text{ is TUM} \iff A \text{ is TUM}$





A different proof for the theorem we proved:

Theorem $\mathcal{P}_{\mathrm{BM}}$ is the set of $x \in \mathbb{R}^E$ satisfying the following constraints:

$$\sum_{e \in \delta(v)} x_e \le 1, \forall v \in L \cup R; \qquad x_e \ge 0, \forall e \in E.$$

A different proof for the theorem we proved:

Theorem $\mathcal{P}_{\mathrm{BM}}$ is the set of $x \in \mathbb{R}^E$ satisfying the following constraints:

$$\sum_{e \in \delta(v)} x_e \le 1, \forall v \in L \cup R; \qquad x_e \ge 0, \forall e \in E.$$

Proof.

The coefficient matrix for the constraints

 $\sum_{e \in \delta(v)} x_e \leq 1, \forall v \in L \cup R$ is the vertex-edge incidence matrix of the graph G. Therefore, the polytope is integral.

A different proof for the theorem we proved:

Theorem $\mathcal{P}_{\mathrm{BM}}$ is the set of $x \in \mathbb{R}^E$ satisfying the following constraints:

$$\sum_{e \in \delta(v)} x_e \le 1, \forall v \in L \cup R; \qquad x_e \ge 0, \forall e \in E.$$

Proof.

The coefficient matrix for the constraints

 $\sum_{e \in \delta(v)} x_e \leq 1, \forall v \in L \cup R$ is the vertex-edge incidence matrix of the graph G. Therefore, the polytope is integral.

• remark: bipartiteness is needed. The edge-vertex incidence

matrix
$$\begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$
 of a triangle has determinent 2.

Outline

- Linear Programming
 - Introduction
 - Methods for Solving Linear Programs
- Polytope with Polynomial Number of Facets
 - Bipartite Matching Polytope
 - Polytopes with Totally Unimodular Coefficient Matrices
- 3 Polytopes with Efficient Separation Oracles
 - s-t Cut Polytope
 - Spanning Tree Polytope
 - General Graph (Perfect) Matching Polytope
- Matroid, Matroid Basis and Matroid Intersection Polytopes *
 - Preliminaries on Matroid Theory
 - Matroid Polytope
 - Matroid Basis and Matroid Intersection Polytope

Def. A separation oracle for a polytope $\mathcal{P}\subseteq\mathbb{R}^n$ is an algorithm that, given some $x^*\in\mathbb{R}^n$,

- either correctly claims that $x \in \mathcal{P}$,
- or outputs a linear constraint $a^{\mathrm{T}}x \leq b$ that separating x^* from \mathcal{P} : every $x \in \mathcal{P}$ satisfies $a^{\mathrm{T}}x \leq b$, but $a^{\mathrm{T}}x^* > b$. We say $a^{\mathrm{T}}x \leq b$ is a separation plane for x^* .

The separation oracle is efficient if its running time is polynomial in the size of the instance plus the size of \boldsymbol{x}

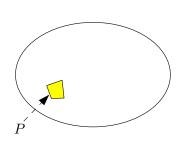
Def. A separation oracle for a polytope $\mathcal{P} \subseteq \mathbb{R}^n$ is an algorithm that, given some $x^* \in \mathbb{R}^n$,

- either correctly claims that $x \in \mathcal{P}$,
- or outputs a linear constraint $a^{\mathrm{T}}x \leq b$ that separating x^* from \mathcal{P} : every $x \in \mathcal{P}$ satisfies $a^{\mathrm{T}}x \leq b$, but $a^{\mathrm{T}}x^* > b$. We say $a^{\mathrm{T}}x \leq b$ is a separation plane for x^* .

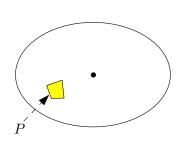
The separation oracle is efficient if its running time is polynomial in the size of the instance plus the size of \boldsymbol{x}

- Clearly, if $\mathcal{P} \subseteq \mathbb{R}^n$ can be described using a polynomial-size LP, then it has an efficient separation oracle.
- However, there are cases where $\mathcal{P} \subseteq \mathbb{R}^n$ has exponential number of facets, but still admits an efficient separation oracle.

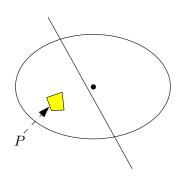
- maintain an ellipsoid that contains the feasible region
- query a separation oracle if the center of ellipsid is in the feasible region:
 - yes: then the feasible region is not empty
 - no: cut the elliposid in half, find smaller ellipsoid to enclose the half-ellipsoid, and repeat



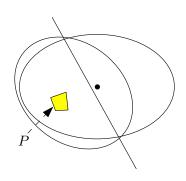
- maintain an ellipsoid that contains the feasible region
- query a separation oracle if the center of ellipsid is in the feasible region:
 - yes: then the feasible region is not empty
 - no: cut the elliposid in half, find smaller ellipsoid to enclose the half-ellipsoid, and repeat



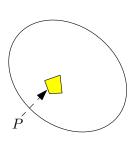
- maintain an ellipsoid that contains the feasible region
- query a separation oracle if the center of ellipsid is in the feasible region:
 - yes: then the feasible region is not empty
 - no: cut the elliposid in half, find smaller ellipsoid to enclose the half-ellipsoid, and repeat



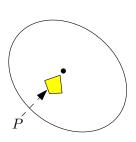
- maintain an ellipsoid that contains the feasible region
- query a separation oracle if the center of ellipsid is in the feasible region:
 - yes: then the feasible region is not empty
 - no: cut the elliposid in half, find smaller ellipsoid to enclose the half-ellipsoid, and repeat



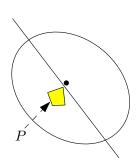
- maintain an ellipsoid that contains the feasible region
- query a separation oracle if the center of ellipsid is in the feasible region:
 - yes: then the feasible region is not empty
 - no: cut the elliposid in half, find smaller ellipsoid to enclose the half-ellipsoid, and repeat



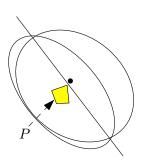
- maintain an ellipsoid that contains the feasible region
- query a separation oracle if the center of ellipsid is in the feasible region:
 - yes: then the feasible region is not empty
 - no: cut the elliposid in half, find smaller ellipsoid to enclose the half-ellipsoid, and repeat



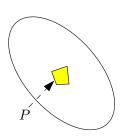
- maintain an ellipsoid that contains the feasible region
- query a separation oracle if the center of ellipsid is in the feasible region:
 - yes: then the feasible region is not empty
 - no: cut the elliposid in half, find smaller ellipsoid to enclose the half-ellipsoid, and repeat



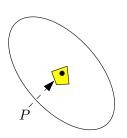
- maintain an ellipsoid that contains the feasible region
- query a separation oracle if the center of ellipsid is in the feasible region:
 - yes: then the feasible region is not empty
 - no: cut the elliposid in half, find smaller ellipsoid to enclose the half-ellipsoid, and repeat



- maintain an ellipsoid that contains the feasible region
- query a separation oracle if the center of ellipsid is in the feasible region:
 - yes: then the feasible region is not empty
 - no: cut the elliposid in half, find smaller ellipsoid to enclose the half-ellipsoid, and repeat



- maintain an ellipsoid that contains the feasible region
- query a separation oracle if the center of ellipsid is in the feasible region:
 - yes: then the feasible region is not empty
 - no: cut the elliposid in half, find smaller ellipsoid to enclose the half-ellipsoid, and repeat



Outline

- Linear Programming
 - Introduction
 - Methods for Solving Linear Programs
- 2 Polytope with Polynomial Number of Facets
 - Bipartite Matching Polytope
 - Polytopes with Totally Unimodular Coefficient Matrices
- 3 Polytopes with Efficient Separation Oracles
 - *s-t* Cut Polytope
 - Spanning Tree Polytope
 - General Graph (Perfect) Matching Polytope
- Matroid, Matroid Basis and Matroid Intersection Polytopes *
 - Preliminaries on Matroid Theory
 - Matroid Polytope
 - Matroid Basis and Matroid Intersection Polytope

s-t Cut Polytope

Def. Given a digraph G=(V,E), C is a s-t cut in G, if s and t are disconnected in $(V,E\setminus C)$.

• $\mathcal{P}_{\min-\text{cut}} := \text{conv}(\{\chi^C : C \text{ is a } s\text{-}t \text{ cut in } G\})$

Theorem $\mathcal{P}_{\min-\text{cut}}$ is the set of vectors $x \in \mathbb{R}^E$ satisfying the following inequalities:

$$\sum_{e \in P} x_e \ge 1 \qquad \forall \text{ simple } s\text{-}t \text{ path } P \qquad (*)$$

 $x_e \in [0, 1] \qquad \forall e \in E$

s-t Cut Polytope

Def. Given a digraph G=(V,E), C is a s-t cut in G, if s and t are disconnected in $(V,E\setminus C)$.

•
$$\mathcal{P}_{\min-\text{cut}} := \text{conv}(\{\chi^C : C \text{ is a } s\text{-}t \text{ cut in } G\})$$

Theorem $\mathcal{P}_{\min-\mathrm{cut}}$ is the set of vectors $x \in \mathbb{R}^E$ satisfying the following inequalities:

$$\sum_{e \in P} x_e \ge 1 \qquad \qquad \forall \text{ simple } s\text{-}t \text{ path } P \qquad \qquad (*)$$

$$x_e \in [0,1] \qquad \qquad \forall e \in E$$

Q: Given $x \in [0,1]^E$, how can we check if x satisfies all constraints in (*)?

s-t Cut Polytope

Def. Given a digraph G=(V,E), C is a s-t cut in G, if s and t are disconnected in $(V,E\setminus C)$.

•
$$\mathcal{P}_{\min-\text{cut}} := \text{conv}(\{\chi^C : C \text{ is a } s\text{-}t \text{ cut in } G\})$$

Theorem $\mathcal{P}_{\min-\mathrm{cut}}$ is the set of vectors $x \in \mathbb{R}^E$ satisfying the following inequalities:

$$\sum_{e \in P} x_e \ge 1 \qquad \qquad \forall \text{ simple } s\text{-}t \text{ path } P$$

$$x_e \in [0,1] \qquad \qquad \forall e \in E$$

Q: Given $x \in [0,1]^E$, how can we check if x satisfies all constraints in (*)?

A: Use shortest path algorithm with weights $(x_e)_{e \in E}$.

(*)

Theorem $\mathcal{P}_{\min-\text{cut}}$ is the set of vectors $x \in \mathbb{R}^E$ satisfying the following inequalities:

$$\sum_{e \in P} x_e \ge 1 \qquad \qquad \forall \text{ simple } s\text{-}t \text{ path } P \qquad \qquad (*)$$

$$x_e \in [0,1] \qquad \qquad \forall e \in E$$

Proof of Lemma.

- Given $x \in [0,1]^E$ satisfying (*)
- $d_x(v), v \in V$: length of shortest path from s to v, with x being the weights; so $d_x(s) = 0$ and $d_x(t) \ge 1$

Theorem $\mathcal{P}_{\min-\text{cut}}$ is the set of vectors $x \in \mathbb{R}^E$ satisfying the following inequalities:

$$\sum_{e \in P} x_e \ge 1 \qquad \qquad \forall \text{ simple } s\text{-}t \text{ path } P \qquad \qquad (*)$$

$$x_e \in [0,1] \qquad \qquad \forall e \in E$$

Proof of Lemma.

- Given $x \in [0,1]^E$ satisfying (*)
- $d_x(v), v \in V$: length of shortest path from s to v, with x being the weights; so $d_x(s) = 0$ and $d_x(t) \ge 1$
- ullet randomly choose a real $\theta \in (0,1)$
- $S := \{ v \in V : d_x(v) \le \theta \}, T := V \setminus S = \{ v \in V : d_x(v) > \theta \}$
- C := E(S, T)

Claim For an edge $(u, v) \in E$, we have

$$\Pr[(u, v) \in C] \le \max\{d_x(v) - d_x(u), 0\}.$$

Proof.

- $(u, v) \in C$ happens only if $d_x(u) < \theta \le d_x(v)$.
- This happens with probability at most $\max\{d_x(v) d_x(u), 0\} \le x_{(u,v)}$.

Proof of Lemma, Continued

- $\mathbb{E}_{\theta}[\chi^C] \leq x$
- We can define a random set C' so that $C' \supseteq C$ happens with probability 1, and $\mathbb{E}_{\theta}[\chi^{C'}] = x$.
- So $x \in \text{conv}(\{\chi^{C'} : C' \text{ is a } s\text{-}t \text{ cut in } G\})$

Outline

- Linear Programming
 - Introduction
 - Methods for Solving Linear Programs
- Polytope with Polynomial Number of Facets
 - Bipartite Matching Polytope
 - Polytopes with Totally Unimodular Coefficient Matrices
- 3 Polytopes with Efficient Separation Oracles
 - s-t Cut Polytope
 - Spanning Tree Polytope
 - General Graph (Perfect) Matching Polytope
- Matroid, Matroid Basis and Matroid Intersection Polytopes *
 - Preliminaries on Matroid Theory
 - Matroid Polytope
 - Matroid Basis and Matroid Intersection Polytope

Spanning Tree Polytope

- ullet Given a connected graph G=(V,E)
- $\mathcal{P}_{\mathrm{ST}} := \mathsf{conv}\left(\left\{\chi^T : T \subseteq E \text{ is a spanning tree of } G\right\}\right)$

Theorem (Spanning Tree Polytope Theorem) \mathcal{P}_{ST} is the set of vectors $x \in \mathbb{R}^E$ satisfying the following inequalities:

$$\sum_{e \in E[S]} x_e = n - 1$$

$$\sum_{e \in E[S]} x_e \le |S| - 1 \qquad \forall S \subseteq V, 2 \le |S| \le n - 1 \qquad (*)$$

$$x_e \ge 0 \qquad \forall e \in E$$

- ullet Spanning trees correspond to bases of graphic matroid for G
- Later we prove a more general theorem on matroid polytopes

Theorem (Spanning Tree Polytope Theorem) \mathcal{P}_{ST} is the set of vectors $x \in \mathbb{R}^E$ satisfying the following inequalities:

$$\sum_{e \in E[S]} x_e = n - 1$$

$$\sum_{e \in E[S]} x_e \le |S| - 1 \qquad \forall S \subseteq V, 2 \le |S| \le n - 1 \quad (*)$$

$$x_e \ge 0 \qquad \forall e \in E$$

Q: How can we check if all constraints in (*) are satisfied?

Theorem (Spanning Tree Polytope Theorem) \mathcal{P}_{ST} is the set of vectors $x \in \mathbb{R}^E$ satisfying the following inequalities:

$$\sum_{e \in E[S]} x_e = n - 1$$

$$\sum_{e \in E[S]} x_e \le |S| - 1 \qquad \forall S \subseteq V, 2 \le |S| \le n - 1 \qquad (*)$$

$$x_e > 0 \qquad \forall e \in E$$

Q: How can we check if all constraints in (*) are satisfied?

A: $\xrightarrow{\text{reduce}}$ densest sub-graph $\xrightarrow{\text{reduce}}$ maximum flow

Checking if $\sum_{e \in E[S]} x_e \le |S| - 1, \forall S \subseteq V$

- We need to check if $\exists S \subseteq V, \frac{\sum_{e \in E[S]} x_e}{|S|-1} > 1$:
- Guess a vertex $v \in S$; set $w_v = 0$ and $w_u = 1$ for every $u \in V \setminus \{v\}$
- The problem becomes to check if $\exists S \subseteq V, \frac{\sum_{e \in E[S]} x_e}{\sum_{u \in S} w_u} > 1$

Checking if $\sum_{e \in E[S]} x_e \leq |S| - 1, \forall S \subseteq V$

- We need to check if $\exists S \subseteq V, \frac{\sum_{e \in E[S]} x_e}{|S|-1} > 1$:
- Guess a vertex $v \in S$; set $w_v = 0$ and $w_u = 1$ for every $u \in V \setminus \{v\}$
- The problem becomes to check if $\exists S \subseteq V, \frac{\sum_{e \in E[S]} x_e}{\sum_{w \in S} w_u} > 1$
- This is a (weighted) densest subgraph problem

Checking if $\sum_{e \in E[S]} x_e \leq |S| - 1, \forall S \subseteq V$

- We need to check if $\exists S \subseteq V, \frac{\sum_{e \in E[S]} x_e}{|S|-1} > 1$:
- Guess a vertex $v \in S$; set $w_v = 0$ and $w_u = 1$ for every $u \in V \setminus \{v\}$
- The problem becomes to check if $\exists S \subseteq V, \frac{\sum_{e \in E[S]} x_e}{\sum_{u \in S} w_u} > 1$
- This is a (weighted) densest subgraph problem
- Exercise: It can be solved using maximum flow

Outline

- Linear Programming
 - Introduction
 - Methods for Solving Linear Programs
- 2 Polytope with Polynomial Number of Facets
 - Bipartite Matching Polytope
 - Polytopes with Totally Unimodular Coefficient Matrices
- 3 Polytopes with Efficient Separation Oracles
 - s-t Cut Polytope
 - Spanning Tree Polytope
 - General Graph (Perfect) Matching Polytope
- 4 Matroid, Matroid Basis and Matroid Intersection Polytopes *
 - Preliminaries on Matroid Theory
 - Matroid Polytope
 - Matroid Basis and Matroid Intersection Polytope

General Graph Perfect Matching Polytope

General Perfect Matching Polytope

- ullet Given a graph G=(V,E), where |V| is even
- $\mathcal{P}_{\mathrm{GPM}} := \mathsf{conv}\left(\left\{\chi^M : M \subseteq E \text{ is a perfect matching in } G\right\}\right)$

General Graph Perfect Matching Polytope

General Perfect Matching Polytope

ullet Given a graph G=(V,E), where |V| is even

 $x_e > 0$

• $\mathcal{P}_{\mathrm{GPM}} := \mathsf{conv}\left(\left\{\chi^M : M \subseteq E \text{ is a perfect matching in } G\right\}\right)$

Theorem (General Perfect Matching Polytope Theorem)

 \mathcal{P}_{GPM} is the set of vectors $x \in \mathbb{R}^E$ satisfying the following inequalities:

$$\sum_{e \in \delta(v)} x_e = 1 \qquad \forall v \in V$$

$$\sum_{e \in E(S, V \setminus S)} x_e \ge 1 \qquad \forall S \subseteq V, |S| \text{ is odd} \qquad (*)$$

 $\forall e \in E$

 \mathcal{P}_{GPM} is the set of vectors $x \in \mathbb{R}^E$ satisfying the following inequalities:

$$\sum_{e \in S(v)} x_e = 1 \qquad \forall v \in V$$

$$\sum_{e \in E(S,V \setminus S)} x_e \ge 1 \qquad \forall S \subseteq V, |S| \text{ is odd} \qquad (*)$$

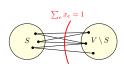
$$x_e \ge 0 \qquad \forall e \in E$$

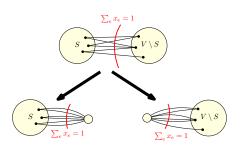
Proof of General Perfect Matching Polytope Theorem

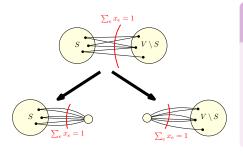
- ullet Clearly, every $x \in \mathcal{P}_{\mathsf{GPM}}$ satisfies all the LP constraints
- We prove the LP polytope is integral; this implies lemma
- We choose the counter-example G with the smallest |V|+|E|, and focus on a non-integral vertex x of the LP polytope

- $x_e = 0$ for some $e \in E$: e could be removed.
- $x_e = 1$ for some $e \in E$: e and its 2 end vertices could be removed.
- So $x_e \in (0,1)$ for every $e \in E$.
- Every $v \in V$ has degree at least 2.
- Every $v \in V$ has degree exactly 2: G is union of disjoint cycles, x would not be a vertex of LP polytope.
- Assume some $v \in V$ has degree at least 3; $|E| \ge |V| + 1$.
- ullet x is the unique solution to a system of n linear equations from the LP.
- So, some linear equation is

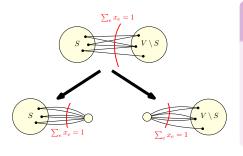
$$\sum_{e \in E(S,V \backslash S)} x_e = 1 \text{ for some } S \subseteq V \text{ with } |S| \geq 3, |V \setminus S| \geq 3$$







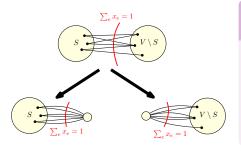
- Consider two instances: $(G/V, x'), (G/(V \setminus S), x'')$
- Both x' and x" satisfy the LP constraints for their respective graphs.



- Consider two instances: $(G/V, x'), (G/(V \setminus S), x'')$
- Both x' and x" satisfy the LP constraints for their respective graphs.
- By the minimality assumption:

 $x' \in \mathsf{conv}(\{\chi^M : M \text{ is a perfect matching in } G/S\})$

 $x'' \in \text{conv}(\{\chi^M : M \text{ is a perfect matching in } G/(V \setminus S)\})$

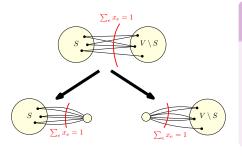


- Consider two instances: $(G/V, x'), (G/(V \setminus S), x'')$
- Both x' and x" satisfy the LP constraints for their respective graphs.
- By the minimality assumption:

$$x' \in \operatorname{conv}(\{\chi^M : M \text{ is a perfect matching in } G/S\})$$

$$x'' \in \operatorname{conv}(\{\chi^M : M \text{ is a perfect matching in } G/(V \setminus S)\})$$

 \bullet Decompose x^{\prime} and $x^{\prime\prime}$ into a convex combinations of matchings

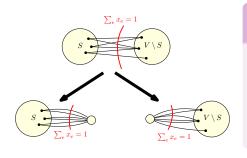


- Consider two instances: $(G/V, x'), (G/(V \setminus S), x'')$
- Both x' and x" satisfy the LP constraints for their respective graphs.
- By the minimality assumption:

$$x' \in \operatorname{conv}(\{\chi^M : M \text{ is a perfect matching in } G/S\})$$

$$x'' \in \operatorname{conv}(\{\chi^M : M \text{ is a perfect matching in } G/(V \setminus S)\})$$

- ullet Decompose x' and x'' into a convex combinations of matchings
- ullet Each $e \in E(S, V \setminus S)$ has the same fraction in combinations



- Consider two instances: $(G/V, x'), (G/(V \setminus S), x'')$
- Both x' and x'' satisfy the LP constraints for their respective graphs.
- By the minimality assumption:

$$x' \in \operatorname{conv}(\{\chi^M : M \text{ is a perfect matching in } G/S\})$$

$$x'' \in \operatorname{conv}(\{\chi^M : M \text{ is a perfect matching in } G/(V \setminus S)\})$$

- Decompose x' and x'' into a convex combinations of matchings
- Each $e \in E(S, V \setminus S)$ has the same fraction in combinations
- "Concatenate" two convex combinations into one convex combinations of matching in *G*. So *x* can not be a vertex.

 \mathcal{P}_{GPM} is the set of vectors $x \in \mathbb{R}^E$ satisfying the following inequalities:

$$\sum_{e \in \delta(v)} x_e = 1 \qquad \forall v \in V$$

$$\sum_{e \in E(S, V \setminus S)} x_e \ge 1 \qquad \forall S \subseteq V, |S| \text{ is odd} \qquad (*)$$

$$x_e \ge 0 \qquad \forall e \in E$$

Q: How can we check if all constraints in (*) are satisfied?

 \mathcal{P}_{GPM} is the set of vectors $x \in \mathbb{R}^E$ satisfying the following inequalities:

$$\sum_{e \in \delta(v)} x_e = 1 \qquad \forall v \in V$$

$$\sum_{e \in E(S, V \setminus S)} x_e \ge 1 \qquad \forall S \subseteq V, |S| \text{ is odd} \qquad (*)$$

$$x_e \ge 0 \qquad \forall e \in E$$

Q: How can we check if all constraints in (*) are satisfied?

A: Use the Gomory-Hu Tree structure.

 \mathcal{P}_{GPM} is the set of vectors $x \in \mathbb{R}^E$ satisfying the following inequalities:

$$\sum_{e \in \delta(v)} x_e = 1 \qquad \forall v \in V$$

$$\sum_{e \in E(S, V \setminus S)} x_e \ge 1 \qquad \forall S \subseteq V, |S| \text{ is odd} \qquad (*)$$

$$x_e \ge 0 \qquad \forall e \in E$$

Q: How can we check if all constraints in (*) are satisfied?

A: Use the Gomory-Hu Tree structure.

- ullet inequality in (*) can be replaced by $\sum_{e\in E[S]} x_e \leq \frac{|S|-1}{2}$
- more convenient to obtain general matching polytope

General Matching Polytope

- Given a graph G = (V, E)
- $\mathcal{P}_{\mathrm{GM}} := \mathsf{conv}\left(\left\{\chi^M : M \subseteq E \text{ is a matching in } G\right\}\right)$

General Matching Polytope

- Given a graph G = (V, E)
- $\mathcal{P}_{GM} := \operatorname{conv}\left(\left\{\chi^M : M \subseteq E \text{ is a matching in } G\right\}\right)$

Theorem (General Matching Polytope Theorem) \mathcal{P}_{GM} is the set of vectors $x \in \mathbb{R}^E$ satisfying the following inequalities:

$$\sum_{e \in \delta(v)} x_e \le 1 \qquad \forall v \in V$$

$$\sum_{e \in E(S)} x_e \le \frac{|S| - 1}{2} \qquad \forall S \subseteq V, |S| \text{ is odd} \qquad (1)$$

$$x_e \ge 0 \qquad \forall e \in E$$

Remark

- For all the polytopes, we identified a set of linear inequalities that are sufficient to define the polytope.
- However, not all the constraints are facet-defining.
- Only facet-defining constraints are necessarily; other constraints could be removed. (We keep all the constraints for convenience of description.)

Remark

- For all the polytopes, we identified a set of linear inequalities that are sufficient to define the polytope.
- However, not all the constraints are facet-defining.
- Only facet-defining constraints are necessarily; other constraints could be removed. (We keep all the constraints for convenience of description.)
- Example: in spanning tree polytope, $\sum_{e \in E[S]} x_e \le |S| 1$ is not needed if (S, E[S]) is disconnected, or contains a bridge. In this case, the constraint does not define a facet.

Outline

- Linear Programming
 - Introduction
 - Methods for Solving Linear Programs
- Polytope with Polynomial Number of Facets
 - Bipartite Matching Polytope
 - Polytopes with Totally Unimodular Coefficient Matrices
- 3 Polytopes with Efficient Separation Oracles
 - s-t Cut Polytope
 - Spanning Tree Polytope
 - General Graph (Perfect) Matching Polytope
- Matroid, Matroid Basis and Matroid Intersection Polytopes *
 - Preliminaries on Matroid Theory
 - Matroid Polytope
 - Matroid Basis and Matroid Intersection Polytope

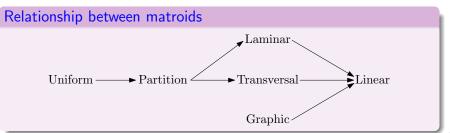
Outline

- Linear Programming
 - Introduction
 - Methods for Solving Linear Programs
- Polytope with Polynomial Number of Facets
 - Bipartite Matching Polytope
 - Polytopes with Totally Unimodular Coefficient Matrices
- 3 Polytopes with Efficient Separation Oracles
 - s-t Cut Polytope
 - Spanning Tree Polytope
 - General Graph (Perfect) Matching Polytope
- Matroid, Matroid Basis and Matroid Intersection Polytopes *
 - Preliminaries on Matroid Theory
 - Matroid Polytope
 - Matroid Basis and Matroid Intersection Polytope

Recall Definition and Examples of Matroid

Def. A (finite) matroid \mathcal{M} is a pair (E, \mathcal{I}) , where E is a finite set (called the ground set) and \mathcal{I} is a family of subsets of E (called independent sets) with the following properties:

- ② (downward-closed property) If $B \subsetneq A \in \mathcal{I}$, then $B \in \mathcal{I}$.
- **③** (augmentation/exchange property) If $A, B \in \mathcal{I}$ and |B| < |A|, then there exists $e \in A \setminus B$ such that $B \cup \{e\} \in \mathcal{I}$.



Other Terminologies Related To a Matroid $\mathcal{M} = (E, \mathcal{I})$

- ullet A subset of E that is not independent is dependent.
- A maximal independent set is called a basis (plural: bases)
- A minimal dependent set is called a circuit

Other Terminologies Related To a Matroid $\mathcal{M} = (E, \mathcal{I})$

- A subset of E that is not independent is dependent.
- A maximal independent set is called a basis (plural: bases)
- A minimal dependent set is called a circuit
- Graphic matroid for a connected graph G = (V, E): basis \iff spanning tree circuit \iff cycle

Lemma All bases of a matroid have the same size.

- ullet Assume two A and A' are both bases of ${\mathcal M}$ and |A|>|A'|
- By exchange property: $\exists i \in A \setminus A', A' \cup \{i\} \in \mathcal{I}$
- \bullet contradiction with that A' is a basis

• Recall: Matroid Rank Function:

Def. Given a matroid $\mathcal{M}=(E,\mathcal{I})$, the rank of any $A\subseteq E$ is defined as

$$r_{\mathcal{M}}(A) = \max\{|A'| : A' \subseteq A, A' \in \mathcal{I}\}.$$

The function $r_{\mathcal{M}}: 2^E \to \mathbb{Z}_{>0}$ is called the rank function of \mathcal{M} .

ullet $r_{\mathcal{M}}(A)$ is size of maximum independent subset of A

Trivial properties of $r_{\mathcal{M}}$

- $r_{\mathcal{M}}(\emptyset) = 0$
- $r_{\mathcal{M}}(A \cup \{i\}) r_{\mathcal{M}}(A) \in \{0, 1\}$ for every $A \subseteq E, i \in E \setminus A$

Theorem The rank function $r_{\mathcal{M}}$ of a matroid $\mathcal{M} = (E, \mathcal{I})$ is submodular.

- 1: $S \leftarrow \emptyset$
- 2: while $\exists e \in X \setminus S \text{ s.t. } S \cup \{e\} \in \mathcal{I} \text{ do}$
- 3: let e be an arbitrary element satisfying the condition
- 4: $S \leftarrow S \cup \{e\}$
- 5: return S

- 1: $S \leftarrow \emptyset$
- 2: while $\exists e \in X \setminus S \text{ s.t. } S \cup \{e\} \in \mathcal{I} \text{ do}$
- 3: let e be an arbitrary element satisfying the condition
- 4: $S \leftarrow S \cup \{e\}$
- 5: return S

Proof of Submodularity of $r_{\mathcal{M}}$.

• Take $A \subsetneq E, i, j \in E \setminus A, i \neq j$, need to prove: $r_{\mathcal{M}}(A \cup \{i, j\}) - r_{\mathcal{M}}(A \cup \{i\}) \leq r_{\mathcal{M}}(A \cup \{j\}) - r_{\mathcal{M}}(A)$

- 1: $S \leftarrow \emptyset$
- 2: while $\exists e \in X \setminus S \text{ s.t. } S \cup \{e\} \in \mathcal{I} \text{ do}$
- a: let e be an arbitrary element satisfying the condition
- 4: $S \leftarrow S \cup \{e\}$
- 5: return S

- Take $A \subsetneq E, i, j \in E \setminus A, i \neq j$, need to prove: $r_{\mathcal{M}}(A \cup \{i, j\}) r_{\mathcal{M}}(A \cup \{i\}) \leq r_{\mathcal{M}}(A \cup \{j\}) r_{\mathcal{M}}(A)$
- if not, then LHS = 1, RHS = 0

- 1: $S \leftarrow \emptyset$
- 2: while $\exists e \in X \setminus S \text{ s.t. } S \cup \{e\} \in \mathcal{I} \text{ do}$
- 3: let e be an arbitrary element satisfying the condition
- 4: $S \leftarrow S \cup \{e\}$
- 5: return S

- Take $A \subsetneq E, i, j \in E \setminus A, i \neq j$, need to prove: $r_{\mathcal{M}}(A \cup \{i, j\}) r_{\mathcal{M}}(A \cup \{i\}) \leq r_{\mathcal{M}}(A \cup \{j\}) r_{\mathcal{M}}(A)$
- if not, then LHS = 1, RHS = 0
- ullet S: max ind. subset of A, S': max ind. subset of $A \cup \{i\}$
- $\bullet \ |S| = r_{\mathcal{M}}(A), |S'| = r_{\mathcal{M}}(A \cup \{i\}), \qquad S' = S \text{ or } S' = S \cup \{i\}$

- 1: $S \leftarrow \emptyset$
- 2: while $\exists e \in X \setminus S \text{ s.t. } S \cup \{e\} \in \mathcal{I} \text{ do}$
- a: let e be an arbitrary element satisfying the condition
- 4: $S \leftarrow S \cup \{e\}$
- 5: return S

- Take $A \subsetneq E, i, j \in E \setminus A, i \neq j$, need to prove: $r_{\mathcal{M}}(A \cup \{i, j\}) r_{\mathcal{M}}(A \cup \{i\}) \leq r_{\mathcal{M}}(A \cup \{j\}) r_{\mathcal{M}}(A)$
- if not, then LHS = 1, RHS = 0
- ullet S: max ind. subset of A, S': max ind. subset of $A \cup \{i\}$
- $\bullet \ |S| = r_{\mathcal{M}}(A), |S'| = r_{\mathcal{M}}(A \cup \{i\}), \qquad S' = S \text{ or } S' = S \cup \{i\}$
- RHS = $0 \implies S \cup \{j\} \notin \mathcal{I}$, LHS = $1 \implies S' \cup \{j\} \in \mathcal{I}$
- contradiction

Lemma A function $r:2^E\to\mathbb{R}$ is the rank function of a matroid if and only if

- $r(A \cup \{i\}) r(A) \in \{0,1\}$ for all $A \subseteq E, i \notin E \setminus A$
- r is submodular.

- Define $\mathcal{I} = \{A \subseteq E : r(A) = |A|\}.$
- Claim: (E, \mathcal{I}) is a matroid and r is its rank function.

Lemma A function $r:2^E\to\mathbb{R}$ is the rank function of a matroid if and only if

- $r(A \cup \{i\}) r(A) \in \{0,1\} \text{ for all } A \subseteq E, i \notin E \setminus A$

- Define $\mathcal{I} = \{A \subseteq E : r(A) = |A|\}.$
- ullet Claim: (E,\mathcal{I}) is a matroid and r is its rank function.
- ullet (1), (2) \Longrightarrow \mathcal{I} is closed under taking subsets

Lemma A function $r:2^E\to\mathbb{R}$ is the rank function of a matroid if and only if

- $2 r(A \cup \{i\}) r(A) \in \{0,1\} \text{ for all } A \subseteq E, i \notin E \setminus A$

- Define $\mathcal{I} = \{A \subseteq E : r(A) = |A|\}.$
- ullet Claim: (E,\mathcal{I}) is a matroid and r is its rank function.
- (1), $(2) \implies \mathcal{I}$ is closed under taking subsets
- A, A' : r(A) = |A|, r(A') = |A'|, |A| < |A'|
- $\bullet \ U := A \cup A' : r(U) \ge r(A') > r(A), \qquad A \subsetneq U$

Lemma A function $r:2^E \to \mathbb{R}$ is the rank function of a matroid if and only if

- $2 r(A \cup \{i\}) r(A) \in \{0,1\} \text{ for all } A \subseteq E, i \notin E \setminus A$
- r is submodular.

- Define $\mathcal{I} = \{A \subseteq E : r(A) = |A|\}.$
- ullet Claim: (E,\mathcal{I}) is a matroid and r is its rank function.
- ullet (1), (2) \Longrightarrow $\mathcal I$ is closed under taking subsets
- A, A' : r(A) = |A|, r(A') = |A'|, |A| < |A'|
- $U := A \cup A' : r(U) \ge r(A') > r(A), \qquad A \subsetneq U$
- $\mathfrak{J} \Longrightarrow \exists i \in U \setminus A = A' \setminus A : r(A \cup \{i\}) > r(A)$
- $\bullet \ i \in A' \setminus A \ \text{and} \ r(A \cup \{i\}) = r(A) + 1 = |A \cup \{i\}|$
- so, $A \cup \{i\} \in \mathcal{I} \implies$ exchange property

Def. Given a matroid $\mathcal{M}=(E,\mathcal{I})$ and an element $e\in E$, the matroid obtained from \mathcal{M} by removing e, denoted as $\mathcal{M}\setminus e$, is defined as follows:

$$\mathcal{M} \setminus e = (E \setminus e, \{A \subseteq E \setminus e : A \in \mathcal{I}\}).$$

Def. Given a matroid $\mathcal{M}=(E,\mathcal{I})$ and an element $e\in E$, the matroid obtained from \mathcal{M} by removing e, denoted as $\mathcal{M}\setminus e$, is defined as follows:

$$\mathcal{M} \setminus e = (E \setminus e, \{A \subseteq E \setminus e : A \in \mathcal{I}\}).$$

Def. Given a matroid $\mathcal{M}=(E,\mathcal{I})$ and an element $e\in E$, the matroid obtained from \mathcal{M} by contracting e, denoted as \mathcal{M}/e , is defined as follows:

$$\mathcal{M}/e = (E \setminus e, \{A \subseteq E \setminus e : A \cup \{e\} \in \mathcal{I}\}).$$

Def. Given a matroid $\mathcal{M}=(E,\mathcal{I})$ and a subset $E'\subseteq E$, the matroid of \mathcal{M} restricted to E', denoted as $\mathcal{M}[E']$, is defined as follows:

$$\mathcal{M}[E'] = (E', \{A \subseteq E' : A \in \mathcal{I}\}).$$

Def. Given a matroid $\mathcal{M}=(E,\mathcal{I})$ and a subset $E'\subseteq E$, the matroid of \mathcal{M} restricted to E', denoted as $\mathcal{M}[E']$, is defined as follows:

$$\mathcal{M}[E'] = (E', \{ A \subseteq E' : A \in \mathcal{I} \}).$$

Def. For a matroid $\mathcal{M}=(E,\mathcal{I})$, the dual matroid $\mathcal{M}^*=(E,\mathcal{I}^*)$ is defined so that the bases in \mathcal{M}^* are exactly the complements of the bases in \mathcal{I} .

Theorem \mathcal{M}^* is a matroid.

Outline

- Linear Programming
 - Introduction
 - Methods for Solving Linear Programs
- 2 Polytope with Polynomial Number of Facets
 - Bipartite Matching Polytope
 - Polytopes with Totally Unimodular Coefficient Matrices
- 3 Polytopes with Efficient Separation Oracles
 - s-t Cut Polytope
 - Spanning Tree Polytope
 - General Graph (Perfect) Matching Polytope
- Matroid, Matroid Basis and Matroid Intersection Polytopes *
 - Preliminaries on Matroid Theory
 - Matroid Polytope
 - Matroid Basis and Matroid Intersection Polytope

Matroid Polytope

- Given a matroid $\mathcal{M} = (E, \mathcal{I})$
- ullet The matroid polytope for ${\mathcal M}$ is defined as

$$\mathcal{P}_{\mathcal{M}} := \mathsf{conv}(\{\chi^A : A \in \mathcal{I}\}).$$

• Recall:
$$\chi^A \in \{0,1\}^E$$
, $\chi^A_i = \begin{cases} 1 & i \in A \\ 0 & i \notin A \end{cases}$

Matroid Polytope

- Given a matroid $\mathcal{M} = (E, \mathcal{I})$
- ullet The matroid polytope for ${\mathcal M}$ is defined as

$$\mathcal{P}_{\mathcal{M}} := \mathsf{conv}(\{\chi^A : A \in \mathcal{I}\}).$$

• Recall: $\chi^A \in \{0,1\}^E$, $\chi^A_i = \begin{cases} 1 & i \in A \\ 0 & i \notin A \end{cases}$

Theorem (Matroid Polytope Theorem) For a matroid $\mathcal{M}=(E,\mathcal{I})$, we have

$$\mathcal{P}_{\mathcal{M}} = \Big\{ x \in [0, 1]^E : x(S) \le r_{\mathcal{M}}(S), \forall S \subseteq E \Big\},\,$$

where $x(S) := \sum_{i \in S} x_i$ for every $S \subseteq E$.

- $Q := \left\{ x \in [0,1]^E : \sum_{i \in A} x_i \le r_{\mathcal{M}}(A), \forall A \subseteq E \right\}$
- $Q \cap \{0,1\}^E = \{\chi^A : A \in \mathcal{I}\}$; it suffices to prove Q is integral

- $Q := \left\{ x \in [0,1]^E : \sum_{i \in A} x_i \le r_{\mathcal{M}}(A), \forall A \subseteq E \right\}$
- $\mathcal{Q} \cap \{0,1\}^E = \{\chi^A : A \in \mathcal{I}\}$; it suffices to prove \mathcal{Q} is integral
- ullet Focus on the counter example with the smallest |E|
- ullet assume some vertex x of ${\mathcal Q}$ is non-integral

- $Q := \left\{ x \in [0,1]^E : \sum_{i \in A} x_i \le r_{\mathcal{M}}(A), \forall A \subseteq E \right\}$
- $\mathcal{Q} \cap \{0,1\}^E = \{\chi^A : A \in \mathcal{I}\}$; it suffices to prove \mathcal{Q} is integral
- ullet Focus on the counter example with the smallest |E|
- ullet assume some vertex x of ${\mathcal Q}$ is non-integral
- If $x_e = 0$ for some $e \in E$, removing e gives a smaller counterexample
- If $x_e = 1$ for some $e \in E$, contracting e gives a smaller counterexample
- So, $x_e \in (0,1)$ for every $e \in E$.

Def. We say a set $A \subseteq E$ is tight if $x(A) = r_{\mathcal{M}}(A)$. Let \mathcal{T} be the family of all tight subsets of E.

Lemma If $A, B \in \mathcal{T}$, then both $A \cup B$ and $A \cap B$ are in \mathcal{T} .

Def. We say a set $A \subseteq E$ is tight if $x(A) = r_{\mathcal{M}}(A)$. Let \mathcal{T} be the family of all tight subsets of E.

Lemma If $A, B \in \mathcal{T}$, then both $A \cup B$ and $A \cap B$ are in \mathcal{T} .

Proof.

$$x(A) + x(B) = r_{\mathcal{M}}(A) + r_{\mathcal{M}}(B)$$

$$\geq r_{\mathcal{M}}(A \cup B) + r_{\mathcal{M}}(A \cap B) \geq x(A \cup B) + x(A \cap B).$$

- ullet equality: A and B are tight
- first inequality: $r_{\mathcal{M}}$ is submodular
- ullet second inequality: $x(S) \leq r_{\mathcal{M}}(S)$ for every $S \subseteq E$

But $x(A) + x(B) = x(A \cup B) + x(A \cap B)$. So, both inequalities hold with equality. \Box

Def. A chain is a sequence of subsets $S_1 \subsetneq S_2 \subsetneq \cdots \subsetneq S_t$ of E.

• We use span(S) for span($\{\chi^S : S \in S\}$), for any $S \subseteq T$.

Def. A chain is a sequence of subsets $S_1 \subsetneq S_2 \subsetneq \cdots \subsetneq S_t$ of E.

• We use $\operatorname{span}(\mathcal{S})$ for $\operatorname{span}(\{\chi^S:S\in\mathcal{S}\})$, for any $\mathcal{S}\subseteq\mathcal{T}$.

Lemma (Key Lemma) Let \mathcal{C} be a longest chain of tight subsets of E (i.e., subsets in \mathcal{T}). Then, we have $\operatorname{span}(\mathcal{C}) = \operatorname{span}(\mathcal{T})$.

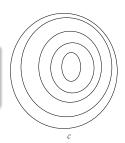
Def. A chain is a sequence of subsets $S_1 \subsetneq S_2 \subsetneq \cdots \subsetneq S_t$ of E.

• We use $\operatorname{span}(\mathcal{S})$ for $\operatorname{span}(\{\chi^S:S\in\mathcal{S}\})$, for any $\mathcal{S}\subseteq\mathcal{T}$.

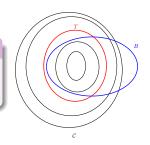
Lemma (Key Lemma) Let C be a longest chain of tight subsets of E (i.e., subsets in T). Then, we have span(C) = span(T).

- We say two sets B and T conflict with each other, if $B \not\subseteq T$ and $T \not\subseteq B$.
- Define $\tau(B) := \{T \in \mathcal{C} : B \text{ conflicts with } T\}, \forall B$
- Assume $span(C) \subsetneq span(T)$
- Let $B = \arg\min_{B \in \mathcal{T}, \chi^B \notin \mathsf{span}(\mathcal{C})} |\tau(B)|$

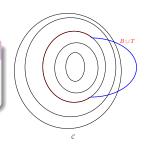
- Let $T \in \mathcal{C}$ be a set contradicting with B;
- We prove $\tau(B \cup T), \tau(B \cap T) \subsetneq \tau(B)$.



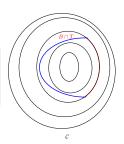
- Let $T \in \mathcal{C}$ be a set contradicting with B;
- We prove $\tau(B \cup T), \tau(B \cap T) \subsetneq \tau(B)$.



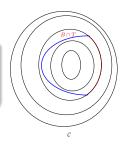
- Let $T \in \mathcal{C}$ be a set contradicting with B;
- We prove $\tau(B \cup T), \tau(B \cap T) \subsetneq \tau(B)$.



- Let $T \in \mathcal{C}$ be a set contradicting with B;
- We prove $\tau(B \cup T), \tau(B \cap T) \subsetneq \tau(B)$.



- Let $T \in \mathcal{C}$ be a set contradicting with B;
- We prove $\tau(B \cup T), \tau(B \cap T) \subsetneq \tau(B)$.



- For $\tau(B \cup T) \subseteq \tau(B)$:
 - $S \subsetneq T$: S does not conflict with $B \cup T$, and may conflict with B.
 - $S \supseteq T$: S not conflict with $B \implies S$ not conflict with $B \cup T$.
- For $\tau(B \cap T) \subseteq \tau(B)$:
 - $S \subsetneq T$: S not conflict with $B \implies S$ not conflict with $B \cap T$.
 - $S \supseteq T$: S does not conflict with $B \cap T$, and may conflict with B.
- " \neq " : B conflicts with T, but $B \cup T$ and $B \cap T$ do not.

Proof of Matroid Polytope Theorem

Proof of Key Lemma

- By our choice of B, we have $\chi^{B \cup T}, \chi^{B \cap T} \in \operatorname{span}(\mathcal{C})$.
- However, as $\chi^B = \chi^{B \cup T} + \chi^{B \cap T} \chi^T$ and all the three vectors are in span(\mathcal{T}), contradiction with $\chi^B \notin \operatorname{span}(\mathcal{C})$.

Recall the key lemma:

Lemma (Key Lemma) Let \mathcal{C} be a longest chain of tight subsets of E (i.e., subsets in \mathcal{T}). Then, we have $\operatorname{span}(\mathcal{C}) = \operatorname{span}(\mathcal{T})$.

- Therefore, $x \in [0,1]^E$ is defined by the system of linear equations correspondent to C.
- $|\mathcal{C}| = |E|$, the chain \mathcal{C} is of full length.
- ullet The system gives an integer solution x. Contradiction.

What we proved:

Matroid Polytope

- Given a matroid $\mathcal{M} = (E, \mathcal{I})$
- ullet The matroid polytope for ${\mathcal M}$ is defined as

$$\mathcal{P}_{\mathcal{M}} := \mathsf{conv}(\{\chi^A : A \in \mathcal{I}\}).$$

Theorem (Matroid Polytope Theorem) For a matroid $\mathcal{M} = (E, \mathcal{I})$, we have

$$\mathcal{P}_{\mathcal{M}} = \Big\{ x \in [0, 1]^E : x(S) \le r_{\mathcal{M}}(S), \forall S \subseteq E \Big\},\,$$

where $x(S) := \sum_{i \in S} x_i$ for every $S \subseteq E$.

Outline

- Linear Programming
 - Introduction
 - Methods for Solving Linear Programs
- Polytope with Polynomial Number of Facets
 - Bipartite Matching Polytope
 - Polytopes with Totally Unimodular Coefficient Matrices
- 3 Polytopes with Efficient Separation Oracles
 - s-t Cut Polytope
 - Spanning Tree Polytope
 - General Graph (Perfect) Matching Polytope
- Matroid, Matroid Basis and Matroid Intersection Polytopes *
 - Preliminaries on Matroid Theory
 - Matroid Polytope
 - Matroid Basis and Matroid Intersection Polytope

Matroid Basis Polytope

- Given a matroid $\mathcal{M} = (E, \mathcal{I})$
- ullet The matroid basis polytope for ${\mathcal M}$ is defined as

$$\mathcal{P}^{\mathsf{basis}}_{\mathcal{M}} := \mathsf{conv}(\{\chi^A : A \in \mathcal{I}, \mathsf{rank}_{\mathcal{M}}(A) = \mathsf{rank}_{\mathcal{M}}(E)\}).$$

Theorem (Matroid Basis Polytope Theorem) For a matroid $\mathcal{M}=(E,\mathcal{I})$, we have

$$\mathcal{P}_{\mathcal{M}}^{\mathrm{basis}} = \Big\{ x \in [0,1]^E : x(S) \leq r_{\mathcal{M}}(S), \forall S \subseteq E; \underline{x(E)} = r_{\mathcal{M}}(E) \Big\},$$

where $x(S) := \sum_{i \in S} x_i$ for every $S \subseteq E$.

Matroid Basis Polytope

- Given a matroid $\mathcal{M} = (E, \mathcal{I})$
- ullet The matroid basis polytope for ${\mathcal M}$ is defined as

$$\mathcal{P}_{\mathcal{M}}^{\mathsf{basis}} := \mathsf{conv}(\{\chi^A : A \in \mathcal{I}, \mathsf{rank}_{\mathcal{M}}(A) = \mathsf{rank}_{\mathcal{M}}(E)\}).$$

Theorem (Matroid Basis Polytope Theorem) For a matroid $\mathcal{M}=(E,\mathcal{I})$, we have

$$\mathcal{P}_{\mathcal{M}}^{\mathrm{basis}} = \Big\{ x \in [0,1]^E : x(S) \leq r_{\mathcal{M}}(S), \forall S \subseteq E; \underline{x(E)} = r_{\mathcal{M}}(\underline{E}) \Big\},$$

where $x(S) := \sum_{i \in S} x_i$ for every $S \subseteq E$.

Proof.

- ullet $\mathcal{P}_{\mathcal{M}}^{\mathsf{basis}}$ is a face (not necessarily a facet) of $\mathcal{P}_{\mathcal{M}}$.
- ullet $\mathcal{P}_{\mathcal{M}}$ is integral \Longrightarrow $\mathcal{P}_{\mathcal{M}}^{\mathsf{basis}}$ is integral

Recall: Spanning Tree Polytope

Spanning Tree Polytope

- Given a connected graph G = (V, E)
- $\mathcal{P}_{\mathrm{ST}} := \mathsf{conv}\left(\left\{\chi^T : T \subseteq E \text{ is a spanning tree of } G\right\}\right)$

Theorem (Spanning Tree Polytope Theorem) \mathcal{P}_{ST} is the set of vectors $x \in \mathbb{R}^E$ satisfying the following inequalities:

$$\sum_{e \in E} x_e = n - 1$$

$$\sum_{e \in E[S]} x_e \le |S| - 1 \qquad \forall S \subseteq V, 2 \le |S| \le n - 1 \qquad (*)$$

$$x_e \ge 0 \qquad \forall e \in E$$

- Graphic matroid:
 - ullet independent sets \leftrightarrow spanning forests
 - bases \leftrightarrow spanning trees.

- Graphic matroid:
 - independent sets ↔ spanning forests
 - bases ↔ spanning trees.
- ullet So, $\mathcal{P}_{\mathrm{ST}}$ is the set of $x \in [0,1]^E$ satisfying

$$x(E') \le n - \mathsf{CC}(E'), \forall E' \subseteq E; \quad x(E) = n - 1,$$

where CC(E') is the number of connected components in (V,E').

- Graphic matroid:
 - ullet independent sets \leftrightarrow spanning forests
 - bases ↔ spanning trees.
- ullet So, $\mathcal{P}_{\mathrm{ST}}$ is the set of $x \in [0,1]^E$ satisfying

$$x(E') \le n - \mathsf{CC}(E'), \forall E' \subseteq E; \quad x(E) = n - 1,$$

where CC(E') is the number of connected components in (V, E').

- It suffices to consider the case where E' = E[S] for some connected set $S \subseteq V$, in which case n CC(E') = |S| 1.
- \implies Spanning Tree Polytope Theorem.

Theorem (Matroid Intersection Polytope Theorem) Let $\mathcal{M}_1 = (E, \mathcal{I}_1)$ and $\mathcal{M}_2 = (E, \mathcal{I}_2)$ be two matroids with the common ground set E. Then

$$\operatorname{conv}(\{\chi^A : A \in \mathcal{I}_1 \cap \mathcal{I}_2\}) = \mathcal{P}_{\mathcal{M}_1} \cap \mathcal{P}_{\mathcal{M}_2}$$
$$= \Big\{ x \in [0, 1]^E : x(S) \le r_{\mathcal{M}_1}(S), x(S) \le r_{\mathcal{M}_2}(S), \forall S \subseteq E \Big\}.$$

Theorem (Matroid Intersection Polytope Theorem) Let $\mathcal{M}_1 = (E, \mathcal{I}_1)$ and $\mathcal{M}_2 = (E, \mathcal{I}_2)$ be two matroids with the common ground set E. Then

$$\begin{aligned} &\operatorname{conv} \left(\left\{ \chi^A : A \in \mathcal{I}_1 \cap \mathcal{I}_2 \right\} \right) = \mathcal{P}_{\mathcal{M}_1} \cap \mathcal{P}_{\mathcal{M}_2} \\ &= \left\{ x \in [0,1]^E : x(S) \leq r_{\mathcal{M}_1}(S), x(S) \leq r_{\mathcal{M}_2}(S), \forall S \subseteq E \right\}. \end{aligned}$$

- We will not prove the theorem.
- A similar theorem works if we require A to be a basis for the matroid \mathcal{M}_1 or \mathcal{M}_2 :

$$\begin{split} &\operatorname{conv} \left(\left\{ \chi^A : A \in \mathcal{I}_1 \cap \mathcal{I}_2, \operatorname{rank}_{\mathcal{M}_1}(A) = \operatorname{rank}_{\mathcal{M}_1}(E) \right\} \right) \\ &= \mathcal{P}^{\operatorname{basis}}_{\mathcal{M}_1} \cap \mathcal{P}_{\mathcal{M}_2} \end{split}$$

Bipartite Matching Polytope

- Given bipartite graph $G = (L \cup R, E)$
- $\mathcal{P}_{BM} := \operatorname{conv}(\{\chi^M : M \text{ is a matching in } G\})$

Theorem $\mathcal{P}_{\mathrm{BM}}$ is the set of $x \in \mathbb{R}^E$ satisfying the following constraints:

$$\sum_{e \in \delta(v)} x_e \le 1, \forall v \in L \cup R; \qquad x_e \ge 0, \forall e \in E.$$

Bipartite Matching Polytope

- Given bipartite graph $G = (L \cup R, E)$
- $\mathcal{P}_{BM} := \operatorname{conv}(\{\chi^M : M \text{ is a matching in } G\})$

Theorem $\mathcal{P}_{\mathrm{BM}}$ is the set of $x \in \mathbb{R}^E$ satisfying the following constraints:

$$\sum_{e \in \delta(v)} x_e \le 1, \forall v \in L \cup R; \qquad x_e \ge 0, \forall e \in E.$$

- A matching is an independent set of two partition matroids, one for each side of the bipartite graph.
- Matching polytope is intersection of two partition matroid polytopes.

Arborescence Polytope

- Given a directed graph G = (V, E), a root $r \in V$
- $\bullet \ \mathcal{P}_{\operatorname{Arbo}} := \operatorname{conv}(\{\chi^{E'} : E' \text{ is an arborescence of } G \text{ rooted at } r\})$

Arborescence Polytope

- Given a directed graph G = (V, E), a root $r \in V$
- $\bullet \ \mathcal{P}_{\operatorname{Arbo}} := \operatorname{conv}(\{\chi^{E'} : E' \text{ is an arborescence of } G \text{ rooted at } r\})$
- We define two matroids:
 - ullet Graphic Matroid: we ignore the directions of G, and require E' to be a spanning forest
 - \bullet Partition Matroid: we require every vertex other than r has in-degree at most 1

Arborescence Polytope

- Given a directed graph G = (V, E), a root $r \in V$
- $\bullet \ \mathcal{P}_{\operatorname{Arbo}} := \operatorname{conv}(\{\chi^{E'} : E' \text{ is an arborescence of } G \text{ rooted at } r\})$
- We define two matroids:
 - ullet Graphic Matroid: we ignore the directions of G, and require E' to be a spanning forest
 - \bullet Partition Matroid: we require every vertex other than r has in-degree at most 1
- \bullet E' is an arborescence if it is a basis of both polytopes.

Summary

- linear programming, simplex method, interior point method, ellipsoid method
- Polytopes with totally-unimodular coefficient matrix:
 - ullet integral LP polytopes: bipartite matching polytope, s-t flow polytope, weighted interval scheduling polytope

Summary

- linear programming, simplex method, interior point method, ellipsoid method
- Polytopes with totally-unimodular coefficient matrix:
 - integral LP polytopes: bipartite matching polytope, *s-t* flow polytope, weighted interval scheduling polytope
- Matroid Polytope