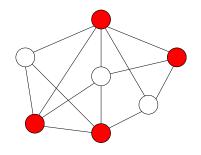
### Advanced Algorithms (Fall 2025) Primal-Dual Algorithms

Lecturers: 尹一通,刘景铖,<mark>栗师</mark> Nanjing University

#### Outline

2-Approximation Algorithm for Weighted Vertex Cover Using Primal-Dual

2 3-Approximation Algorithm for Uncapacitated Facility Location Problem Using Primal Dual



#### Weighted Vertex Cover Problem

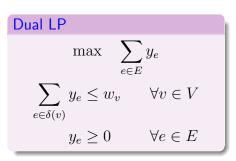
**Input:** graph G = (V, E), vertex weights  $w \in \mathbb{Z}_{>0}^V$ 

**Output:** vertex cover S of G, to minimize  $\sum_{v \in S} w_v$ 

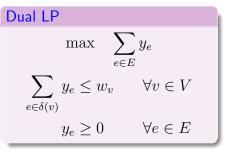
#### LP Relaxation

$$x_u + x_v \ge 1 \qquad \forall (u, v) \in E$$
$$x_v \ge 0 \qquad \forall v \in V$$

min  $\sum w_v x_v$ 

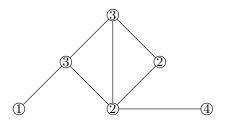


## LP Relaxation $\min \sum_{v \in V} w_v x_v$ $x_u + x_v \ge 1 \quad \forall (u, v) \in E$ $x_v \ge 0 \quad \forall v \in V$

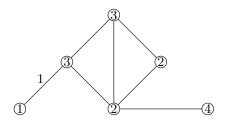


 Algorithm constructs integral primal solution x and dual solution y simultaneously.

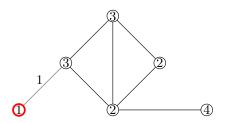
- 1:  $x \leftarrow 0, y \leftarrow 0$ , all edges said to be uncovered
- 2: while there exists at least one uncovered edge do
- 3: take such an edge e arbitrarily
- 4: increasing  $y_e$  until the dual constraint for one end-vertex v of e becomes tight
- 5:  $x_v \leftarrow 1$ , claim all edges incident to v are covered
- 6: return x



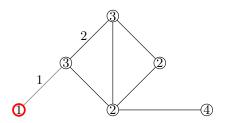
- 1:  $x \leftarrow 0, y \leftarrow 0$ , all edges said to be uncovered
- 2: while there exists at least one uncovered edge do
- 3: take such an edge e arbitrarily
- 4: increasing  $y_e$  until the dual constraint for one end-vertex v of e becomes tight
- 5:  $x_v \leftarrow 1$ , claim all edges incident to v are covered
- 6: return x



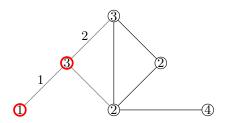
- 1:  $x \leftarrow 0, y \leftarrow 0$ , all edges said to be uncovered
- 2: while there exists at least one uncovered edge do
- 3: take such an edge e arbitrarily
- 4: increasing  $y_e$  until the dual constraint for one end-vertex v of e becomes tight
- 5:  $x_v \leftarrow 1$ , claim all edges incident to v are covered
- 6: return x



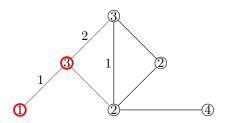
- 1:  $x \leftarrow 0, y \leftarrow 0$ , all edges said to be uncovered
- 2: while there exists at least one uncovered edge do
- 3: take such an edge e arbitrarily
- 4: increasing  $y_e$  until the dual constraint for one end-vertex v of e becomes tight
- 5:  $x_v \leftarrow 1$ , claim all edges incident to v are covered
- 6: return x



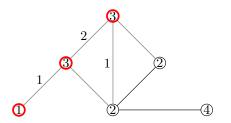
- 1:  $x \leftarrow 0, y \leftarrow 0$ , all edges said to be uncovered
- 2: while there exists at least one uncovered edge do
- 3: take such an edge e arbitrarily
- 4: increasing  $y_e$  until the dual constraint for one end-vertex v of e becomes tight
- 5:  $x_v \leftarrow 1$ , claim all edges incident to v are covered
- 6: return x



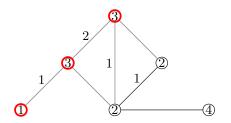
- 1:  $x \leftarrow 0, y \leftarrow 0$ , all edges said to be uncovered
- 2: while there exists at least one uncovered edge do
- 3: take such an edge e arbitrarily
- 4: increasing  $y_e$  until the dual constraint for one end-vertex v of e becomes tight
- 5:  $x_v \leftarrow 1$ , claim all edges incident to v are covered
- 6: return x



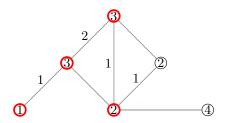
- 1:  $x \leftarrow 0, y \leftarrow 0$ , all edges said to be uncovered
- 2: while there exists at least one uncovered edge do
- 3: take such an edge e arbitrarily
- 4: increasing  $y_e$  until the dual constraint for one end-vertex v of e becomes tight
- 5:  $x_v \leftarrow 1$ , claim all edges incident to v are covered
- 6: return x



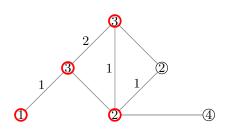
- 1:  $x \leftarrow 0, y \leftarrow 0$ , all edges said to be uncovered
- 2: while there exists at least one uncovered edge do
- 3: take such an edge e arbitrarily
- 4: increasing  $y_e$  until the dual constraint for one end-vertex v of e becomes tight
- 5:  $x_v \leftarrow 1$ , claim all edges incident to v are covered
- 6: return x



- 1:  $x \leftarrow 0, y \leftarrow 0$ , all edges said to be uncovered
- 2: while there exists at least one uncovered edge do
- 3: take such an edge e arbitrarily
- 4: increasing  $y_e$  until the dual constraint for one end-vertex v of e becomes tight
- 5:  $x_v \leftarrow 1$ , claim all edges incident to v are covered
- 6: return x



- 1:  $x \leftarrow 0, y \leftarrow 0$ , all edges said to be uncovered
- 2: while there exists at least one uncovered edge do
- 3: take such an edge e arbitrarily
- 4: increasing  $y_e$  until the dual constraint for one end-vertex v of e becomes tight
- 5:  $x_v \leftarrow 1$ , claim all edges incident to v are covered
- 6: return x



#### Lemma

- x satisfies all primal constraints
- $oldsymbol{2}$  y satisfies all dual constraints
- $P \le 2D \le 2D^* \le 2 \cdot \mathsf{opt}$ 
  - $P := \sum_{v \in V} x_v$ : value of x
  - $D := \sum_{e \in E} y_e$ : value of y
  - $D^*$ : dual LP value

#### Proof of $P \leq 2D$ .

$$P = \sum_{v \in V} w_v x_v \le \sum_{v \in V} x_v \sum_{e \in \delta(v)} y_e = \sum_{(u,v) \in E} y_{(u,v)} (x_u + x_v)$$
  
$$\le 2 \sum_{e \in E} y_e = 2D.$$

#### Proof of $P \leq 2D$ .

$$P = \sum_{v \in V} w_v x_v \le \sum_{v \in V} x_v \sum_{e \in \delta(v)} y_e = \sum_{(u,v) \in E} y_{(u,v)} (x_u + x_v)$$
  
$$\le 2 \sum_{e \in E} y_e = 2D.$$

- ullet a more general framework: construct an arbitrary maximal dual solution y; choose the vertices whose dual constraints are tight
- ullet y is maximal: increasing any coordinate  $y_e$  makes y infeasible

#### Proof of $P \leq 2D$ .

$$P = \sum_{v \in V} w_v x_v \le \sum_{v \in V} x_v \sum_{e \in \delta(v)} y_e = \sum_{(u,v) \in E} y_{(u,v)} (x_u + x_v)$$
  
$$\le 2 \sum_{e \in E} y_e = 2D.$$

- ullet a more general framework: construct an arbitrary maximal dual solution y; choose the vertices whose dual constraints are tight
- y is maximal: increasing any coordinate  $y_e$  makes y infeasible
- primal-dual algorithms do not need to solve LPs
- LPs are used in analysis only
- faster than LP-rounding algorithm in general

#### Outline

2-Approximation Algorithm for Weighted Vertex Cover Using Primal-Dual

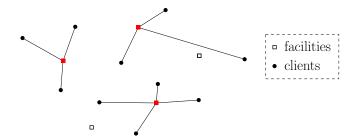
2 3-Approximation Algorithm for Uncapacitated Facility Location Problem Using Primal Dual • facilities
• clients

#### Uncapacitated Facility Location Problem

**Input:** F: pontential facilities C: clients

d: (symmetric) metric over  $F \cup C$   $(f_i)_{i \in F}$ : facility

opening costs



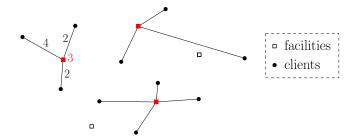
#### Uncapacitated Facility Location Problem

**Input:** F: pontential facilities C: clients

d: (symmetric) metric over  $F \cup C$   $(f_i)_{i \in F}$ : facility

opening costs

**Output:**  $S \subseteq F$ , so as to minimize  $\sum_{i \in S} f_i + \sum_{j \in C} d(j, S)$ 



#### Uncapacitated Facility Location Problem

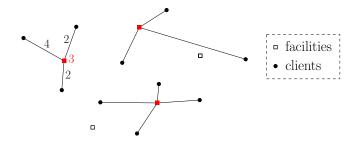
**Input:** F: pontential facilities C: clients

d: (symmetric) metric over  $F \cup C$   $(f_i)_{i \in F}$ : facility

opening costs

**Output:**  $S \subseteq F$ , so as to minimize  $\sum_{i \in S} f_i + \sum_{j \in C} d(j, S)$ 

• 1.488-approximation [Li, 2011]



#### Uncapacitated Facility Location Problem

**Input:** F: pontential facilities C: clients

d: (symmetric) metric over  $F \cup C$   $(f_i)_{i \in F}$ : facility

opening costs

**Output:**  $S \subseteq F$ , so as to minimize  $\sum_{i \in S} f_i + \sum_{j \in C} d(j, S)$ 

- 1.488-approximation [Li, 2011]
- 1.463-hardness of approximation, 1.463  $\approx$  root of  $x=1+2e^{-x}$

- $y_i$ : open facility i?
- $x_{i,j}$ : connect client j to facility i?

$$\min \sum_{i \in F} f_i y_i + \sum_{i \in F, j \in C} d(i, j) x_{i,j}$$

$$\sum_{i \in F} x_{i,j} \ge 1 \qquad \forall j \in C$$

$$x_{i,j} \le y_i \qquad \forall i \in F, j \in C$$

$$x_{i,j} \ge 0 \qquad \forall i \in F, j \in C$$

$$y_i \ge 0 \qquad \forall i \in F$$

- $y_i$ : open facility i?
- $x_{i,j}$ : connect client j to facility i?

$$\min \sum_{i \in F} f_i y_i + \sum_{i \in F, j \in C} d(i, j) x_{i,j}$$

$$\sum_{i \in F} x_{i,j} \ge 1 \qquad \forall j \in C$$

$$x_{i,j} \le y_i \qquad \forall i \in F, j \in C$$

$$x_{i,j} \ge 0 \qquad \forall i \in F, j \in C$$

$$y_i \ge 0 \qquad \forall i \in F$$

**Obs.** When  $(y_i)_{i\in F}$  is determined,  $(x_{i,j})_{i\in F, j\in C}$  can be determined automatically.

- $y_i$ : open facility i?
- $x_{i,j}$ : connect client j to facility i?

$$\min \sum_{i \in F} f_i y_i + \sum_{i \in F, j \in C} d(i, j) x_{i,j}$$

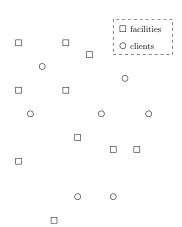
$$\sum_{i \in F} x_{i,j} \ge 1 \qquad \forall j \in C$$

$$x_{i,j} \le y_i \qquad \forall i \in F, j \in C$$

$$x_{i,j} \ge 0 \qquad \forall i \in F, j \in C$$

$$y_i \ge 0 \qquad \forall i \in F$$

**Obs.** When  $(y_i)_{i \in F}$  is determined,  $(x_{i,j})_{i \in F, j \in C}$  can be determined automatically.



- $y_i$ : open facility i?
- $x_{i,j}$ : connect client j to facility i?

$$\min \sum_{i \in F} f_i y_i + \sum_{i \in F, j \in C} d(i, j) x_{i,j}$$

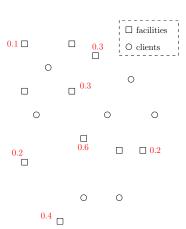
$$\sum_{i \in F} x_{i,j} \ge 1 \qquad \forall j \in C$$

$$x_{i,j} \le y_i \qquad \forall i \in F, j \in C$$

$$x_{i,j} \ge 0 \qquad \forall i \in F, j \in C$$

$$y_i \ge 0 \qquad \forall i \in F$$

**Obs.** When  $(y_i)_{i \in F}$  is determined,  $(x_{i,j})_{i \in F, j \in C}$  can be determined automatically.



- $y_i$ : open facility i?
- $x_{i,j}$ : connect client j to facility i?

$$\min \sum_{i \in F} f_i y_i + \sum_{i \in F, j \in C} d(i, j) x_{i,j}$$

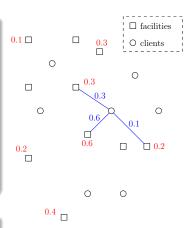
$$\sum_{i \in F} x_{i,j} \ge 1 \qquad \forall j \in C$$

$$x_{i,j} \le y_i \qquad \forall i \in F, j \in C$$

$$x_{i,j} \ge 0 \qquad \forall i \in F, j \in C$$

$$y_i \ge 0 \qquad \forall i \in F$$

**Obs.** When  $(y_i)_{i \in F}$  is determined,  $(x_{i,j})_{i \in F, j \in C}$  can be determined automatically.



$$\min \sum_{i \in F} f_i y_i + \sum_{i \in F, j \in C} d(i, j) x_{i,j}$$

$$\sum_{i \in F} x_{i,j} \ge 1 \qquad \forall j \in C$$

$$x_{i,j} \le y_i \qquad \forall i \in F, j \in C$$

$$x_{i,j} \ge 0 \qquad \forall i \in F, j \in C$$

$$y_i \ge 0 \qquad \forall i \in F$$

- LP is not of covering type
- harder to understand the dual

$$\min \sum_{i \in F} f_i y_i + \sum_{i \in F, j \in C} d(i, j) x_{i,j}$$

$$\sum_{i \in F} x_{i,j} \ge 1 \qquad \forall j \in C$$

$$x_{i,j} \le y_i \qquad \forall i \in F, j \in C$$

$$x_{i,j} \ge 0 \qquad \forall i \in F, j \in C$$

$$y_i \ge 0 \qquad \forall i \in F$$

- LP is not of covering type
- harder to understand the dual
- consider an equivalent covering LP
- idea: treat a solution as a set of stars

$$\min \sum_{i \in F} f_i y_i + \sum_{i \in F, j \in C} d(i, j) x_{i,j}$$

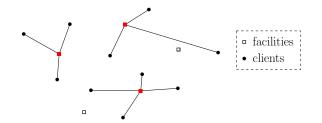
$$\sum_{i \in F} x_{i,j} \ge 1 \qquad \forall j \in C$$

$$x_{i,j} \le y_i \qquad \forall i \in F, j \in C$$

$$x_{i,j} \ge 0 \qquad \forall i \in F, j \in C$$

$$y_i \ge 0 \qquad \forall i \in F$$

- LP is not of covering type
- harder to understand the dual
- consider an equivalent covering LP
- idea: treat a solution as a set of stars



•  $(i, J), i \in F, J \subseteq C$ : star with center i and leaves J

- $(i, J), i \in F, J \subseteq C$ : star with center i and leaves J
- $cost(i, J) := f_i + \sum_{i \in J} d(i, j)$ : cost of star(i, J)

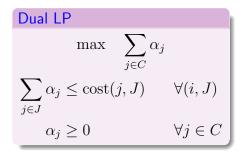
- $(i, J), i \in F, J \subseteq C$ : star with center i and leaves J
- $cost(i, J) := f_i + \sum_{i \in J} d(i, j)$ : cost of star(i, J)
- $x_{i,J} \in \{0,1\}$ : if star (i,J) is chosen

- $(i, J), i \in F, J \subseteq C$ : star with center i and leaves J
- $cost(i, J) := f_i + \sum_{i \in J} d(i, j)$ : cost of star(i, J)
- $x_{i,J} \in \{0,1\}$ : if star (i,J) is chosen

Equivalent LP 
$$\min \sum_{(i,J)} \operatorname{cost}(i,J) \cdot x_{i,J}$$
 
$$\sum_{(i,J): j \in J} x_{i,J} \ge 1 \quad \forall j \in C$$
 
$$x_{i,J} \ge 0 \quad \forall (i,J)$$

- $(i, J), i \in F, J \subseteq C$ : star with center i and leaves J
- $cost(i, J) := f_i + \sum_{i \in J} d(i, j)$ : cost of star(i, J)
- $x_{i,J} \in \{0,1\}$ : if star (i,J) is chosen

# Equivalent LP $\min \sum_{(i,J)} \operatorname{cost}(i,J) \cdot x_{i,J}$ $\sum_{(i,J): j \in J} x_{i,J} \ge 1 \quad \forall j \in C$ $x_{i,J} \ge 0 \quad \forall (i,J)$



- $(i, J), i \in F, J \subseteq C$ : star with center i and leaves J
- $cost(i, J) := f_i + \sum_{i \in J} d(i, j)$ : cost of star(i, J)
- $x_{i,J} \in \{0,1\}$ : if star (i,J) is chosen

# Equivalent LP $\min \sum_{(i,J)} \operatorname{cost}(i,J) \cdot x_{i,J}$ $\sum_{(i,J): j \in J} x_{i,J} \ge 1 \quad \forall j \in C$ $x_{i,J} \ge 0 \quad \forall (i,J)$

Dual LP
$$\max \sum_{j \in C} \alpha_j$$

$$\sum_{j \in J} \alpha_j \le \cot(j, J) \quad \forall (i, J)$$

$$\alpha_j \ge 0 \quad \forall j \in C$$

 both LPs have exponential size, but the final algorithm can run in polynomial time

$$\min \sum_{(i,J)} \cot(i,J) \cdot x_{i,J}$$

$$\sum_{(i,J):j \in J} x_{i,J} \ge 1 \quad \forall j \in C$$

$$x_{i,J} \ge 0 \quad \forall (i,J)$$

$$\max \sum_{j \in C} \alpha_j$$

$$\sum_{j \in J} \alpha_j \le \text{cost}(j, J) \qquad \forall (i, J)$$

$$\alpha_j \ge 0 \qquad \forall j \in C$$

•  $\alpha_j$ : budget of j

$$\min \sum_{(i,J)} \operatorname{cost}(i,J) \cdot x_{i,J}$$

$$\sum_{(i,J):j \in J} x_{i,J} \ge 1 \qquad \forall j \in C$$

$$x_{i,J} \ge 0 \qquad \forall (i,J)$$

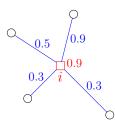
$$\max \sum_{j \in C} \alpha_j$$

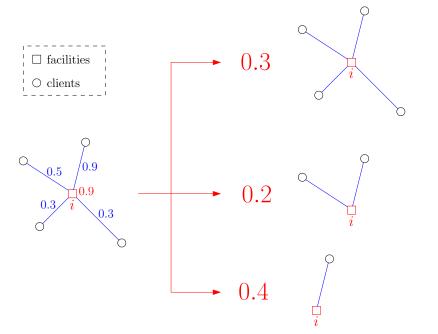
$$\sum_{j \in J} \alpha_j \le \text{cost}(j, J) \qquad \forall (i, J)$$

$$\alpha_j \ge 0 \qquad \forall j \in C$$

- $\alpha_j$ : budget of j
- ullet dual constraints: total budget in any star is  $\leq$  its cost
- $\bullet \implies \mathsf{opt} \ge \mathsf{total} \; \mathsf{budget} = \mathsf{dual} \; \mathsf{value}$







- $\alpha_j$ 's can only increase
- ullet  $\alpha$  is always feasible

- $\bullet$   $\alpha_j$ 's can only increase
- ullet  $\alpha$  is always feasible
- if a dual constraint becomes tight, freeze all clients in star
- unfrozen clients are called active clients

- $\alpha_i$ 's can only increase
- ullet  $\alpha$  is always feasible
- if a dual constraint becomes tight, freeze all clients in star
- unfrozen clients are called active clients

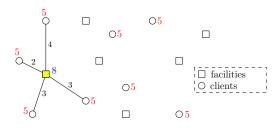
- 1:  $\alpha_i \leftarrow 0, \forall j \in C$
- 2: while exists at least one active client do
- increase the budgets  $\alpha_j$  for all active clients j at uniform rate, until (at least) one new client is frozen

- $\alpha_i$ 's can only increase
- ullet  $\alpha$  is always feasible
- if a dual constraint becomes tight, freeze all clients in star
- unfrozen clients are called active clients



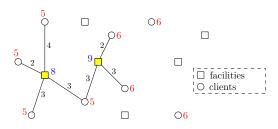
- 1:  $\alpha_i \leftarrow 0, \forall j \in C$
- 2: while exists at least one active client do
- increase the budgets  $\alpha_j$  for all active clients j at uniform rate, until (at least) one new client is frozen

- $\alpha_i$ 's can only increase
- ullet  $\alpha$  is always feasible
- if a dual constraint becomes tight, freeze all clients in star
- unfrozen clients are called active clients



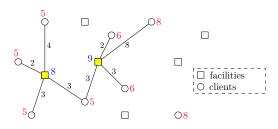
- 1:  $\alpha_i \leftarrow 0, \forall j \in C$
- 2: while exists at least one active client do
- increase the budgets  $\alpha_j$  for all active clients j at uniform rate, until (at least) one new client is frozen

- $\alpha_i$ 's can only increase
- ullet  $\alpha$  is always feasible
- if a dual constraint becomes tight, freeze all clients in star
- unfrozen clients are called active clients



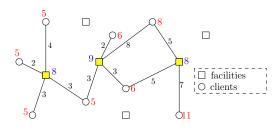
- 1:  $\alpha_i \leftarrow 0, \forall j \in C$
- 2: while exists at least one active client do
- increase the budgets  $\alpha_j$  for all active clients j at uniform rate, until (at least) one new client is frozen

- $\alpha_i$ 's can only increase
- ullet  $\alpha$  is always feasible
- if a dual constraint becomes tight, freeze all clients in star
- unfrozen clients are called active clients



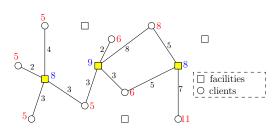
- 1:  $\alpha_i \leftarrow 0, \forall j \in C$
- 2: while exists at least one active client do
- increase the budgets  $\alpha_j$  for all active clients j at uniform rate, until (at least) one new client is frozen

- $\alpha_i$ 's can only increase
- ullet  $\alpha$  is always feasible
- if a dual constraint becomes tight, freeze all clients in star
- unfrozen clients are called active clients

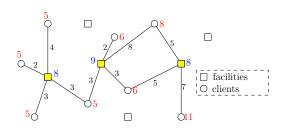


- 1:  $\alpha_i \leftarrow 0, \forall j \in C$
- 2: while exists at least one active client do
- increase the budgets  $\alpha_j$  for all active clients j at uniform rate, until (at least) one new client is frozen

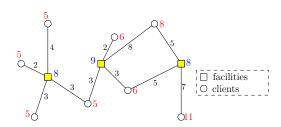
• : tight facilities; they are temporarily open



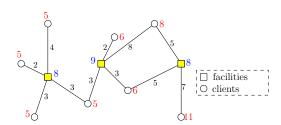
- : tight facilities; they are temporarily open
- ullet : pemanently closed



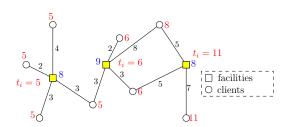
- : tight facilities; they are temporarily open
- ullet : pemanently closed



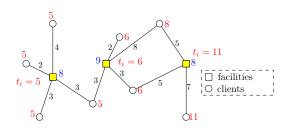
- : tight facilities; they are temporarily open
- ullet : pemanently closed
- $t_i$ : time when facility i becomes tight



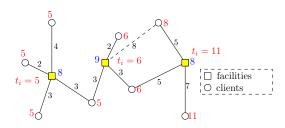
- : tight facilities; they are temporarily open
- □: pemanently closed
- $t_i$ : time when facility i becomes tight



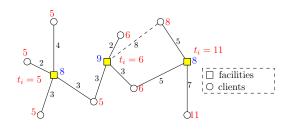
- : tight facilities; they are temporarily open
- □: pemanently closed
- $t_i$ : time when facility i becomes tight
- construct a bipartite graph: (i, j) exists  $\iff \alpha_j > d(i, j)$ ,



- : tight facilities; they are temporarily open
- □: pemanently closed
- $t_i$ : time when facility i becomes tight
- construct a bipartite graph: (i, j) exists  $\iff \alpha_j > d(i, j)$ ,



- : tight facilities; they are temporarily open
- $\bullet$   $\square$ : pemanently closed
- t<sub>i</sub>: time when facility i becomes tight
- construct a bipartite graph: (i, j) exists  $\iff \alpha_j > d(i, j)$ ,



 $\alpha_i > d(i,j)$ : j contributes to i, (solid lines)

 $\alpha_j = d(i, j)$ : j does not contribute to i, but its budget is just enough for it to connect to i (dashed lines)

 $\alpha_i < d(i,j)$ : budget of j is not enough to connect to i

## Construction of Integral Primal Solution

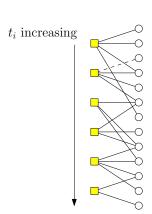
1:  $S \leftarrow \emptyset$ , all clients are unowned

- 1:  $S \leftarrow \emptyset$ , all clients are unowned
- 2: **for** every temporarily open facility i, in increasing order of  $t_i$  **do**

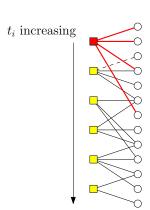
- 1:  $S \leftarrow \emptyset$ , all clients are unowned
- 2: **for** every temporarily open facility i, in increasing order of  $t_i$  **do**
- 3: **if** all (solid-line) neighbors of *i* are unowned **then**
- 4:  $S \leftarrow S \cup \{i\}$ , open facility i
- 5: connect to all its neighbors to i
- 6: let i own them

- 1:  $S \leftarrow \emptyset$ , all clients are unowned
- 2: **for** every temporarily open facility i, in increasing order of  $t_i$  **do**
- 3: **if** all (solid-line) neighbors of *i* are unowned **then**
- 4:  $S \leftarrow S \cup \{i\}$ , open facility i
- 5: connect to all its neighbors to i
- 6: let i own them
- 7: connect unconnected clients to their nearest facilities in S

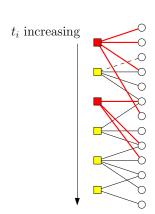
- 1:  $S \leftarrow \emptyset$ , all clients are unowned
- 2: **for** every temporarily open facility i, in increasing order of  $t_i$  **do**
- 3: **if** all (solid-line) neighbors of *i* are unowned **then**
- 4:  $S \leftarrow S \cup \{i\}$ , open facility i
- 5: connect to all its neighbors to i
- 6: let i own them
- 7: connect unconnected clients to their nearest facilities in S



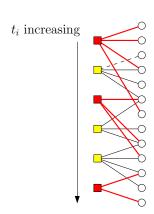
- 1:  $S \leftarrow \emptyset$ , all clients are unowned
- 2: **for** every temporarily open facility i, in increasing order of  $t_i$  **do**
- 3: **if** all (solid-line) neighbors of *i* are unowned **then**
- 4:  $S \leftarrow S \cup \{i\}$ , open facility i
- 5: connect to all its neighbors to i
- 6: let i own them
- 7: connect unconnected clients to their nearest facilities in S



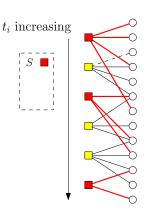
- 1:  $S \leftarrow \emptyset$ , all clients are unowned
- 2: **for** every temporarily open facility i, in increasing order of  $t_i$  **do**
- 3: **if** all (solid-line) neighbors of *i* are unowned **then**
- 4:  $S \leftarrow S \cup \{i\}$ , open facility i
- 5: connect to all its neighbors to i
- 6: let i own them
- 7: connect unconnected clients to their nearest facilities in S



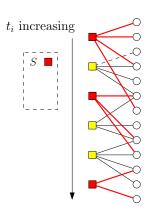
- 1:  $S \leftarrow \emptyset$ , all clients are unowned
- 2: **for** every temporarily open facility i, in increasing order of  $t_i$  **do**
- 3: **if** all (solid-line) neighbors of *i* are unowned **then**
- 4:  $S \leftarrow S \cup \{i\}$ , open facility i
- 5: connect to all its neighbors to i
- 6: let i own them
- 7: connect unconnected clients to their nearest facilities in S



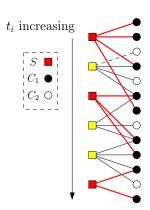
- 1:  $S \leftarrow \emptyset$ , all clients are unowned
- 2: **for** every temporarily open facility i, in increasing order of  $t_i$  **do**
- 3: **if** all (solid-line) neighbors of *i* are unowned **then**
- 4:  $S \leftarrow S \cup \{i\}$ , open facility i
- 5: connect to all its neighbors to i
- 6: let i own them
- 7: connect unconnected clients to their nearest facilities in S



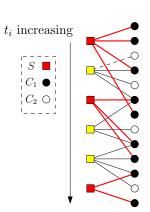
- S: set of open facilities
- $\bullet$   $C_1$ : clients that make contributions
- $C_2$ : clients that do not make contributions



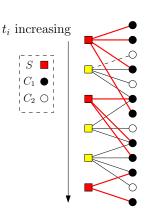
- S: set of open facilities
- $\bullet$   $C_1$ : clients that make contributions
- $C_2$ : clients that do not make contributions



- S: set of open facilities
- $C_1$ : clients that make contributions
- C<sub>2</sub>: clients that do not make contributions
- *f*: total facillity cost
- $c_i$ : connection cost of client j
- $c = \sum_{i \in C} c_i$ : total connection cost

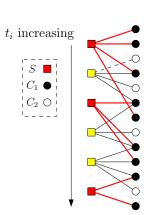


- S: set of open facilities
- $C_1$ : clients that make contributions
- $C_2$ : clients that do not make contributions
- *f*: total facillity cost
- $c_i$ : connection cost of client j
- $c = \sum_{j \in C} c_j$ : total connection cost
- $D = \sum_{i \in C} \alpha_i$ : value of  $\alpha$



- S: set of open facilities
- $C_1$ : clients that make contributions
- C<sub>2</sub>: clients that do not make contributions
- *f*: total facillity cost
- $c_i$ : connection cost of client j
- $c = \sum_{i \in C} c_i$ : total connection cost
- $D = \sum_{i \in C} \alpha_i$ : value of  $\alpha$

- $f + \sum_{j \in C_1} c_j \le \sum_{j \in C_1} \alpha_j$
- for any client  $j \in C_2$ , we have  $c_j \leq 3\alpha_j$



- $f + \sum_{j \in C_1} c_j \le \sum_{j \in C_1} \alpha_j$
- for any client  $j \in C_2$ , we have  $c_j \leq 3\alpha_j$

- $\bullet f + \sum_{j \in C_1} c_j \le \sum_{j \in C_1} \alpha_j$
- for any client  $j \in C_2$ , we have  $c_i \leq 3\alpha_i$

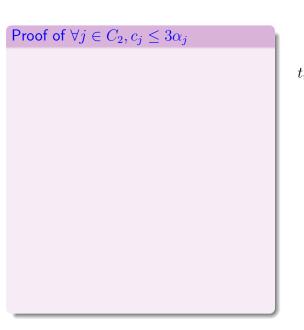
• So, 
$$f + c = f + \sum_{j \in C} c_j \le 3 \sum_{j \in C} \alpha_j = 3D \le 3 \cdot \text{opt.}$$

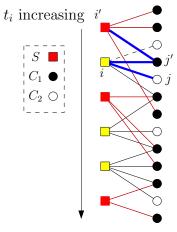
- $\bullet f + \sum_{j \in C_1} c_j \le \sum_{j \in C_1} \alpha_j$
- for any client  $j \in C_2$ , we have  $c_i \leq 3\alpha_i$

• So, 
$$f + c = f + \sum_{j \in C} c_j \le 3 \sum_{j \in C} \alpha_j = 3D \le 3 \cdot \text{opt.}$$

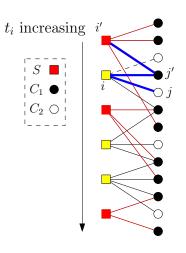
• stronger statement:

$$3f + c = 3f + \sum_{j \in C} c_j \le 3\sum_{j \in C} \alpha_j = 3D \le 3 \cdot \text{opt.}$$

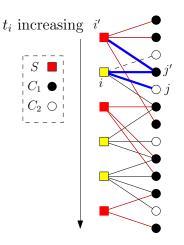




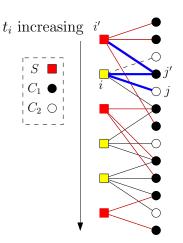
ullet at time  $\alpha_j$ , j is frozen.



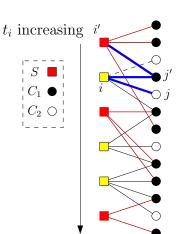
- at time  $\alpha_j$ , j is frozen.
- let *i* be the temporarily open facility it connects to



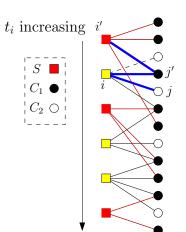
- at time  $\alpha_j$ , j is frozen.
- let *i* be the temporarily open facility it connects to
- $i \in S$ : then  $c_i \leq \alpha_i$ . assume  $i \notin S$ .



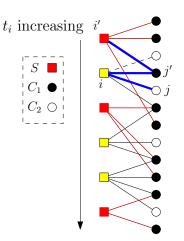
- at time  $\alpha_j$ , j is frozen.
- let *i* be the temporarily open facility it connects to
- $i \in S$ : then  $c_j \leq \alpha_j$ . assume  $i \notin S$ .
- there exists a client j', which made contribution to i, and owned by another facility  $i' \in S$



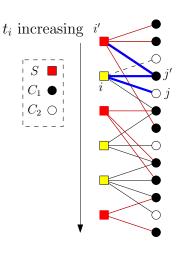
- at time  $\alpha_j$ , j is frozen.
- let *i* be the temporarily open facility it connects to
- $i \in S$ : then  $c_j \leq \alpha_j$ . assume  $i \notin S$ .
- there exists a client j', which made contribution to i, and owned by another facility  $i' \in S$
- $d(j,i) \leq \alpha_j$



- at time  $\alpha_j$ , j is frozen.
- let *i* be the temporarily open facility it connects to
- $i \in S$ : then  $c_j \leq \alpha_j$ . assume  $i \notin S$ .
- there exists a client j', which made contribution to i, and owned by another facility  $i' \in S$
- $d(j,i) \leq \alpha_j$
- $d(j',i) < \alpha_{j'}, d(j',i') < \alpha_{j'}$



- at time  $\alpha_j$ , j is frozen.
- let *i* be the temporarily open facility it connects to
- $i \in S$ : then  $c_j \leq \alpha_j$ . assume  $i \notin S$ .
- there exists a client j', which made contribution to i, and owned by another facility  $i' \in S$
- $d(j,i) \leq \alpha_j$
- $d(j',i) < \alpha_{j'}, d(j',i') < \alpha_{j'}$
- $\bullet \ \alpha_{j'} = t'_i \le t_i \le \alpha_j$



- at time  $\alpha_j$ , j is frozen.
- let *i* be the temporarily open facility it connects to
- $i \in S$ : then  $c_j \leq \alpha_j$ . assume  $i \notin S$ .
- there exists a client j', which made contribution to i, and owned by another facility  $i' \in S$
- $d(j,i) \leq \alpha_j$
- $d(j',i) < \alpha_{j'}, d(j',i') < \alpha_{j'}$
- $\alpha_{j'} = t'_i \le t_i \le \alpha_j$
- $d(j,i') \le d(j,i) + d(i,j') + d(j',i') \le \alpha_i + \alpha_i + \alpha_i = 3\alpha_i$

