Advanced Algorithms (Fall 2025) Semi-Definite Programming

Lecturers: 尹一通,刘景铖,<mark>栗师</mark> Nanjing University

Outline

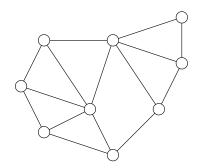
- Max-Cut Problem
- Semi-Definite Programming
- 3 0.878-Approximation for Max-Cut Using SDP
- 4 Duality for Semi-Definite Programming
- 5 Ellipsoid Method runs In Polynomial Time

Input: G = (V, E),

Output: a partition $(S \subseteq V, T := V \setminus S)$ of V so as to

maximize |E(S,T)|,

where $E(S,T) = \{uv \in E : |\{u,v\} \cap S| = 1\}$

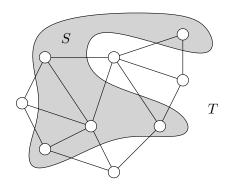


Input: G = (V, E),

Output: a partition $(S \subseteq V, T := V \setminus S)$ of V so as to

maximize |E(S,T)|,

where $E(S,T) = \{uv \in E : |\{u,v\} \cap S| = 1\}$

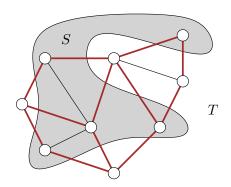


Input: G = (V, E),

Output: a partition $(S \subseteq V, T := V \setminus S)$ of V so as to

maximize |E(S,T)|,

where $E(S,T) = \{uv \in E : |\{u,v\} \cap S| = 1\}$

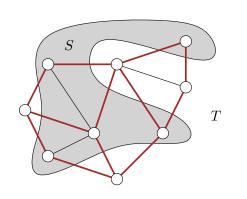


Input: G = (V, E),

Output: a partition $(S \subseteq V, T := V \setminus S)$ of V so as to

maximize |E(S,T)|,

where $E(S,T) = \{uv \in E : |\{u,v\} \cap S| = 1\}$



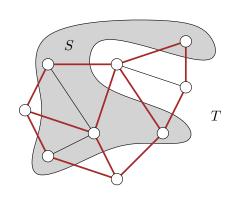
 Min-Uncut: remove minimum number of edges to make graph bipartite

Input: G = (V, E),

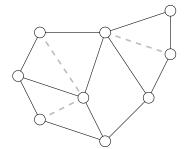
Output: a partition $(S \subseteq V, T := V \setminus S)$ of V so as to

maximize |E(S,T)|,

where $E(S,T) = \{uv \in E : |\{u,v\} \cap S| = 1\}$



 Min-Uncut: remove minimum number of edges to make graph bipartite



- Max-Cut = Min-Uncut for exact algorithms, but not the same for approximation algorithms
- Recap: 1/2-approximation algorithms for Max-Cut:

Randomized Algorithm

- 1: $S \leftarrow \emptyset$
- 2: for every $u \in V$ do
- 3: with probability 1/2, add u to S
- 4: return $(S, V \setminus S)$

- Max-Cut = Min-Uncut for exact algorithms, but not the same for approximation algorithms
- Recap: 1/2-approximation algorithms for Max-Cut:

Randomized Algorithm

- 1: $S \leftarrow \emptyset$
- 2: for every $u \in V$ do
- 3: with probability 1/2, add u to S
- 4: **return** $(S, V \setminus S)$

Greedy Algorithms

- 1: $S \leftarrow \emptyset, T \leftarrow \emptyset$
- 2: for every $u \in V$ do
- 3: **if** |E(u,S)| > |E(u,T)| **then**
- 4: $T \leftarrow T \cup \{u\}$
- 5: **else**
- 6: $S \leftarrow S \cup \{u\}$
- 7: **return** (S,T)

- Max-Cut = Min-Uncut for exact algorithms, but not the same for approximation algorithms
- Recap: 1/2-approximation algorithms for Max-Cut:

Randomized Algorithm

- 1: $S \leftarrow \emptyset$
- 2: for every $u \in V$ do
- 3: with probability 1/2, add u to S
- 4: **return** $(S, V \setminus S)$

Greedy Algorithms

- 1: $S \leftarrow \emptyset, T \leftarrow \emptyset$
- 2: for every $u \in V$ do
- 3: **if** |E(u,S)| > |E(u,T)| **then**
- 4: $T \leftarrow T \cup \{u\}$
- 5: **else**
- 6: $S \leftarrow S \cup \{u\}$
- 7: return (S,T)
- Local Search: while we can improve the solution by switching the side of one vertex, perform the operation, stop if no swapping can improve the solution

First Attempt

- $y_v, v \in V$: if $v \in S$
- $x_{uv}, uv \in E$: if uv is cut

$$\max \qquad \sum_{uv \in E} x_{uv}$$

$$x_{uv} \le |y_u - y_v| \qquad \forall uv \in E$$

 $y_v \in [0, 1] \qquad \forall v \in V$

First Attempt

- $y_v, v \in V$: if $v \in S$
- $x_{uv}, uv \in E$: if uv is cut

$$\max \qquad \sum_{uv \in E} x_{uv}$$

$$x_{uv} \le |y_u - y_v|$$
 $\forall uv \in E$
 $y_v \in [0, 1]$ $\forall v \in V$

• $x_{uv} \leq |y_u - y_v|$ is not linear

First Attempt

- $y_v, v \in V$: if $v \in S$
- $x_{uv}, uv \in E$: if uv is cut

$$\max \qquad \sum_{uv \in E} x_{uv}$$

$$x_{uv} \le |y_u - y_v| \qquad \forall uv \in E$$

 $y_v \in [0, 1] \qquad \forall v \in V$

- $x_{uv} \leq |y_u y_v|$ is not linear
- feasible region is not convex:

y_u	y_v	x_{uv}	Y/N
1	0	0.5	Y
0	1	0.5	Y
0.5	0.5	0.5	N

First Attempt

- $y_v, v \in V$: if $v \in S$
- $x_{uv}, uv \in E$: if uv is cut

$$\max \sum_{uv \in E} x_{uv}$$

$$x_{uv} \le |y_u - y_v|$$
 $\forall uv \in E$
 $y_v \in [0, 1]$ $\forall v \in V$

- $x_{uv} \leq |y_u y_v|$ is not linear
- feasible region is not convex:

Y/N	x_{uv}	y_v	y_u
Y	0.5	0	1
Y	0.5	1	0
N	0.5	0.5	0.5

• $x_{uv} \ge |y_u - y_v|$ can be replaced by $x_{uv} \ge y_u - y_v$ and $x_{uv} \ge y_v - y_u$

Second Attempt

• $x_{uv}, uv \in \binom{V}{2}$: whether uv is cut

$$\min \quad \sum_{u,v \in V, u < v} x_{uv}$$

$$x_{uv} + x_{vw} + x_{uw} \le 2$$
 $\forall u, v, w \in V$
 $x_{uv} \in [0, 1]$ $\forall u, v \in V$

Second Attempt

• $x_{uv}, uv \in \binom{V}{2}$: whether uv is cut

$$x_{uv} + x_{vw} + x_{uw} \le 2 \qquad \forall u, v, w \in V$$
$$x_{uv} \in [0, 1] \qquad \forall u, v \in V$$

• The integrality gap of the LP is $2-\epsilon$: there is an instance, where opt $\approx |E|/2$ and Ip $\approx |E|$

 $\min \sum$

Quadratic Program

•
$$y_v = \begin{cases} 1 & \text{if } v \in S \\ -1 & \text{if } v \notin S \end{cases}$$

$$\max \frac{1}{2} \sum_{uv \in E} (1 - y_u y_v)$$

$$y_v \in \{\pm 1\} \quad \forall v \in V$$

Quadratic Program

Semi-Definite Program

•
$$y_v \in \mathbb{R}^n, \forall v \in V$$

$$\max \frac{1}{2} \sum_{uv \in E} (1 - \langle y_u, y_v \rangle)$$

$$|y_v| = 1 \quad \forall v \in V$$

$$ullet$$
 $\langle y_u,y_v
angle = y_u^{\mathrm{T}}y_v = \sum_{i=1}^n y_{u,i}\cdot y_{v,i}$: inner product of y_u and y_v

Quadratic Program

Semi-Definite Program

•
$$y_v \in \mathbb{R}^n, \forall v \in V$$

$$\max \frac{1}{2} \sum_{uv \in E} (1 - \langle y_u, y_v \rangle)$$

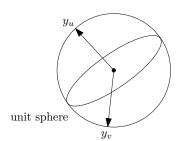
$$|y_v| = 1 \quad \forall v \in V$$

- ullet $\langle y_u,y_v
 angle = y_u^{
 m T}y_v = \sum_{i=1}^n y_{u,i}\cdot y_{v,i}$: inner product of y_u and y_v
- ullet requiring $y_v \in \mathbb{R}^n$ is the same as requiring $y_v \in \mathbb{R}^{n'}$ for any n' > n

max

$$\frac{1}{2} \sum_{uv \in E} (1 - \langle y_u, y_v \rangle)$$

$$|y_v| = 1 \quad \forall v \in V$$



$$\max \qquad \frac{1}{2} \sum_{uv \in E} (1 - \langle y_u, y_v \rangle)$$

$$|y_v| = 1 \quad \forall v \in V$$

$$\max \frac{1}{2} \sum_{uv \in E} (1 - \langle y_u, y_v \rangle)$$
$$|y_v| = 1 \quad \forall v \in V$$

SDP is a relaxation:

$$y_v = \begin{cases} (1, 0, 0, 0, \dots, 0) & \text{if } v \in S \\ (-1, 0, 0, 0, \dots, 0) & \text{if } v \in T \end{cases}$$

ullet sdp: the value of the SDP, $\operatorname{sdp} \geq \operatorname{opt}$

$$\max \frac{1}{2} \sum_{uv \in E} (1 - \langle y_u, y_v \rangle)$$
$$|y_v| = 1 \quad \forall v \in V$$

SDP is a relaxation:

$$y_v = \begin{cases} (1, 0, 0, 0, \dots, 0) & \text{if } v \in S \\ (-1, 0, 0, 0, \dots, 0) & \text{if } v \in T \end{cases}$$

ullet sdp: the value of the SDP, $\operatorname{sdp} \geq \operatorname{opt}$

Q: Can we solve the SDP?

$$\max \frac{1}{2} \sum_{uv \in E} (1 - \langle y_u, y_v \rangle)$$
$$|y_v| = 1 \quad \forall v \in V$$

SDP is a relaxation:

$$y_v = \begin{cases} (1, 0, 0, 0, \dots, 0) & \text{if } v \in S \\ (-1, 0, 0, 0, \dots, 0) & \text{if } v \in T \end{cases}$$

• sdp: the value of the SDP,

 $sdp \ge opt$

Q: Can we solve the SDP?

A: Yes

Outline

- Max-Cut Problem
- Semi-Definite Programming
- 3 0.878-Approximation for Max-Cut Using SDP
- 4 Duality for Semi-Definite Programming
- 5 Ellipsoid Method runs In Polynomial Time

Def. A symmetric matrix $X \in \mathbb{R}^{n \times n}$ is Positive Semi-Definite (PSD) if $\forall y \in \mathbb{R}^n$, we have $y^{\mathrm{T}}Xy \geq 0$. Use $X \succeq 0$ to denote X is PSD.

• $X \succeq X'$ means $X - X' \succeq 0$.

Def. A symmetric matrix $X \in \mathbb{R}^{n \times n}$ is Positive Semi-Definite (PSD) if $\forall y \in \mathbb{R}^n$, we have $y^T X y \geq 0$. Use $X \succeq 0$ to denote X is PSD.

• $X \succeq X'$ means $X - X' \succeq 0$.

Lemma The following statements are equivalent for a symmetric matrix $X \in \mathbb{R}^{n \times n}$:

- \bullet $X \succeq 0$
- ullet All the n eigenvalues of X are non-negative
- $X = V^{\mathrm{T}}V$ for some $V \in \mathbb{R}^{m \times n}, m \leq n$
- $X = \sum_{u=1}^n \lambda_u w_u w_u^{\mathrm{T}}$ for some reals $\lambda_1, \lambda_2, \cdots, \lambda_n \geq 0$ and orthnormal basis $\{w_u\}_{u \in [n]}$

- matrices of size $n \times n \equiv$ flattened vectors of length n^2 :
 - ullet Use \cdot as multiplication for flattened matrices,
 - \bullet $X \succeq 0$: view X as a matrix.

- matrices of size $n \times n \equiv$ flattened vectors of length n^2 :
 - Use · as multiplication for flattened matrices,
 - $X \succeq 0$: view X as a matrix.
- $A \in \mathbb{R}^{m \times n^2}, b \in \mathbb{R}^m, c \in \mathbb{R}^{n^2}$
- ullet Assume A_k 's and c are symmetric matrices of size $n \times n$

- matrices of size $n \times n \equiv$ flattened vectors of length n^2 :
 - ullet Use \cdot as multiplication for flattened matrices,
 - $X \succeq 0$: view X as a matrix.
- \bullet $A \in \mathbb{R}^{m \times n^2}, b \in \mathbb{R}^m, c \in \mathbb{R}^{n^2}$
- ullet Assume A_k 's and c are symmetric matrices of size $n \times n$

Semi-Definite Program $\min \quad c^{\mathrm{T}} \cdot X$ $A \cdot X \geq b$ $X \succeq 0$

- matrices of size $n \times n \equiv$ flattened vectors of length n^2 :
 - Use · as multiplication for flattened matrices,
 - $X \succeq 0$: view X as a matrix.
- $A \in \mathbb{R}^{m \times n^2}, b \in \mathbb{R}^m, c \in \mathbb{R}^{n^2}$
- ullet Assume A_k 's and c are symmetric matrices of size $n \times n$

u,v

Semi-Definite Program

$$\min \quad c^{\mathrm{T}} \cdot X$$
$$A \cdot X \ge b$$
$$X \succ 0$$

An equivalent formulation

$$\min \sum_{u,v \in [n]} c_{u,v} \cdot \langle y_u, y_v \rangle$$
$$\sum a_{k,u,v} \langle y_u, y_v \rangle \ge b_k \quad \forall k \in [m]$$

$$y_v \in \mathbb{R}^n \quad \forall v \in [n]$$

- matrices of size $n \times n \equiv$ flattened vectors of length n^2 :
 - Use · as multiplication for flattened matrices,
 - $X \succeq 0$: view X as a matrix.
- $A \in \mathbb{R}^{m \times n^2}, b \in \mathbb{R}^m, c \in \mathbb{R}^{n^2}$
- Assume A_k 's and c are symmetric matrices of size $n \times n$

Semi-Definite Program

 $A \cdot X > b$

 $\min c^{\mathrm{T}} \cdot X$

 $X \succ 0$

An equivalent formulation

 $\min \sum c_{u,v} \cdot \langle y_u, y_v \rangle$ $u,v \in [n]$

 $\left\langle \right\rangle \left\langle a_{k,u,v} \left\langle y_u, y_v \right\rangle \geq b_k \quad \forall k \in [m] \right\rangle$

 $y_v \in \mathbb{R}^n \quad \forall v \in [n]$

ullet requiring $y_v \in \mathbb{R}^n$ is the same as requiring $y_v \in \mathbb{R}^{n'}$ for any n' > n

u,v

Semi-Definite Program

 $\min \quad c^{\mathrm{T}} \cdot X$

 $A\cdot X\geq b$

 $X\succeq 0$

Semi-Definite Program

$$\min \quad c^{\mathrm{T}} \cdot X$$

$$A \cdot X \ge b$$

$$X \succeq 0$$

Example

$$\min \quad 5y_1 + 6y_2 + 7y_3
y_1 + 3y_2 + 4y_3 \ge 5
2y_1 + 3y_2 + y_3 \ge 10
3y_1 + 2y_2 + 2y_3 \ge 7
\begin{pmatrix} y_1 & y_2 \\ y_2 & y_3 \end{pmatrix} \succeq 0$$

Semi-Definite Program

$$\min \quad c^{\mathrm{T}} \cdot X$$

$$A \cdot X \ge b$$
$$X \succ 0$$

Example

$$\min \quad 5y_1 + 6y_2 + 7y_3
y_1 + 3y_2 + 4y_3 \ge 5
2y_1 + 3y_2 + y_3 \ge 10
3y_1 + 2y_2 + 2y_3 \ge 7
\begin{pmatrix} y_1 & y_2 \\ y_2 & y_3 \end{pmatrix} \ge 0$$

- $X \succeq 0 \iff X_{u,v} = X_{v,u}, \forall u, v \in [n]; (yy^{\mathrm{T}}) \cdot X \geq 0, \forall y \in \mathbb{R}^n.$
- SDP = LP with infinite number of linear constraints

Seperation Oracle $\mathcal O$

• Given a symmetric $X \in \mathbb{R}^{n \times n}$, we need to either claim $X \succeq 0$, or return a $y \in \mathbb{R}^n$ such that $y^{\mathrm{T}} X y < 0$.

- Given a symmetric $X \in \mathbb{R}^{n \times n}$, we need to either claim $X \succeq 0$, or return a $y \in \mathbb{R}^n$ such that $y^{\mathrm{T}} X y < 0$.
- ullet QR decomposition finds eigenvalues and eigenvectors of X.

- Given a symmetric $X \in \mathbb{R}^{n \times n}$, we need to either claim $X \succeq 0$, or return a $y \in \mathbb{R}^n$ such that $y^{\mathrm{T}} X y < 0$.
- ullet QR decomposition finds eigenvalues and eigenvectors of X.

- Given a symmetric $X \in \mathbb{R}^{n \times n}$, we need to either claim $X \succeq 0$, or return a $y \in \mathbb{R}^n$ such that $y^{\mathrm{T}} X y < 0$.
- ullet QR decomposition finds eigenvalues and eigenvectors of X.

Recall: Ellipsoid Method

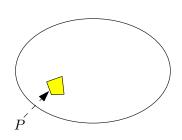
 maintain an ellipsoid that contains the feasible region

- Given a symmetric $X \in \mathbb{R}^{n \times n}$, we need to either claim $X \succeq 0$, or return a $y \in \mathbb{R}^n$ such that $y^T X y < 0$.
- ullet QR decomposition finds eigenvalues and eigenvectors of X.

- maintain an ellipsoid that contains the feasible region
- query \mathcal{O} if the center of ellipsid is in the feasible region:
 - yes: then the feasible region is not empty
 - no: cut the elliposid in half, find smaller ellipsoid to enclose the half-ellipsoid, and repeat

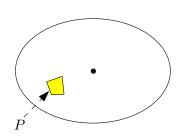
- Given a symmetric $X \in \mathbb{R}^{n \times n}$, we need to either claim $X \succeq 0$, or return a $y \in \mathbb{R}^n$ such that $y^T X y < 0$.
- ullet QR decomposition finds eigenvalues and eigenvectors of X.

- maintain an ellipsoid that contains the feasible region
- query \mathcal{O} if the center of ellipsid is in the feasible region:
 - yes: then the feasible region is not empty
 - no: cut the elliposid in half, find smaller ellipsoid to enclose the half-ellipsoid, and repeat



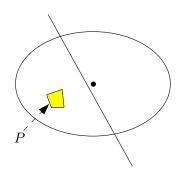
- Given a symmetric $X \in \mathbb{R}^{n \times n}$, we need to either claim $X \succeq 0$, or return a $y \in \mathbb{R}^n$ such that $y^T X y < 0$.
- ullet QR decomposition finds eigenvalues and eigenvectors of X.

- maintain an ellipsoid that contains the feasible region
- query \mathcal{O} if the center of ellipsid is in the feasible region:
 - yes: then the feasible region is not empty
 - no: cut the elliposid in half, find smaller ellipsoid to enclose the half-ellipsoid, and repeat



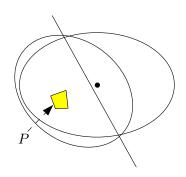
- Given a symmetric $X \in \mathbb{R}^{n \times n}$, we need to either claim $X \succeq 0$, or return a $y \in \mathbb{R}^n$ such that $y^T X y < 0$.
- ullet QR decomposition finds eigenvalues and eigenvectors of X.

- maintain an ellipsoid that contains the feasible region
- query \mathcal{O} if the center of ellipsid is in the feasible region:
 - yes: then the feasible region is not empty
 - no: cut the elliposid in half, find smaller ellipsoid to enclose the half-ellipsoid, and repeat



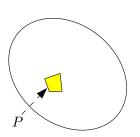
- Given a symmetric $X \in \mathbb{R}^{n \times n}$, we need to either claim $X \succeq 0$, or return a $y \in \mathbb{R}^n$ such that $y^T X y < 0$.
- ullet QR decomposition finds eigenvalues and eigenvectors of X.

- maintain an ellipsoid that contains the feasible region
- query \mathcal{O} if the center of ellipsid is in the feasible region:
 - yes: then the feasible region is not empty
 - no: cut the elliposid in half, find smaller ellipsoid to enclose the half-ellipsoid, and repeat



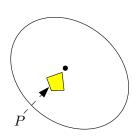
- Given a symmetric $X \in \mathbb{R}^{n \times n}$, we need to either claim $X \succeq 0$, or return a $y \in \mathbb{R}^n$ such that $y^T X y < 0$.
- ullet QR decomposition finds eigenvalues and eigenvectors of X.

- maintain an ellipsoid that contains the feasible region
- query \mathcal{O} if the center of ellipsid is in the feasible region:
 - yes: then the feasible region is not empty
 - no: cut the elliposid in half, find smaller ellipsoid to enclose the half-ellipsoid, and repeat



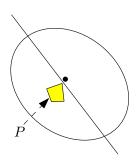
- Given a symmetric $X \in \mathbb{R}^{n \times n}$, we need to either claim $X \succeq 0$, or return a $y \in \mathbb{R}^n$ such that $y^T X y < 0$.
- ullet QR decomposition finds eigenvalues and eigenvectors of X.

- maintain an ellipsoid that contains the feasible region
- query \mathcal{O} if the center of ellipsid is in the feasible region:
 - yes: then the feasible region is not empty
 - no: cut the elliposid in half, find smaller ellipsoid to enclose the half-ellipsoid, and repeat



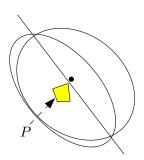
- Given a symmetric $X \in \mathbb{R}^{n \times n}$, we need to either claim $X \succeq 0$, or return a $y \in \mathbb{R}^n$ such that $y^T X y < 0$.
- ullet QR decomposition finds eigenvalues and eigenvectors of X.

- maintain an ellipsoid that contains the feasible region
- query \mathcal{O} if the center of ellipsid is in the feasible region:
 - yes: then the feasible region is not empty
 - no: cut the elliposid in half, find smaller ellipsoid to enclose the half-ellipsoid, and repeat



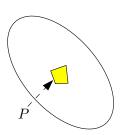
- Given a symmetric $X \in \mathbb{R}^{n \times n}$, we need to either claim $X \succeq 0$, or return a $y \in \mathbb{R}^n$ such that $y^T X y < 0$.
- ullet QR decomposition finds eigenvalues and eigenvectors of X.

- maintain an ellipsoid that contains the feasible region
- query \mathcal{O} if the center of ellipsid is in the feasible region:
 - yes: then the feasible region is not empty
 - no: cut the elliposid in half, find smaller ellipsoid to enclose the half-ellipsoid, and repeat



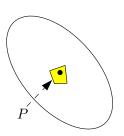
- Given a symmetric $X \in \mathbb{R}^{n \times n}$, we need to either claim $X \succeq 0$, or return a $y \in \mathbb{R}^n$ such that $y^T X y < 0$.
- ullet QR decomposition finds eigenvalues and eigenvectors of X.

- maintain an ellipsoid that contains the feasible region
- query \mathcal{O} if the center of ellipsid is in the feasible region:
 - yes: then the feasible region is not empty
 - no: cut the elliposid in half, find smaller ellipsoid to enclose the half-ellipsoid, and repeat



- Given a symmetric $X \in \mathbb{R}^{n \times n}$, we need to either claim $X \succeq 0$, or return a $y \in \mathbb{R}^n$ such that $y^T X y < 0$.
- ullet QR decomposition finds eigenvalues and eigenvectors of X.

- maintain an ellipsoid that contains the feasible region
- query \mathcal{O} if the center of ellipsid is in the feasible region:
 - yes: then the feasible region is not empty
 - no: cut the elliposid in half, find smaller ellipsoid to enclose the half-ellipsoid, and repeat



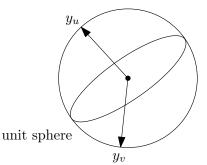
Outline

- Max-Cut Problem
- Semi-Definite Programming
- $\bigcirc 0.878 ext{-Approximation for Max-Cut Using SDP}$
- 4 Duality for Semi-Definite Programming
- 5 Ellipsoid Method runs In Polynomial Time

SDP for Max-Cut

$$\max \qquad \frac{1}{2} \sum_{uv \in E} (1 - \langle y_u, y_v \rangle)$$

$$|y_v| = 1 \quad \forall v \in V$$

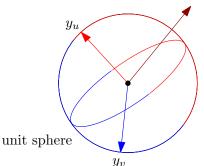


- ullet let $(y_v)_{v\in V}$ be the vectors obtained from solving SDP
- ullet sdp $= rac{1}{2} \sum_{uv \in E} (1 y_u^{\mathrm{T}} y_v) \geq \mathsf{opt}$

SDP for Max-Cut

$$\max \frac{1}{2} \sum_{uv \in E} (1 - \langle y_u, y_v \rangle)$$

$$|y_v| = 1 \quad \forall v \in V$$

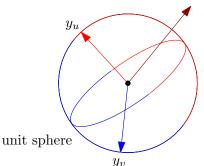


- \bullet let $(y_v)_{v \in V}$ be the vectors obtained from solving SDP
- ullet sdp $= rac{1}{2} \sum_{uv \in E} (1 y_u^{\mathrm{T}} y_v) \geq \mathsf{opt}$

SDP for Max-Cut

$$\max \frac{1}{2} \sum_{uv \in E} (1 - \langle y_u, y_v \rangle)$$

$$|y_v| = 1 \quad \forall v \in V$$



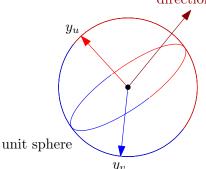
- \bullet let $(y_v)_{v \in V}$ be the vectors obtained from solving SDP
- ullet sdp $= rac{1}{2} \sum_{uv \in E} (1 y_u^{\mathrm{T}} y_v) \geq \mathsf{opt}$

direction r

SDP for Max-Cut

$$\max \qquad \frac{1}{2} \sum_{uv \in E} (1 - \langle y_u, y_v \rangle)$$

 $|y_v| = 1 \quad \forall v \in V$



- ullet let $(y_v)_{v\in V}$ be the vectors obtained from solving SDP
- $\mathsf{sdp} = \frac{1}{2} \sum_{uv \in E} (1 y_u^{\mathrm{T}} y_v) \ge \mathsf{opt}$

[Goemans-Williamson'95] Rounding Algorithm

- 1: randomly choose a direction $r \in \mathbb{R}^n$:
 - choose each $r_u \sim N(0,1)$ i.i.d

N(0,1): standard normal distribution

2: $\bar{y}_v = \operatorname{sgn}(\langle y_v, r \rangle)$, $S = \{v \in V : \bar{y}_v > 0\}$, return $(S, V \setminus S)$

$$\Pr[uv \text{ is cut}] = \frac{\text{radian angle between } y_u \text{ and } y_v}{\pi} = \frac{\arccos\langle y_u, y_v \rangle}{\pi}$$

$$\Pr[uv \text{ is cut}] = \frac{\text{radian angle between } y_u \text{ and } y_v}{\pi} = \frac{\arccos\langle y_u, y_v \rangle}{\pi}$$

$$\frac{\Pr[uv \text{ is cut}]}{\frac{1}{2}(1 - \langle y_u, y_v \rangle)} = \frac{\frac{1}{\pi}\arccos\langle y_u, y_v \rangle}{\frac{1}{2}(1 - \langle y_u, y_v \rangle)}$$
$$= \frac{\frac{1}{\pi}\arccos(x)}{\frac{1}{2}(1 - x)}$$
$$x := \langle y_u, y_v \rangle \in [-1, 1]$$

$$\Pr[uv \text{ is cut}] = \frac{\text{radian angle between } y_u \text{ and } y_v}{\pi} = \frac{\arccos\langle y_u, y_v \rangle}{\pi}$$

$$\frac{\Pr[uv \text{ is cut}]}{\frac{1}{2}(1 - \langle y_u, y_v \rangle)} = \frac{\frac{1}{\pi}\arccos\langle y_u, y_v \rangle}{\frac{1}{2}(1 - \langle y_u, y_v \rangle)}$$
$$= \frac{\frac{1}{\pi}\arccos(x)}{\frac{1}{2}(1 - x)}$$
$$x := \langle y_u, y_v \rangle \in [-1, 1]$$

•
$$\alpha_{\mathsf{GW}} := \inf_{x \in [-1,1]} \frac{2}{\pi} \cdot \frac{\arccos(x)}{(1-x)} \ge 0.878$$

$$\Pr[uv \text{ is cut}] = \frac{\text{radian angle between } y_u \text{ and } y_v}{\pi} = \frac{\arccos\langle y_u, y_v \rangle}{\pi}$$

$$\frac{\Pr[uv \text{ is cut}]}{\frac{1}{2}(1-\langle y_u,y_v\rangle)} = \frac{\frac{1}{\pi}\arccos\langle y_u,y_v\rangle}{\frac{1}{2}(1-\langle y_u,y_v\rangle)}$$

$$= \frac{\frac{1}{\pi}\arccos(x)}{\frac{1}{2}(1-x)}$$

$$x := \langle y_u,y_v\rangle \in [-1,1]$$

•
$$\alpha_{\mathsf{GW}} := \inf_{x \in [-1,1]} \frac{2}{\pi} \cdot \frac{\arccos(x)}{(1-x)} \ge 0.878$$

$$\begin{split} \mathbb{E}[|E(S,T)|] &= \sum_{uv \in E} \Pr[uv \text{ is cut}] \geq \alpha_{\mathsf{GW}} \sum_{uv \in E} \frac{1}{2} (1 - \langle y_u, y_v \rangle) \\ &= \alpha_{\mathsf{GW}} \cdot \mathsf{sdp} \geq \alpha_{\mathsf{GW}} \cdot \mathsf{opt} \geq 0.878 \cdot \mathsf{opt}. \end{split}$$

$$\begin{split} \mathbb{E}[|E(S,T)|] &= \sum_{uv \in E} \Pr[uv \text{ is cut}] \geq \alpha_{\mathsf{GW}} \sum_{uv \in E} \frac{1}{2} (1 - \langle y_u, y_v \rangle) \\ &= \alpha_{\mathsf{GW}} \cdot \mathsf{sdp} \geq \alpha_{\mathsf{GW}} \cdot \mathsf{opt} \geq 0.878 \cdot \mathsf{opt}. \end{split}$$

• Assuming Unique Game Conjecture (UGC), no polynomial-time algorithm can give an approximation ratio of $\alpha_{\rm GW} + \epsilon$ for any constant $\epsilon > 0$.

Outline

- Max-Cut Problem
- Semi-Definite Programming
- 3 0.878-Approximation for Max-Cut Using SDP
- 4 Duality for Semi-Definite Programming
- 5 Ellipsoid Method runs In Polynomial Time

Semi-Definite Program

$$\min \quad c^{\mathrm{T}} \cdot X$$

$$A\cdot X\geq b$$

$$X \succeq 0$$

Semi-Definite Program

$$\min \quad c^{\mathrm{T}} \cdot X$$
$$A \cdot X \ge b$$
$$X \succeq 0$$

Semi-Definite Program

$$\min \quad c^{T} \cdot X$$

$$\sum_{u,v \in [n]} a_{k,u,v} X_{u,v} \ge b \qquad \forall k \in [m]$$

$$\sum_{u,v \in [n]} r_{u} r_{v} X_{u,v} \ge 0 \qquad \forall r \in \mathbb{R}^{n}$$

- replace $X \succeq 0$ with infinite number of linear constraints: $(r^{\mathrm{T}}r) \cdot X \geq 0, \forall r \in \mathbb{R}^n.$
- ullet no symmetry constraint as A_k 's and c are symmetric

Semi-Definite Program

$$\min \quad c^{\mathsf{T}} \cdot X$$
$$A \cdot X \ge b$$
$$X \succ 0$$

Semi-Definite Program

$$\min_{u,v \in [n]} c^{T} \cdot X$$

$$\sum_{u,v \in [n]} a_{k,u,v} X_{u,v} \ge b \qquad \forall k \in [m]$$

$$\sum_{u,v \in [n]} r_{u} r_{v} X_{u,v} \ge 0 \qquad \forall r \in \mathbb{R}^{n}$$

Dual:
$$\max \sum_{k=1}^{m} b_k \cdot y_k$$

$$\sum_{k=1} a_{k,u,v} \cdot y_k + \sum_{r \in \mathbb{R}^n} r_u r_v \cdot z_r = c_{u,v} \qquad \forall u, v \in [n]$$

$$y_k \ge 0 \qquad \forall k \in [m]$$

$$z_r > 0 \qquad \forall r \in \mathbb{R}^n$$

 $u,v \in [n]$

Dual:
$$\max \sum_{k=1}^{m} b_k \cdot y_k$$

$$\sum_{k=1}^{m} a_{k,u,v} \cdot y_k + \sum_{r \in \mathbb{R}^n} r_u r_v \cdot z_r = c_{u,v} \qquad \forall u, v \in [n]$$
$$y_k \ge 0 \qquad \forall k \in [m]$$
$$z_r \ge 0 \qquad \forall r \in \mathbb{R}^n$$

$$\sum_{k=1}^{m} a_{k,u,v} \cdot y_k + \sum_{r \in \mathbb{R}^n} r_u r_v \cdot z_r = c_{u,v} \qquad \forall u, v \in [n]$$

$$y_k \ge 0 \qquad \forall k \in [m]$$

$$z_r > 0 \qquad \forall r \in \mathbb{R}^n$$

- ullet \mathbb{R}^n is infinite. So the notion $\sum_{r\in\mathbb{R}^n}$ is bad. Informal.
- first red constraint $\Leftrightarrow A^{\mathrm{T}}y + \sum_{r \in \mathbb{R}^n} z_r \cdot rr^{\mathrm{T}} = c$
- $\sum_{r \in \mathbb{R}^n} z_r \cdot rr^{\mathrm{T}}$ is PSD

Dual:
$$\max \qquad \sum_{k=1}^{m} b_k \cdot y_k$$

$$\sum_{k=1}^{m} a_{k,u,v} \cdot y_k + \sum_{r \in \mathbb{R}^n} r_u r_v \cdot z_r = c_{u,v} \qquad \forall u, v \in [n]$$

$$y_k \ge 0 \qquad \forall k \in [m]$$

$$z_r > 0 \qquad \forall r \in \mathbb{R}^n$$

- ullet \mathbb{R}^n is infinite. So the notion $\sum_{r\in\mathbb{R}^n}$ is bad. Informal.
- first red constraint $\Leftrightarrow A^{\mathrm{T}}y + \sum_{r \in \mathbb{R}^n} z_r \cdot rr^{\mathrm{T}} = c$
- $\sum_{r \in \mathbb{R}^n} z_r \cdot rr^{\mathrm{T}}$ is PSD
- moreover, any PSD matrix can be written is of this form

Dual:
$$\max \qquad \sum_{k=1}^{m} b_k \cdot y_k$$

$$\sum_{k=1}^{m} a_{k,u,v} \cdot y_k + \sum_{r \in \mathbb{R}^n} r_u r_v \cdot z_r = c_{u,v} \qquad \forall u, v \in [n]$$

$$y_k \ge 0 \qquad \forall k \in [m]$$

$$z_r \ge 0 \qquad \forall r \in \mathbb{R}^n$$

- ullet \mathbb{R}^n is infinite. So the notion $\sum_{r\in\mathbb{R}^n}$ is bad. Informal.
- first red constraint $\Leftrightarrow A^{\mathrm{T}}y + \sum_{r \in \mathbb{R}^n} z_r \cdot rr^{\mathrm{T}} = c$
- $\bullet \sum_{r \in \mathbb{R}^n} z_r \cdot rr^{\mathrm{T}}$ is PSD
- moreover, any PSD matrix can be written is of this form
- ullet red constraints can be replaced by $A^{\mathrm{T}}y \preceq c$

Semi-Definite Program

$$\min \quad c^{\mathsf{T}} \cdot X$$
$$A \cdot X \ge b$$
$$X \succeq 0$$

Dual for SDP

$$\max \quad b^{\mathrm{T}} y$$
$$A^{\mathrm{T}} y \le c$$
$$y \ge 0$$

Semi-Definite Program

$$\min \quad c^{\mathsf{T}} \cdot X$$
$$A \cdot X \ge b$$
$$X \ge 0$$

- Linear Program: $X \ge 0$
- In Dual of LP: $A^{\mathrm{T}}y \leq c$

Dual for SDP

 $\max b^{\mathrm{T}} y$

 $A^{\mathrm{T}}y \le c$ $y \ge 0$

Outline

- Max-Cut Problem
- Semi-Definite Programming
- 3 0.878-Approximation for Max-Cut Using SDP
- 4 Duality for Semi-Definite Programming
- 5 Ellipsoid Method runs In Polynomial Time

ullet axis-aligned ellipsoid centered at c with axis lengths

$$Q_{c,a} := a \in \mathbb{R}^n_{>0}$$
: $\left\{ x \in \mathbb{R}^n : \sum_{i \in [n]} \frac{(x_i - c_i)^2}{a_i^2} \le 1 \right\}$

ullet axis-aligned ellipsoid centered at c with axis lengths

$$Q_{c,a} := a \in \mathbb{R}^n_{>0}$$
: $\left\{ x \in \mathbb{R}^n : \sum_{i \in [n]} \frac{(x_i - c_i)^2}{a_i^2} \le 1 \right\}$

axis-aligned half-ellipsoid:

$$\mathcal{R}_{c,a,w} := \left\{ x \in \mathcal{Q}_{c,a} : w^{\mathsf{T}}(x-c) \ge 0 \right\}, \ w \in \mathbb{R}^n$$

axis-aligned ellipsoid centered at c with axis lengths

$$Q_{c,a} := a \in \mathbb{R}^n_{>0} : \left\{ x \in \mathbb{R}^n : \sum_{i \in [n]} \frac{(x_i - c_i)^2}{a_i^2} \le 1 \right\}$$

• axis-aligned half-ellipsoid:

$$\mathcal{R}_{c,a,w} := \left\{ x \in \mathcal{Q}_{c,a} : w^{\mathrm{T}}(x-c) \ge 0 \right\}, w \in \mathbb{R}^n$$

Lemma For any axis-aligned axis-aligned half-ellipsoid $\mathcal{R}_{c,a,w}$, we can efficiently find an axis-aligned ellipsoid $\mathcal{Q}_{c',a'}$ such that

- $\mathcal{R}_{c,a,w} \subseteq \mathcal{Q}_{c',a'}$
- $\bullet \ \frac{\operatorname{vol}(\mathcal{Q}_{c',a'})}{\operatorname{vol}(\mathcal{Q}_{c,a})} \leq e^{-\frac{1}{2(n+1)}} = 1 \Omega\left(\frac{1}{n}\right)$

axis-aligned ellipsoid centered at c with axis lengths

$$Q_{c,a} := a \in \mathbb{R}^n_{>0}$$
: $\left\{ x \in \mathbb{R}^n : \sum_{i \in [n]} \frac{(x_i - c_i)^2}{a_i^2} \le 1 \right\}$

• axis-aligned half-ellipsoid:

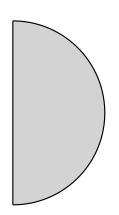
$$\mathcal{R}_{c,a,w} := \left\{ x \in \mathcal{Q}_{c,a} : w^{\mathrm{T}}(x-c) \ge 0 \right\}, w \in \mathbb{R}^n$$

Lemma For any axis-aligned axis-aligned half-ellipsoid $\mathcal{R}_{c,a,w}$, we can efficiently find an axis-aligned ellipsoid $\mathcal{Q}_{c',a'}$ such that

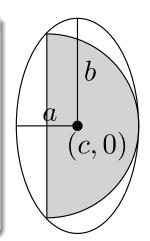
- $\mathcal{R}_{c,a,w} \subseteq \mathcal{Q}_{c',a'}$
- $\bullet \ \frac{\operatorname{vol}(\mathcal{Q}_{c',a'})}{\operatorname{vol}(\mathcal{Q}_{c,a})} \le e^{-\frac{1}{2(n+1)}} = 1 \Omega\left(\frac{1}{n}\right)$

- we can assume c = 0, a = 1 and $w = (1, 0, 0, 0, \dots, 0)^{T}$.
- half-ellipsoid becomes half ball: $\{x \in \mathbb{R}^n : |x|_2 \le 1, x_1 \ge 0\}$

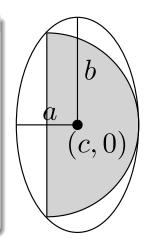
 \bullet center of new ellipsoid : $(c,0,\cdots,0)$, $c\in[0,1]$



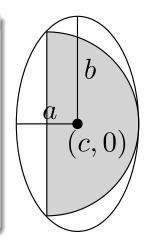
- \bullet center of new ellipsoid : $(c,0,\cdots,0)$, $c\in[0,1]$
- axis lengths: $(a, b, b, \dots, b), a < b$



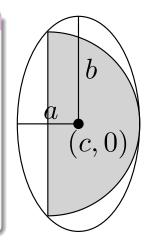
- center of new ellipsoid : $(c,0,\cdots,0)$, $c\in[0,1]$
- axis lengths: $(a, b, b, \dots, b), a < b$
- the ellipsoid: $\frac{(x_1-c)^2}{a^2} + \sum_{i=2}^n \frac{x_i^2}{b^2} \le 1$



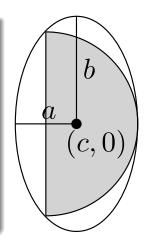
- center of new ellipsoid : $(c,0,\cdots,0)$, $c\in[0,1]$
- axis lengths: $(a, b, b, \dots, b), a < b$
- ullet the ellipsoid: $rac{(x_1-c)^2}{a^2}+\sum_{i=2}^nrac{x_i^2}{b^2}\leq 1$
- ullet $(1,0,0,\cdots,0)$ in ellipsoid: $\frac{(1-c)^2}{a^2} \leq 1$



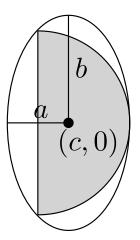
- center of new ellipsoid : $(c,0,\cdots,0)$, $c\in[0,1]$
- axis lengths: $(a, b, b, \dots, b), a < b$
- ullet the ellipsoid: $rac{(x_1-c)^2}{a^2}+\sum_{i=2}^nrac{x_i^2}{b^2}\leq 1$
- $(1,0,0,\cdots,0)$ in ellipsoid: $\frac{(1-c)^2}{a^2} \leq 1$
- $(0,1,0,\cdots,0)$ in ellipsoid: $\frac{c^2}{a^2}+\frac{1}{b^2}\leq 1$



- \bullet center of new ellipsoid : $(c,0,\cdots,0)$, $c\in[0,1]$
- axis lengths: $(a, b, b, \dots, b), a < b$
- the ellipsoid: $\frac{(x_1-c)^2}{a^2} + \sum_{i=2}^n \frac{x_i^2}{b^2} \le 1$
- $(1,0,0,\cdots,0)$ in ellipsoid: $\frac{(1-c)^2}{a^2} \le 1$
- $(0,1,0,\cdots,0)$ in ellipsoid: $\frac{c^2}{a^2}+\frac{1}{b^2}\leq 1$
- set a,b and c so that both constraints are tight: $a=1-c, b=\sqrt{\frac{(1-c)^2}{(1-c)^2-c^2}}=\frac{1-c}{\sqrt{1-2c}}$



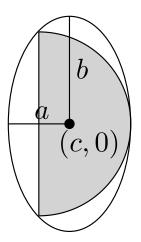
- center of new ellipsoid : $(c,0,\cdots,0)$, $c\in[0,1]$
- axis lengths: $(a, b, b, \dots, b), a < b$
- the ellipsoid: $\frac{(x_1-c)^2}{a^2} + \sum_{i=2}^n \frac{x_i^2}{b^2} \le 1$
- $(1,0,0,\cdots,0)$ in ellipsoid: $\frac{(1-c)^2}{a^2} \le 1$
- ullet $(0,1,0,\cdots,0)$ in ellipsoid: $rac{c^2}{a^2}+rac{1}{b^2}\leq 1$
- set a,b and c so that both constraints are tight: $a=1-c, b=\sqrt{\frac{(1-c)^2}{(1-c)^2-c^2}}=\frac{1-c}{\sqrt{1-2c}}$



Proof.

we won't prove that the ellipsoid contains all points in half ball.

- \bullet center of new ellipsoid : $(c,0,\cdots,0)$, $c\in[0,1]$
- axis lengths: $(a, b, b, \dots, b), a < b$
- the ellipsoid: $\frac{(x_1-c)^2}{a^2} + \sum_{i=2}^n \frac{x_i^2}{b^2} \le 1$
- $(1,0,0,\cdots,0)$ in ellipsoid: $\frac{(1-c)^2}{a^2} \le 1$
- ullet $(0,1,0,\cdots,0)$ in ellipsoid: $rac{c^2}{a^2}+rac{1}{b^2}\leq 1$
- set a,b and c so that both constraints are tight: $a=1-c, b=\sqrt{\frac{(1-c)^2}{(1-c)^2-c^2}}=\frac{1-c}{\sqrt{1-2c}}$



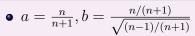
- we won't prove that the ellipsoid contains all points in half ball.
- volume of ellipsoid is minimized when $c = \frac{1}{n+1}$

- center of new ellipsoid : $(c, 0, \dots, 0)$, $c \in [0, 1]$
- axis lengths: $(a, b, b, \dots, b), a < b$
- the ellipsoid: $\frac{(x_1-c)^2}{a^2} + \sum_{i=2}^n \frac{x_i^2}{b^2} \le 1$
- $(1,0,0,\cdots,0)$ in ellipsoid: $\frac{(1-c)^2}{c^2} \leq 1$
- $(0, 1, 0, \dots, 0)$ in ellipsoid: $\frac{c^2}{a^2} + \frac{1}{b^2} \le 1$
- ullet set a, b and c so that both constraints are
- tight: $a = 1 c, b = \sqrt{\frac{(1-c)^2}{(1-c)^2 c^2}} = \frac{1-c}{\sqrt{1-2c}}$



- we won't prove that the ellipsoid contains all points in half ball.
- volume of ellipsoid is minimized when $c = \frac{1}{n+1}$

•
$$a = \frac{n}{n+1}, b = \frac{n/(n+1)}{\sqrt{(n-1)/(n+1)}}$$



•
$$a = \frac{n}{n+1}, b = \frac{n/(n+1)}{\sqrt{(n-1)/(n+1)}}$$

$$\begin{split} \frac{\operatorname{vol}(\mathsf{ellipsoid})}{\operatorname{vol}(\mathsf{unit\ ball})} &= ab^{n-1} = \left(\frac{n}{n+1}\right)^n \cdot \left(\frac{n+1}{n-1}\right)^{\frac{n-1}{2}} \\ &= \left(\frac{n^2}{n^2-1}\right)^{\frac{n-1}{2}} \cdot \frac{n}{n+1} \\ \ln \frac{\operatorname{vol}(\mathsf{ellipsoid})}{\operatorname{vol}(\mathsf{unit\ ball})} &= \frac{n-1}{2} \ln \frac{n^2}{n^2-1} + \ln \frac{n}{n+1} \\ &\leq \frac{n-1}{2} \cdot \frac{1}{n^2-1} - \frac{1}{n+1} = -\frac{1}{2(n+1)} \end{split}$$

• we used $\ln(1+x) \le x, \forall x > -1$

•
$$a = \frac{n}{n+1}, b = \frac{n/(n+1)}{\sqrt{(n-1)/(n+1)}}$$

$$\begin{split} \frac{\operatorname{vol}(\mathsf{ellipsoid})}{\operatorname{vol}(\mathsf{unit\ ball})} &= ab^{n-1} = \left(\frac{n}{n+1}\right)^n \cdot \left(\frac{n+1}{n-1}\right)^{\frac{n-1}{2}} \\ &= \left(\frac{n^2}{n^2-1}\right)^{\frac{n-1}{2}} \cdot \frac{n}{n+1} \end{split}$$

$$\ln \frac{\text{vol(ellipsoid)}}{\text{vol(unit ball)}} = \frac{n-1}{2} \ln \frac{n^2}{n^2 - 1} + \ln \frac{n}{n+1}$$

$$\leq \frac{n-1}{2} \cdot \frac{1}{n^2 - 1} - \frac{1}{n+1} = -\frac{1}{2(n+1)}$$

- we used $ln(1+x) \le x, \forall x > -1$
- $\frac{\text{vol}(\text{ellipsoid})}{\text{vol}(\text{unit ball})} \le e^{-\frac{1}{2(n+1)}}$

- $\mathcal{R}_{c,a,w} \subseteq \mathcal{Q}_{c',a'}$
- $\bullet \ \frac{\operatorname{vol}(\mathcal{Q}_{c',a'})}{\operatorname{vol}(\mathcal{Q}_{c,a})} \leq e^{-\frac{1}{2(n+1)}} = 1 \Omega\left(\frac{1}{n}\right)$

- $\mathcal{R}_{c,a,w} \subseteq \mathcal{Q}_{c',a'}$
- $\bullet \ \frac{\operatorname{vol}(\mathcal{Q}_{c',a'})}{\operatorname{vol}(\mathcal{Q}_{c,a})} \leq e^{-\frac{1}{2(n+1)}} = 1 \Omega\left(\frac{1}{n}\right)$

- The initial polytope is contained in a ball of radius R, where $R < 2^{\mathrm{poly(input\ size)}}.$
- When the polytope is not empty, it contains a ball of radius at least r, where $r \geq 1/2^{\text{poly(input size)}}$.

- $\mathcal{R}_{c,a,w} \subseteq \mathcal{Q}_{c',a'}$
- $\bullet \ \frac{\operatorname{vol}(\mathcal{Q}_{c',a'})}{\operatorname{vol}(\mathcal{Q}_{c,a})} \leq e^{-\frac{1}{2(n+1)}} = 1 \Omega\left(\frac{1}{n}\right)$

- The initial polytope is contained in a ball of radius R, where $R < 2^{\mathrm{poly(input\ size)}}.$
- When the polytope is not empty, it contains a ball of radius at least r, where $r \geq 1/2^{\text{poly(input size)}}$.
- The first assumption is easy to guarantee; the second assumption needs some twisting.

- $\mathcal{R}_{c,a,w} \subseteq \mathcal{Q}_{c',a'}$
- $\bullet \ \frac{\operatorname{vol}(\mathcal{Q}_{c',a'})}{\operatorname{vol}(\mathcal{Q}_{c,a})} \leq e^{-\frac{1}{2(n+1)}} = 1 \Omega\left(\frac{1}{n}\right)$

- The initial polytope is contained in a ball of radius R, where $R < 2^{\mathrm{poly(input\ size)}}.$
- When the polytope is not empty, it contains a ball of radius at least r, where $r \geq 1/2^{\text{poly(input size)}}$.
- The first assumption is easy to guarantee; the second assumption needs some twisting.
- ullet we can stop the ellipsoid algorithm when volume is less than the volume of a ball of radius r

- $\mathcal{R}_{c,a,w} \subseteq \mathcal{Q}_{c',a'}$
- $\bullet \ \frac{\operatorname{vol}(\mathcal{Q}_{c',a'})}{\operatorname{vol}(\mathcal{Q}_{c,a})} \leq e^{-\frac{1}{2(n+1)}} = 1 \Omega\left(\frac{1}{n}\right)$

- The initial polytope is contained in a ball of radius R, where $R < 2^{\mathrm{poly(input\ size)}}.$
- When the polytope is not empty, it contains a ball of radius at least r, where $r \geq 1/2^{\text{poly(input size)}}$.
- The first assumption is easy to guarantee; the second assumption needs some twisting.
- ullet we can stop the ellipsoid algorithm when volume is less than the volume of a ball of radius r

 $\bullet \ \ R \leq 2^{\mathsf{poly(input \ size)}}, \qquad r \geq 1/2^{\mathsf{poly(input \ size)}}$

- $R < 2^{\text{poly(input size)}}$, $r > 1/2^{\text{poly(input size)}}$
- number of iterations for ellipsoid method is at most

$$\begin{split} & \ln_{e^{\frac{1}{2(n+1)}}} \left(\frac{R}{r}\right)^n = n \cdot \frac{\ln(R/r)}{1/(2(n+1))} = O(n^2) \cdot \ln \frac{R}{r} \\ & \leq O(n^2) \cdot \mathsf{poly(input size)} \end{split}$$