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Random Variable



“Variables” that are Random

•令 和 分别为两次掷🎲的结果： 

•考虑 和 ——它们是相同的随机量吗？ 

• 和 呢？或者任意凸组合 之间呢？ 

•设🪙正面朝上概率为 ：令 表示连续抛🪙直⾄正面朝上为⽌的抛🪙次数； 
                    令 表示连抛 次🪙，其中正面朝上的次数；  

•令 表示从⼀个装有 个⚽ 个🏀的🗑中（有/⽆放回地）取出 个球中⚽的个数；  

• 个顶点，任意两点间独立以概率 连⼀条边，产⽣随机图 ，令 为最小染⾊数； 

•令 为 中均匀分布的随机实数；令 为 上满⾜ 的随机实数。

X Y
X2 XY

2X X + Y λX + (1 − λ)Y

p X
Y n

X M N − M n

n p G X = χ(G)

X [0,1] Y [0,∞) Pr(Y ≥ y) = e−y



Random Variable

• Roll a 🎲, let  be the outcome of the roll  X

samples in Ω values of X values of Y

⚀ 1 1

⚁ 2 0

⚂ 3 1

⚃ 4 0

⚄ 5 1

⚅ 6 0

, let  indicate its oddness.Y ∈ {0,1}



Random Variable

• Let  be the sum of two independent 🎲 rolls. 
X

⚀⚀ 2 ⚀⚁ 3 ⚀⚂ 4 ⚀⚃ 5 ⚀⚄ 6 ⚀⚅ 7

⚁⚀ 3 ⚁⚁ 4 ⚁⚂ 5 ⚁⚃ 6 ⚁⚄ 7 ⚁⚅ 8

⚂⚀ 4 ⚂⚁ 5 ⚂⚂ 6 ⚂⚃ 7 ⚂⚄ 8 ⚂⚅ 9

⚃⚀ 5 ⚃⚁ 6 ⚃⚂ 7 ⚃⚃ 8 ⚃⚄ 9 ⚃⚅ 10

⚄⚀ 6 ⚄⚁ 7 ⚄⚂ 8 ⚄⚃ 9 ⚄⚄ 10 ⚄⚅ 11

⚅⚀ 7 ⚅⚁ 8 ⚅⚂ 9 ⚅⚃ 10 ⚅⚄ 11 ⚅⚅ 12



Random Variable (随机变量)

• Given , a random variable is a function 


• satisfying that ,  (i.e.  is -measurable)


•  (where ) denotes the event 


•  (where ) denotes the event 


•  (where  is countable ,  of intervals ) denotes the event 


• For discrete random variable , this includes all subsets 


 

(Ω, Σ, Pr) X : Ω → ℝ

∀x ∈ ℝ {ω ∈ Ω ∣ X(ω) ≤ x} ∈ Σ X Σ

X ≤ x x ∈ ℝ {ω ∈ Ω ∣ X(ω) ≤ x}

X > x x ∈ ℝ {ω ∈ Ω ∣ X(ω) > x}

X ∈ S S ⊆ ℝ ∩ ∪ (y, x] {ω ∈ Ω ∣ X(ω) ∈ S}

X : Ω → ℤ S ⊆ ℤ
Pr(X ∈ S)



Distribution of Random Variable

• Let  be the sum of two independent 🎲 rolls. X



Distribution (分布)
• The cumulative distribution function (CDF) (累积分布函数) or just distribution 

function (分布函数) of a random variable  is the  given by 





• All probabilities regarding  can be deduced from . (Prob. space is no longer needed.)


• Two random variables  and  are identically distributed if 


• Monotone: , if  then 


• Bounded:  and 

X FX : ℝ → [0,1]
FX(x) = Pr(X ≤ x)

X FX

X Y FX = FY

∀x, y ∈ ℝ x ≤ y FX(x) ≤ FX(y)

lim
x→−∞

FX(x) = 0 lim
x→∞

FX(x) = 1



Discrete Random Variable
• A random variable  is called discrete if  is countable. 


• For a discrete random variable , its probability mass function (pmf)             
(概率质量函数)   is given by





• The CDF  satisfies


 

X : Ω → ℝ X(Ω)

X
pX : ℝ → [0,1]

pX(x) = Pr(X = x)

FX

FX(y) = ∑
x≤y

pX(x)



Continuous Random Variable

• A random variable  is called continuous, if its CDF can be 
expressed as 





for some integrable probability density function (pdf) (概率密度函数) .


• Never mind what type of integral for now. (Riemann integral? Lebesgue integral?)


• There are random variables that are neither discrete nor continuous. 

X : Ω → ℝ

FX(y) = Pr(X ≤ y) = ∫
y

−∞
fX(x) dx

fX



Independence
• Two discrete random variables  and  are independent if                      

 and  are independent events for all  and .


• Discrete random variables  are (mutually) independent if 
 are mutually independent events for all 





• The pairwise (and -wise) independence are defined in the same way.


• Example: The construction of  pairwise independent random bits         
out of  mutually independent random bits by XOR.


• For general random variables, the events  are replaced by .

X Y
X = x Y = y x y

X1, …, Xn
X1 = x1, …, Xn = xn x1, …, xn

p(X1,…,Xn)(x1, …, xn) = Pr(X1 = x1 ∩ ⋯ ∩ Xn = xn) = pX1
(x1)⋯pXn

(xn)

k
2n − 1

n

Xi = xi Xi ≤ xi



Random Vector (随机向量)
• Given , a random vector is an  where each  is a 

random variable defined on the probability space . 


• The joint CDF (联合累积分布函数)  is given by 





• For discrete random vector, the joint mass function (联合质量函数) is given by





• The marginal distribution of  in  is given by 


(Ω, Σ, Pr) X = (X1, …, Xn) Xi
(Ω, Σ, Pr)

FX : ℝn → [0,1]
FX(x1, …, xn) = Pr(X1 ≤ x1 ∩ ⋯ ∩ Xn ≤ xn)

pX(x1, …, xn) = Pr(X1 = x1 ∩ ⋯ ∩ Xn = xn)

Xi (X1, …, Xn)
pXi

(xi) = ∑
x1,…,xi−1,xi+1,…,xn

p(X1,…,Xn)(x1, …, xn)



Discrete Random Variable



Probability Mass Function (概率质量函数)
• Consider integer-valued discrete random variable  


• Its probability mass function (pmf)  is given by 





• As histogram:  gives the “histogram” of the probability distribution 


• As vector:  can be seen as a vector  such that , 
where  is the range of values of 


• Its function  is also a discrete random variable, where 

X : Ω → ℤ

pX : ℤ → [0,1]

pX(k) = Pr(X = k)

pX

pX pX ∈ [0,1]R ∥pX(x)∥1 = 1
R = X(Ω) X

Y = f(X) pY(y) = ∑
x:f(x)=y

pX(x)



Discrete Random Variables
• Basic discrete probability distributions:

• discrete uniform distribution (古典概型)

• Bernoulli trial (coin flip) 
• binomial distribution (# of successes in  trials) 
• geometric distribution (# of trials to get a success) 
• negative binomial distribution

• hypergeometric distribution

• Poisson distribution (idealized binomial distribution) 
• … …


• Probability distributions of discrete objects:

• multinomial distribution (balls into bins)

• Erdős–Rényi model (random graph)

• Galton-Watson process (random tree)

• … …

n



Bernoulli Trial (伯努利试验)

• A Bernoulli trial is an experiment with two possible outcomes. 


• A Bernoulli random variable  takes values in , its pmf is





where  is a parameter.


• Indicator: For event , the indicator  of  is a random variable defined by


,     a Bernoulli R.V. with parameter 

X {0,1}

pX(k) = Pr(X = k) = {p if k = 1
1 − p if k = 0

p ∈ [0,1]

A X A

X = I(A) = {1 if A occurs
0 otherwise

Pr(A)

(A coin flip) p 1 − p



• : number of successes in  i.i.d. (independent and identically distributed) 
Bernoulli trials with parameter 


• A binomial random variable  takes values in , and 


,       


• We say that  follows the binomial distribution with parameters  and  


denoted  or 

X n
p

X {0,1,…, n}

pX(k) = Pr(X = k) = (n
k)pk(1 − p)n−k k = 0,1,…, n

X n p

X ∼ Bin(n, p) B(n, p)

Binomial Distribution (⼆项分布)
(Number of HEADs in  coin flips)n

n

⏟
k



Geometric Distribution (⼏何分布)
(Number of coin flips to get a HEADs)

• : number of i.i.d. Bernoulli trials needed to get one success


• A geometric random variable  takes values in , and 


,     


• We say that  follows the geometric distribution with parameter  


denoted  or 

X

X {1,2,…}

pX(k) = Pr(X = k) = (1 − p)k−1p k = 1,2,…

X p ∈ [0,1]

X ∼ Geo(p) Geometric(p)



Geometric Distribution (⼏何分布)
(Number of coin flips to get a HEADs)

• Geometric random variable  is memoryless: for , 





Proof: 





• Geometric distribution is the only discrete memoryless distribution                 
(with the range of values ).

X ∼ Geo(p) k ≥ 1 n ≥ 0

Pr(X = k + n ∣ X > n) = Pr(X = k)

Pr(X = k + n ∣ X > n) =
Pr(X = k + n)

Pr(X > n)
=

(1 − p)n+k−1p
∑∞

k=n (1 − p)kp

=
(1 − p)k−1p

∑∞
k=0 (1 − p)kp

= (1 − p)k−1p

{1,2,…}



Two Ways of Constructing Random Variables

• As a function of random variables 


• Binomial :  function  is sum, and  are i.i.d. Bernoulli trials


• independent ,   


• As a stopping time  of a sequence 


• A random variable  is a stopping time with respect to  if for all 
 the occurrence of  is determined by the values of 


• Geometric : time for the first success in i.i.d. Bernoulli trials 

Y = f(X1, X2, …, Xn)

Y f (X1, …, Xn)

Y1 ∼ Bin(n1, p) Y2 ∼ Bin(n2, p) ⟹ Y1 + Y2 ∼ Bin(n1 + n2, p)

T X1, X2, …, XT

T X1, X2, …
t ≥ 1 T = t X1, X2, …, Xt

T X1, X2, …



Sum of Independent Random Variables

• If discrete random variables  and  are independent, then: 








• This defines a convolution (卷积) between mass functions: 


X Y

pX+Y(z) = Pr(X + Y = z) = ∑
x

Pr(X = x ∩ Y = z − x)

= ∑
x

pX(x)pY(z − x) = ∑
y

pX(z − y)pY(y)

pX+Y = pX * pY

(total 
probability)

(independence)



Sum of Independent Random Variables

• If discrete random variables  and  are independent, then: 





• For i.i.d. Bernoulli random variables :


 


X Y

pX+Y(z) = ∑
x

pX(x)pY(z − x) = ∑
y

pX(z − y)pY(y)

X1, …, Xn ∈ {0,1}

pX1+⋯+Xn
(k) = p ⋅ pX1+⋯+Xn−1

(k − 1) + (1 − p) ⋅ pX1+⋯+Xn−1
(k)

= (n − 1
k − 1)pk(1 − p)n−k + (n − 1

k )pk(1 − p)n−k = (n
k)pk(1 − p)n−k



Negative Binomial Distribution (负⼆项分布)

• : number of failures in a sequence of i.i.d. Bernoulli trials before  successes


• A negative binomial random variable  takes values in , and 





for 


• We say that  follows the negative binomial distribution with parameters 


•  for i.i.d. 

X r

X {0,1,2,…}

pX(k) = Pr(X = k) = (k + r − 1
k )(1 − p)kpr = (−1)k(−r

k )(1 − p)kpr

k = 0,1,2,…

X r, p

X = (X1 − 1) + (X2 − 1) + ⋯ + (Xr − 1) Xi ∼ Geo(p)

(“multiple successes” generalization of geometric distribution)



Hypergeometric Distribution (超⼏何分布)

• : number of successes in  draws, without replacement (⽆放回), from a finite population 
of  objects, including exactly  ones, drawings of whom are counted as successes

X n

N M

(“without replacement” variant of binomial distribution)

🔴
🔵
🔴

🔵🔵🔴

🔵🔵🔵🔵

🔴 🔴
🔴

Draw  balls 
without 

replacement

n M red balls  
N balls

🔵
# of 🔴s ? 



Hypergeometric Distribution (超⼏何分布)

• : number of successes in  draws, without replacement (⽆放回), from a finite population 
of  objects, including exactly  ones, drawings of whom are counted as successes


• A hypergeometric random variable  takes values in , and 


,       


• We say that  follows the hypergeometric distribution with parameters , 
where , , and  are integers.


X n
N M

X {0,1,…, n}

pX(k) = Pr(X = k) = (M
k )(N − M

n − k )/(N
n ) k = 0,1,…, n

X N, M, n
N ≥ 0 0 ≤ M ≤ N 0 ≤ n ≤ N

(“without replacement” variant of binomial distribution)



Multinomial Distribution (多项式分布)

• Trials with multiple outcomes: There are  i.i.d. trials, each having  possible outcomes, 
where the probability of the th outcome is . Let  be the # of th outcomes.


• Balls-into-bins model: Throw  balls into  bins. Each ball is thrown independently such 
that the th bin receives the ball with probability . Let  be the # of balls in the th bin.

n m
i pi Xi i

n m
i pi Xi i

(“multi-dimensional” generalization of binomial distribution)

🗑 🗑 🗑🗑

throw ⚾  independently× n
p1

p2
pi

pmProbability

X2X1 Xi Xm# of balls in each bin



Multinomial Distribution (多项式分布)

• Suppose that  balls are thrown into  bins, where each ball is thrown independently 
such that the th bin receives the ball with probability , where  is given.


• : the th bin receives exactly  balls


•  takes values  that  ,  and 





• We say that  follows the multinomial distribution with parameters , , 
and  such that .


•  for each individual . (The marginal distribution of  is )

n m
i pi p1 + ⋯ + pm = 1

(X1, X2, …, Xm) i Xi

(X1, …, Xm) (k1, …, km) ∈ {0,1,…, n}m k1 + ⋯ + km = n

p(X1,…,Xm)(k1, …, km) = Pr (⋂m
i=1 (Xi = ki)) =

n!
k1!k2!⋯km!

pk1
1 pk2

2 ⋯pkm
m

(X1, X2, …, Xm) m n
p = (p1, …, pm) ∈ [0,1]m p1 + ⋯ + pm = 1

Xi ∼ Bin(n, pi) 1 ≤ i ≤ m Xi Bin(n, pi)

(“multi-dimensional” generalization of binomial distribution)



• : number of successes in  i.i.d. Bernoulli trials with parameter 


• A binomial random variable  takes values in , and 


,       


• Typical in real life: large unknown population size  with known 


X n p

X {0,1,…, n}

pX(k) = Pr(X = k) = (n
k)pk(1 − p)k k = 0,1,…, n

n → ∞ np = λ

pBin(n,λ/n)(k) = (n
k) ( λ

n )
k

(1 −
λ
n )

n−k

=
n
n

n − 1
n

⋯
n − k + 1

n
⋅

λk

k! (1 −
λ
n )

n

(1 −
λ
n )

−k

≈
λk

k!
e−λ

Binomial Distribution (⼆项分布)
(Number of HEADs in  coin flips)n

n

⏟
k

A “universal” distribution for all sufficiently large , knowing the mean ?n λ = np



Poisson Distribution (泊松分布)

• A Poisson random variable  takes values in , and 


,     


• It is a well-defined probability distribution over : 


• We say that  follows the Poisson distribution with parameter  


denoted 

X {0,1,2,…}

pX(k) = Pr(X = k) = e−λ λk

k!
k = 0,1,2,…

{0,1,2,…}
∞

∑
k=0

e−λ λk

k!
= 1

X λ > 0

X ∼ Pois(λ)

(Idealized binomial distribution when )n → ∞



Sum of Poisson Variables

• Independent ,    


• By the heuristics , it seems that the following should hold:


• independent ,   


• Proof:  


X ∼ Bin(n1, p) Y ∼ Bin(n2, p) ⟹ X + Y ∼ Bin(n1 + n2, p)

Bin(n, p) ≈ Pois(np)

X ∼ Pois(λ1) Y ∼ Pois(λ2) ⟹ X + Y ∼ Pois(λ1 + λ2)

pX+Y(k) = Pr(X + Y = k) =
k

∑
i=0

Pr(X = i ∩ Y = k − i) =
k

∑
i=0

pX(i)pY(k − i)

=
k

∑
i=0

e−λ1λi
1

i!
e−λ2λk−i

2

(k − i)!
=

e−(λ1+λ2)

k!

k

∑
i=0

(k
i )λi

1λ
k−i
2 =

e−(λ1+λ2)(λ1 + λ2)k

k!



Poisson Approximation
•  follows the multinomial distribution with parameters , , 


•  balls are thrown into  bins independently according to the distribution 

• after all  balls are thrown, the th bin receives  balls


• : each  independently, where 


Proposition:  is identically distributed as  given that 


Proof: Observe that .  For any  that  :  





   

(X1, …, Xm) m n p1 + ⋯ + pm = 1

n m (p1, …, pm)
n i Xi

(Y1, …, Ym) Yi ∼ Pois(λi) λi = npi

(X1, …, Xm) (Y1, …, Ym)
m

∑
i=1

Yi = n

Y1 + ⋯ + Ym ∼ Pois(n) k1, …, km ≥ 0 k1 + ⋯ + km = n

Pr[(Y1, …, Ym) = (k1, …, km) ∣ Y1 + ⋯ + Ym = n] = (
m

∏
i=1

e−npi(npi)ki

ki! )/( e−nnn

n! )
=

n!
k1!⋯km!

pk1
1 ⋯pkm

m = Pr[(X1, …, Xm) = (k1, …, km)]



Balls into Bins

• Throw  balls into  bins uniformly at random (u.a.r.).


• Uniform random .


• The numbers of balls received in each bins  follow the 
multinomial distribution with parameters ,  and .


• Birthday problem: the property of being injective (1-1)


• Coupon collector problem: the property of being surjective (onto)


• Occupancy (load balancing) problem: the maximum load 

n m

f : [n] → [m]

(X1, …, Xm)
m n (1/m, …,1/m)

maxi Xi

(Random mapping)

🥎

🥎🥎🥎🥎 🥎🥎🥎🥎🥎🥎 🥎
🥎🥎🗑 🗑 🗑 🗑 🗑 🗑 🗑



Random Graph
(Erdős–Rényi random graph model)

• : There are  vertices. For each pair  of vertices, an i.i.d. Bernoulli trial 
with parameter  is conducted, and an edge  is added if the trial succeeds.


•  gives the uniformly distributed random graph on  vertices.


• The number of edges in  follows the binomial distribution . 

(Therefore,  is sometimes also called the binomial random graph)


• Random variables defined by : chromatic number , independence 
number , clique number , diameter , connectivity, max-degree , 
number of triangles, number of hamiltonian cycles, …

G ∼ G(n, p) n u, v
p {u, v}

G(n,1/2) n

G ∼ G(n, p) Bin ((n
2), p)

G(n, p)

G ∼ G(n, p) χ(G)
α(G) ω(G) diam(G) Δ(G)



Random Tree
(Galton–Watson branching process)

• A sequence of random variables  recursively defined by


 and  


where  are i.i.d. non-negative integer-valued random variables 
(e.g. Poisson random variables)


• Random family tree: the th family member in the th generation has  offsprings 


• : number of family members in the th generation

X0, X1, X2, …

X0 = 1 Xn+1 =
Xn

∑
j=1

ξ(n)
j

{ξ(n)
j ∣ n, j ≥ 0}

j n ξ(n)
j

Xn n
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Expectation (数学期望)

• The expectation (or mean) of a discrete random variable  is defined to be





where  denotes the pmf of  and the sum is taken over all  that 


•  may be  (we assume absolute convergence for )

• Example I:  for   (the St. Petersburg paradox)


• Example II:  and  where 

X

𝔼[X] = ∑
x

x ⋅ pX(x)

pX X x pX(x) > 0

𝔼[X] ∞ 𝔼[X] < ∞
pX(2k) = 2−k k = 1,2,…

X ∈ ℤ∖{0} pX(k) =
1

ak2
a = ∑

k≠0

k−2 =
π2

3



Perspectives of Expectation
• Computation of expectation:

• straightforward computation (by definition) 
• linearity of expectation (by linearity)

• law of total expectation (by case)


• Upper/lower bounds of expectation:

• Jensen’s inequality (by convexity) 
• Double counting (tail sum for expectation)

• monotonicity (by coupling)


• Implications of expectation:

• averaging principle (the probabilistic method)

• tail inequalities (the moment method)



Expectation of Indicator

• For Bernoulli random variable  with parameter 





• For the indicator random variable  of event , where  if  occurs 
and  if otherwise (i.e. ,  if  and  if )


X ∈ {0,1} p

𝔼[X] = 0 ⋅ (1 − p) + 1 ⋅ p = p

X = I(A) A X = 1 A
X = 0 ∀ω ∈ Ω X(ω) = 1 ω ∈ A X(ω) = 0 ω ∉ A

𝔼[X] = 0 ⋅ Pr(Ac) + 1 ⋅ Pr(A) = Pr(A)

p 1 − p



Poisson Distribution (泊松分布)
• Expectation of Poisson random variable 











X ∼ Pois(λ)

𝔼[X] = ∑
k≥0

k
e−λλk

k!

= ∑
k≥1

e−λλk

(k − 1)!

= ∑
k≥0

e−λλk+1

k!
= λ∑

k≥0

e−λλk

k!

= λ



Change of Variables

• For , for discrete  and :


• 


• 


Proof:  Let . Then







f : ℝ → ℝ X X = (X1, …, Xn)
𝔼[ f(X)] = ∑x f(x)pX(x)
𝔼[ f(X1, …, Xn)] = ∑(x1,…,xn)

f(x1, …, xn)pX(x1, …, xn)

Y = f(X1, …, Xn)
𝔼[ f(X1, …, Xn)] = ∑

y

y Pr(Y = y) = ∑
y

y ∑
(x1,…,xn)∈f −1(y)

Pr((X1, …, X1) = (x1, …, xn))

= ∑
(x1,…,xn)

f(x1, …, xn) Pr((X1, …, X1) = (x1, …, xn))

= ∑
(x1,…,xn)

f(x1, …, xn)pX(x1, …, xn)

(Law Of The Unconscious Statistician, LOTUS)



Linearity of Expectation
• For  and random variables  and :


• 


• 


Proof:    








a, b ∈ ℝ X Y
𝔼[aX + b] = a𝔼[X] + b
𝔼[X + Y] = 𝔼[X] + 𝔼[Y]

𝔼[aX + b] = ∑
x

(ax + b)pX(x) = a∑
x

xpX(x) + b∑
x

pX(x) = a𝔼[X] + b

𝔼[X + Y] = ∑
x,y

(x + y) Pr((X, Y) = (x, y))

= ∑
x

x∑
y

Pr((X, Y) = (x, y)) + ∑
y

y∑
x

Pr((X, Y) = (x, y))

= ∑
x

x Pr(X = x) + ∑
y

y Pr(Y = y) = 𝔼[X] + 𝔼[Y]



Linearity of Expectation
• For  and random variables  and :


• 


• 


• For linear (affine) function  on random variables 





• It holds for arbitrarily dependent 

a, b ∈ ℝ X Y
𝔼[aX + b] = a𝔼[X] + b
𝔼[X + Y] = 𝔼[X] + 𝔼[Y]

f X1, …, Xn

𝔼[ f(X1, …, Xn)] = f(𝔼[X1], …, 𝔼[Xn])

X1, …, Xn



Binomial Distribution (⼆项分布)

• For binomial random variable 





• Observation:  can be expressed as ,

where  are i.i.d. Bernoulli random variables with parameter 


• Linearity of expectation: 

 

X ∼ Bin(n, p)

𝔼[X] =
n

∑
k=0

k(n
k)pk(1 − p)n−k

X ∼ Bin(n, p) X = X1 + ⋯ + Xn
X1, …, Xn p

𝔼[X] = 𝔼[X1] + ⋯ + 𝔼[Xn] = np

n

⏟
k



Geometric Distribution (⼏何分布)

• For geometric random variable 





• Observation:  can be calculated by , 

where  indicates whether all of the first  trials fail


•  Linearity of expectation: 


X ∼ Geo(p)

𝔼[X] = ∑
k≥1

k(1 − p)k−1p

X ∼ Geo(p) X = ∑k≥1 Ik
Ik ∈ {0,1} (k − 1)

𝔼[X] = ∑
k≥1

𝔼[Ik] = ∑
k≥1

(1 − p)k−1 =
1
p

Ik : 1 1 1 1 0 …



Negative Binomial Distribution (负⼆项分布)

• For negative binomial random variable  with parameters 





• Observation:  can be expressed as ,

where  are i.i.d. geometric random variables with parameter 


•  Linearity of expectation: 


X r, p

𝔼[X] = ∑
k≥1

k(k + r − 1
k )(1 − p)kpr

X X = (X1 − 1) + ⋯ + (Xr − 1)
X1, …, Xr p

𝔼[X] = 𝔼[X1] + ⋯ + 𝔼[Xr] − r = r(1 − p)/p



Hypergeometric Distribution (超⼏何分布)

• For hypergeometric random variable  with parameters 





• Observation: each red ball (success) is drawn with probability .


Then , where  indicates whether the th red ball is drawn. 


• Linearity of expectation: 


X N, M, n

𝔼[X] =
n

∑
k=0

k(M
k )(N − M

n − k )/(N
n )

(N − 1
n − 1 )/(N

n ) =
n
N

X = X1 + ⋯ + XM Xi ∈ {0,1} i

𝔼[X] = 𝔼[X1] + ⋯ + 𝔼[XM] =
nM
N

🔴
🔵

🔴

🔵
🔵🔴

🔵🔵🔵🔵

🔴 🔴
🔴

Draw  balls 
without 

replacement

n
M red balls  

N balls

🔵



Pattern Matching

• : uniform random string of  letters from alphabet  with 


• For pattern , let  be the number of appearances of  in  as substring


• Let  indicate that . Then  


• Linearity of expectation: 





• Expected time (position) for the first appearance? It may depend on the pattern .

s = (s1, …, sn) ∈ Qn n Q |Q | = q
π ∈ Qk X π s

Ii ∈ {0,1} π = (si, si+1, …, si+k−1) X =
n−k+1

∑
i=1

Ii

𝔼[X] =
n−k+1

∑
i=1

𝔼[Ii] = (n − k + 1)q−k

π
Optional Stopping Theorem (OST)



Coupon Collector
• Each cookie box comes with a uniform random coupon.

• Number of cookie boxes opened to collect all  types of coupons


• Balls-into-bins model:   throw balls one-by-one u.a.r. to occupy all  bins

•  : total number of balls thrown to make all  bins nonempty


•  : number of balls thrown while there are exactly  nonempty bins


•  is geometric with parameter  and 


• Linearity of expectation:


n

n
X n
Xi (i − 1)

Xi pi = 1 −
i − 1

n
X =

n

∑
i=1

Xi

𝔼[X] =
n

∑
i=1

𝔼[Xi] =
n

∑
i=1

n
n − i + 1

= n
n

∑
i=1

1
i

= nH(n) ≈ n ln n
(Harmonic number)

🥎

🥎 🥎🥎🥎🥎🥎🥎🥎🗑🗑🗑🗑🗑🗑🗑
i − 1



Double Counting (Tail sum for expectation)

• For nonnegative random variable  that takes values in 





• Proof I (Double Counting): 





• Proof II (Linearity of Expectation): Let  indicate whether .

Then .  By linearity, 

X {0,1,2,…}

𝔼[X] =
∞

∑
k=0

Pr[X > k]

𝔼[X] = ∑
x≥0

x Pr[X = x] = ∑
x≥0

x−1

∑
k=0

Pr[X = x] = ∑
k≥0

∑
x>k

Pr[X = x] = ∑
k≥0

Pr[X > k]

Ik ∈ {0,1} X > k
X = ∑

k≥0

Ik 𝔼[X] = ∑
k≥0

𝔼[Ik] = ∑
k≥0

Pr[X > k]



Open Addressing with Uniform Hashing

• Hash table:  keys from a universe  are mapped to  slots by hash function 




• Open addressing (开放寻址): hash collision is resolved by a probing strategy

— when searching for a key , the th probed slot is given by 


• Linear probing: 


• Quadratic probing: 


• Double hashing: 


• Uniform hashing:  where  is a uniform random permutation of 

n U m
h : U → [m]

x ∈ U i h(x, i)
h(x, i) = h(x) + i (mod m)

h(x, i) = h(x) + c1i + c2i2 (mod m)
h(x, i) = h1(x) + i ⋅ h2(x) (mod m)
h(x, i) = π(i) π [m]



Open Addressing with Uniform Hashing
• In a hash table with load factor , assuming uniform hashing, the 

expected number of probes in an unsuccessful search is at most .


• Proof: Let  be the number of probes in an unsuccessful search.


 


  (where  is the event that the th probed slot is occupied)


    (by chain rule)


α = n/m
1/(1 − α)

X

𝔼[X] =
∞

∑
k=0

Pr(X > k) = 1 +
∞

∑
k=1

Pr(X > k)

= 1 +
∞

∑
k=1

Pr ( ∩k
i=1 Ai) Ai i

= 1 +
∞

∑
k=1

k

∏
i=1

Pr (Ai ∣ ∩j<i Aj)
= 1 +

∞

∑
k=1

k

∏
i=1

n − i + 1
m − i + 1

≤ 1 +
∞

∑
k=1

k

∏
i=1

n
m

= 1 +
∞

∑
k=1

αk =
∞

∑
k=0

αk =
1

1 − α



Principle of Inclusion-Exclusion

• Let  be the indicator random variable of event . It’s easy to verify:


★      

✤   


• For events :

I(A) ∈ {0,1} A
I(Ac) = 1 − I(A)
I(A ∩ B) = I(A) ⋅ I(B)

A1, A2, …, An

I (
n

⋃
i=1

Ai) = 1 − I (
n

⋃
i=1

Ai)
c

= 1 − I (
n

⋂
i=1

Ac
i ) = 1 −

n

∏
i=1

I(Ac
i ) = 1 −

n

∏
i=1

(1 − I(Ai))

= 1 − ∑
S⊆{1,…,n}

(−1)|S|∏
i∈S

I(Ai) = ∑
∅≠S⊆{1,…,n}

(−1)|S|−1I (⋂
i∈S

Ai)

(★)
(De Morgan’s


law) (✤) (★)

(binomial 

theorem)

(✤)



Principle of Inclusion-Exclusion

• Let  be the indicator random variable of event . 


• For events :





• By linearity of expectation: 


I(A) ∈ {0,1} A

A1, A2, …, An

I (
n

⋃
i=1

Ai) = ∑
∅≠S⊆{1,…,n}

(−1)|S|−1I (⋂
i∈S

Ai)

Pr (
n

⋃
i=1

Ai) = ∑
∅≠S⊆{1,…,n}

(−1)|S|−1 Pr (⋂
i∈S

Ai)



Boole-Bonferroni Inequality
• For events :





• Observation:   


and  as a binomial coefficient is unimodal in 


• For unimodal sequence : 


• Take expectation. By linearity of expectation  Bonferroni inequality

A1, A2, …, An

I (
n

⋃
i=1

Ai) = 1 −
n

∏
i=1

(1 − I(Ai)) =
n

∑
k=1

(−1)k−1 ∑
S∈({1,…, n}

k )
I (⋂

i∈S

Ai)
Xk ≜ (

∑n
i=1 I(Ai)

k ) = ∑
S∈({1,…, n}

k )
∏
i∈S

I (Ai) = ∑
S∈({1,…, n}

k )
I (⋂

i∈S

Ai)
Xk k

Xk ∑
k≤2t

(−1)k−1Xk ≤
n

∑
k=1

(−1)k−1Xk ≤ ∑
k≤2t+1

(−1)k−1Xk

⟹



Limitation of Linearity
• Infinite sum: 


 if the absolute convergence  holds


This is possible:  and  but 


Counterexample: the martingale betting strategy in a fair gambling game


• A random number of random variables:  for random 


 ?

X1, X2, …

𝔼 [
∞

∑
i=1

Xi] =
∞

∑
i=1

𝔼[Xi]
∞

∑
i=1

𝔼[ |Xi | ] < ∞

𝔼 [
∞

∑
i=1

Xi] < ∞
∞

∑
i=1

𝔼[Xi] < ∞ 𝔼 [
∞

∑
i=1

Xi] ≠
∞

∑
i=1

𝔼[Xi]

X1, X2, …, XN N

𝔼 [
N

∑
i=1

Xi] = 𝔼[N]𝔼[X1]



Conditional Expectation (条件期望)
• The conditional expectation of a discrete random variable  given that event 

 occurs, is defined by





where the sum is taken over all  that 


• To be well-defined, assume: 


•  


• the sum  converges absolutely

X
A

𝔼[X ∣ A] = ∑
x

x Pr(X = x ∣ A)

x Pr(X = x ∣ A) > 0

Pr(A) > 0
∑x x Pr(X = x ∣ A)



Conditional Distribution (条件分布)
• The probability mass function  of a discrete random 

variable  given that event  occurs, is given by





•  can now be seen as a well-defined discrete random variable, whose 
distribution is described by the pmf 


•  is just the expectation of 


•  satisfies the properties of expectation, e.g. linearity of expectation 

pX∣A : ℤ → [0,1]
X A

pX∣A(x) = Pr(X = x ∣ A)

(X ∣ A)
pX∣A

𝔼[X ∣ A] = ∑
x

x Pr(X = x ∣ A) (X ∣ A)

𝔼[X ∣ A]



Law of Total Expectation
• Let  be a discrete random variable with finite . Let events  

be a partition of  such that  for all . 





• The law of total probability is now a special case with 


Proof:  


X 𝔼[X] B1, B2, …, Bn
Ω Pr(Bi) > 0 i

𝔼[X] =
n

∑
i=1

𝔼[X ∣ Bi] Pr(Bi)

X = I(A)

𝔼[X] = ∑
x

x Pr(X = x) = ∑
x

x
n

∑
i=1

Pr(X = x ∣ Bi) Pr(Bi)

=
n

∑
i=1

Pr(Bi)∑
x

x Pr(X = x ∣ Bi) =
n

∑
i=1

𝔼[X ∣ Bi] Pr(Bi)

(law of total prob.)



QuickSort
QSort :  an array  of 
distinct numbers


If  then do:

choose a pivot ;

partition  into  with all entries , 


and  with all entries ;

store , 


,

;


 

and ;

(A[1…n]) A[1…n]

n > 1
x = A[n]

A L < x
R > x

A[ |L | + 1] ← x
A[1,…, |L | ] ← L
A[ |L | + 2,…, n] ← R

QSort(A[1,…, |L | ])
QSort(A[ |L | + 2,…, n])



QuickSort
• A comparison-based sorting algorithm


• # of comparisons


- worst-case complexity: 

‣ always picks smallest/largest one


‣ 


‣

O(n2)

T(n) = (n − 1) + T(n − 1), T(1) = 0

T(n) =
n

∑
i=1

(i − 1) = (n
2) ≈ n2

QSort :  an array  of 
distinct numbers


If  then do:

choose a pivot ;

partition  into  with all entries , 


and  with all entries ;

store , 


,

;


 

and ;

(A[1…n]) A[1…n]

n > 1
x = A[n]

A L < x
R > x

A[ |L | + 1] ← x
A[1,…, |L | ] ← L
A[ |L | + 2,…, n] ← R

QSort(A[1,…, |L | ])
QSort(A[ |L | + 2,…, n])



QuickSort
• A comparison-based sorting algorithm


• # of comparisons


- worst-case complexity: 

- best-case?

‣ always picks median


‣ 


‣ 

- average-case?

O(n2)

T(n) = n − 1 + 2 ⋅ T(n/2), T(1) = 0
T(n) = O(n log n)

QSort :  an array  of 
distinct numbers


If  then do:

choose a pivot ;

partition  into  with all entries , 


and  with all entries ;

store , 


,

;


 

and ;

(A[1…n]) A[1…n]

n > 1
x = A[n]

A L < x
R > x

A[ |L | + 1] ← x
A[1,…, |L | ] ← L
A[ |L | + 2,…, n] ← R

QSort(A[1,…, |L | ])
QSort(A[ |L | + 2,…, n])



QuickSort
• A comparison-based sorting algorithm


• # of comparisons


- worst-case complexity: 


- best-case complexity: 

- average-case?


- , where  is # of comparisons 
used in  on a uniform 
random permutation  of  distinct 
numbers

O(n2)
O(n log n)

𝔼[X] X
QSort(A)

A n

QSort :  an array  of 
distinct numbers


If  then do:

choose a pivot ;

partition  into  with all entries , 


and  with all entries ;

store , 


,

;


 

and ;

(A[1…n]) A[1…n]

n > 1
x = A[n]

A L < x
R > x

A[ |L | + 1] ← x
A[1,…, |L | ] ← L
A[ |L | + 2,…, n] ← R

QSort(A[1,…, |L | ])
QSort(A[ |L | + 2,…, n])



QuickSort in Average Case

• Uniform random input & order-preserving: 

•  is a uniform random permutation of 


• Observation I: each pair of  are compared at most once.


- Compare iff  or  is pivot when they are in the same array, never compare again.


‣ Let  indicate whether  and  are compared within .


‣ Total number of comparisons is 

‣

A a1 < ⋯ < an

ai, aj

ai aj

Xij ∈ {0,1} ai aj QSort(A)
X = ∑i<j Xij



QuickSort in Average Case

• Uniform random input & order-preserving: 

•  is a uniform random permutation of 


• Observation I: Total number of comparisons is 


‣ Let  indicate whether  and  are compared within .


• Observation II:  is fixed iff  are in same array and  is pivot, with 

A a1 < ⋯ < an

X = ∑i<j Xij

Xij ∈ {0,1} ai aj QSort(A)
Xij ai, …, aj ak i ≤ k ≤ j



QuickSort
QSort :  an array  of 
distinct numbers


If  then do:

choose a pivot ;

partition  into  with all entries , 


and  with all entries ;

store , 


,

;


 

and ;

(A[1…n]) A[1…n]

n > 1
x = A[n]

A L < x
R > x

A[ |L | + 1] ← x
A[1,…, |L | ] ← L
A[ |L | + 2,…, n] ← R

QSort(A[1,…, |L | ])
QSort(A[ |L | + 2,…, n])

• Observation II:  is fixed iff  are in same array and  is pivot, with Xij ai, …, aj ak i ≤ k ≤ j



QuickSort in Average Case

• Uniform random input & order-preserving: 

•  is a uniform random permutation of 


• Observation I: Total number of comparisons is 


‣ Let  indicate whether  and  are compared within .


• Observation II:  is fixed iff  are in same array and  is pivot, with 


-  iff  are in the same array and  is pivot, where 


-  iff  are in the same array and  or  is pivot


-

A a1 < ⋯ < an

X = ∑i<j Xij

Xij ∈ {0,1} ai aj QSort(A)
Xij ai, …, aj ak i ≤ k ≤ j

Xij = 0 ai, …, aj ak i < k < j
Xij = 1 ai, …, aj ai aj

Pr[Xij = 1] = 2/( j − i + 1) = 𝔼[Xij]



QuickSort in Average Case

• Uniform random input & order-preserving: 

•  is a uniform random permutation of 


• Observation I: Total number of comparisons is 


‣ Let  indicate whether  and  are compared within .


• Observation II: 


• Linearity of expectation: 


A a1 < ⋯ < an

X = ∑i<j Xij

Xij ∈ {0,1} ai aj QSort(A)
𝔼[Xij] = Pr[Xij = 1] = 2/( j − i + 1)

𝔼[X] = ∑
i<j

𝔼 [Xij] = ∑
i<j

2
j − i + 1

=
n

∑
i=1

n−i+1

∑
k=2

2
k

≤ 2
n

∑
i=1

n

∑
k=1

1
k

= 2nH(n) = 2n ln n + O(n)



Conditional Expectation (条件期望)
• For random variables , the conditional expectation:





is a random variable  whose value is  when 


• Naturally generalized to   for random variables 


• Examples:


• : average height of the country of a random person on earth


• : average height of the gender of the country of a random person

X, Y

𝔼[X ∣ Y]

f(Y) f(y) = 𝔼[X ∣ Y = y] Y = y

𝔼[X ∣ Y, Z] X, Y, Z

𝔼[X ∣ Y]

𝔼[X ∣ Y, Z]



Conditional Expectation (条件期望)
• For random variables , the conditional expectation:





is a random variable  whose value is  when 


• Law of Total Expectation: 


• Proof:      (by definition)


X, Y

𝔼[X ∣ Y]

f(Y) f(y) = 𝔼[X ∣ Y = y] Y = y

𝔼[𝔼[X ∣ Y]] = 𝔼[X]

𝔼[𝔼[X ∣ Y]] = ∑
y

𝔼[X ∣ Y = y] Pr(Y = y)

= 𝔼[X] (law of total expectation)



Random Family Tree

•  is defined by  and  


where  are i.i.d. random variables with mean value 


•    and   


•       


• 


  

X0, X1, X2, … X0 = 1 Xn+1 =
Xn

∑
j=1

ξ(n)
j

ξ(n)
j ∈ ℤ≥0 μ = 𝔼[ξ(n)

j ]

X0 = 1 𝔼[X1] = 𝔼[ξ(0)
1 ] = μ

𝔼[Xn ∣ Xn−1 = k] = 𝔼
k

∑
j=1

ξ(n−1)
j Xn−1 = k = kμ ⟹ 𝔼[Xn ∣ Xn−1] = Xn−1μ

𝔼[Xn] = 𝔼[𝔼[Xn ∣ Xn−1]] = 𝔼[Xn−1μ] = 𝔼[Xn−1] ⋅ μ

⟹ 𝔼 ∑
n≥0

Xn = ∑
n≥0

𝔼[Xn] = ∑
n≥0

μn

= μn

 = {
1

1 − μ if 0 < μ < 1

∞ if μ ≥ 1



Jensen’s Inequality

• For general (non-linear) function  of random variable 


we don’t have 


• But if the convexity of  is known, then the Jensen’s inequality applies:


•  is convex   


 


•  is concave  


  

f(X) X
𝔼[ f(X)] = f(𝔼[X])

f
f ⟺ f(λx + (1 − λ)y) ≤ λf(x) + (1 − λ)f(y)

⟹ 𝔼[ f(X)] ≥ f(𝔼[X])
f ⟺ f(λx + (1 − λ)y) ≥ λf(x) + (1 − λ)f(y)

⟹ 𝔼[ f(X)] ≤ f(𝔼[X])



Monotonicity of Expectation

• For random variables  and , for :


• If  a.s. (almost surely, i.e. ), then 


• If  ( ) a.s., then  ( )


• 


Proof: 





X Y c ∈ ℝ
X ≤ Y Pr(X ≤ Y) = 1 𝔼[X] ≤ 𝔼[Y]
X ≤ c X ≥ c 𝔼[X] ≤ c 𝔼[X] ≥ c

𝔼[ |X | ] ≥ |𝔼[X] | ≥ 0

𝔼[X] = ∑
x

x Pr(X = x) = ∑
x

x (Pr(X = x, Y < X) + Pr(X = x, Y ≥ X))
= ∑

x

x∑
y≥x

Pr((X, Y) = (x, y)) = ∑
y

∑
x≤y

x Pr((X, Y) = (x, y))

≤ ∑
y

∑
x≤y

y Pr((X, Y) = (x, y)) = ∑
y

y Pr(Y = y) = 𝔼[Y]

(  stochastically dominates )Y X



Averaging Principle

•  


•  


• By the Probabilistic Method: 

 such that   


 such that 

Pr(X ≥ 𝔼[X]) > 0

Pr(X ≤ 𝔼[X]) > 0

∃ω ∈ Ω X(ω) ≥ 𝔼[X]
∃ω ∈ Ω X(ω) ≤ 𝔼[X]

  if  then , where 


  if  then , where 

⟸ Pr(X < c) = 1 𝔼[X] < c c = 𝔼[X]

⟸ Pr(X > c) = 1 𝔼[X] > c c = 𝔼[X]

mean



Maximum Cut

• For an undirected graph :


• Find an  with largest cut 


• NP-hard problem (very unlikely to have efficient algorithms) 


Proposition: There always exists a large enough cut of size . 


Proof: Let , for , be mutually independent uniform random bits.


Each  joins  iff . Then it holds that .


By linearity of expectation: .


Due to the probabilistic method: There exists such  with .

G(V, E)
S ⊆ V δS ≜ {{u, v} ∈ E ∣ u ∈ S ∧ v ∉ S}

|δS | ≥ |E | /2

Yv ∈ {0,1} v ∈ V
v ∈ V S Yv = 1 |δS | = ∑{u,v}∈E I(Yu ≠ Yv)

𝔼[ |δS | ] = ∑{u,v}∈E Pr(Yu ≠ Yv) = |E | /2

S ⊆ V |δS | ≥ |E | /2

pairwise

The average cut generated by pairwise independent bits is . ≥ |E | /2

S S̄



Maximum Cut

• For an undirected graph :


• Find an  with largest cut 


• NP-hard problem (very unlikely to have efficient algorithms) 

G(V, E)
S ⊆ V δS ≜ {{u, v} ∈ E ∣ u ∈ S ∧ v ∉ S}

Parity Search:

for all :


initialize ;

for :


if  then  joins ;


return the  with the largest cut ;

b ∈ {0,1}⌈log2(n+1)⌉

Sb = ∅
i = 1,2,…, n

⨁
j:⌊i/2j⌋mod2=1

bj = 1 vi Sb

Sb δSb

Guarantees to return an  with . S ⊆ V |δS | ≥ |E | /2

S S̄


