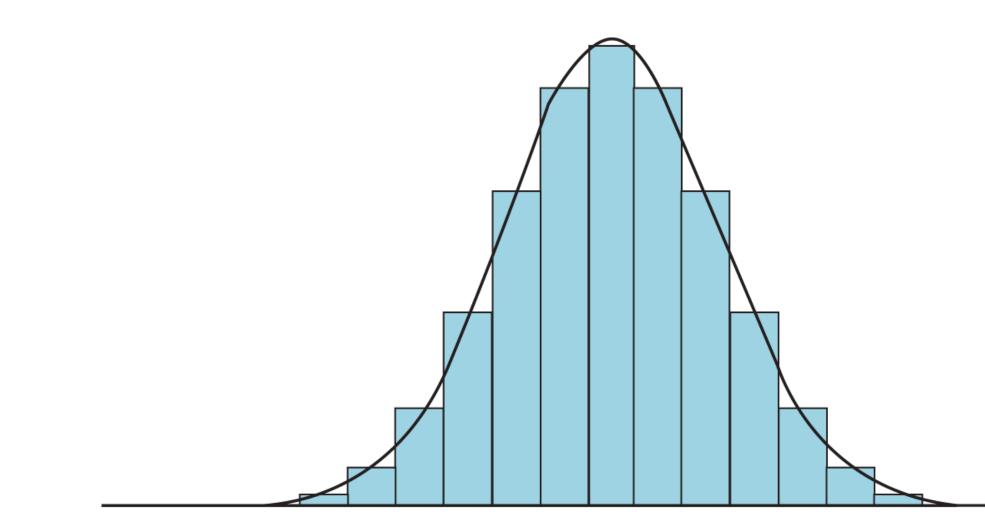
Foundations of Data Science Random Variable

尹一通,刘明谋 Nanjing University, 2024 Fall

Random Variable



"Variables" that are Random

- 令X和Y分别为两次掷了的结果:
 - 考虑 X^2 和XY——它们是相同的随机量吗?
- 设》正面朝上概率为p: 令X表示连续抛》直至正面朝上为止的抛》次数;
- 令X表示从一个装有M个 $\odot N$ M个 \odot 的 \odot 中 (有/无放回地) 取出n个球中 \odot 的个数;
- 令X为[0,1]中均匀分布的随机实数; 令Y为[0,∞)上满足Pr($Y \ge y$) = e^{-y}的随机实数。

令Y表示连抛n次,其中正面朝上的次数;

• n个顶点,任意两点间独立以概率p连一条边,产生随机图G,令 $X = \chi(G)$ 为最小染色数;

Random Variable

samples in Ω	values of X	values of Y
•	1	1
•	2	0
	3	1
	4	0
	5	1
	6	0

• Roll a \Im , let X be the outcome of the roll, let $Y \in \{0,1\}$ indicate its oddness.

Random Variable

• Let X be the sum of two independent v rolls.

••	2	•.•	3	• •	4	•::	5	• 🔀	6	•	7
. •	3		4	•••	5		6		7	•	8
	4	•••••••••••••••••••••••••••••••••••••••	5	•	6		7		8	•••••••••••••••••••••••••••••••••••••••	9
•	5	•••	6	•••	7		8		9		10
•	6		7	•••	8		9		10		11
•	7	::	8	•••	9		10		11		12

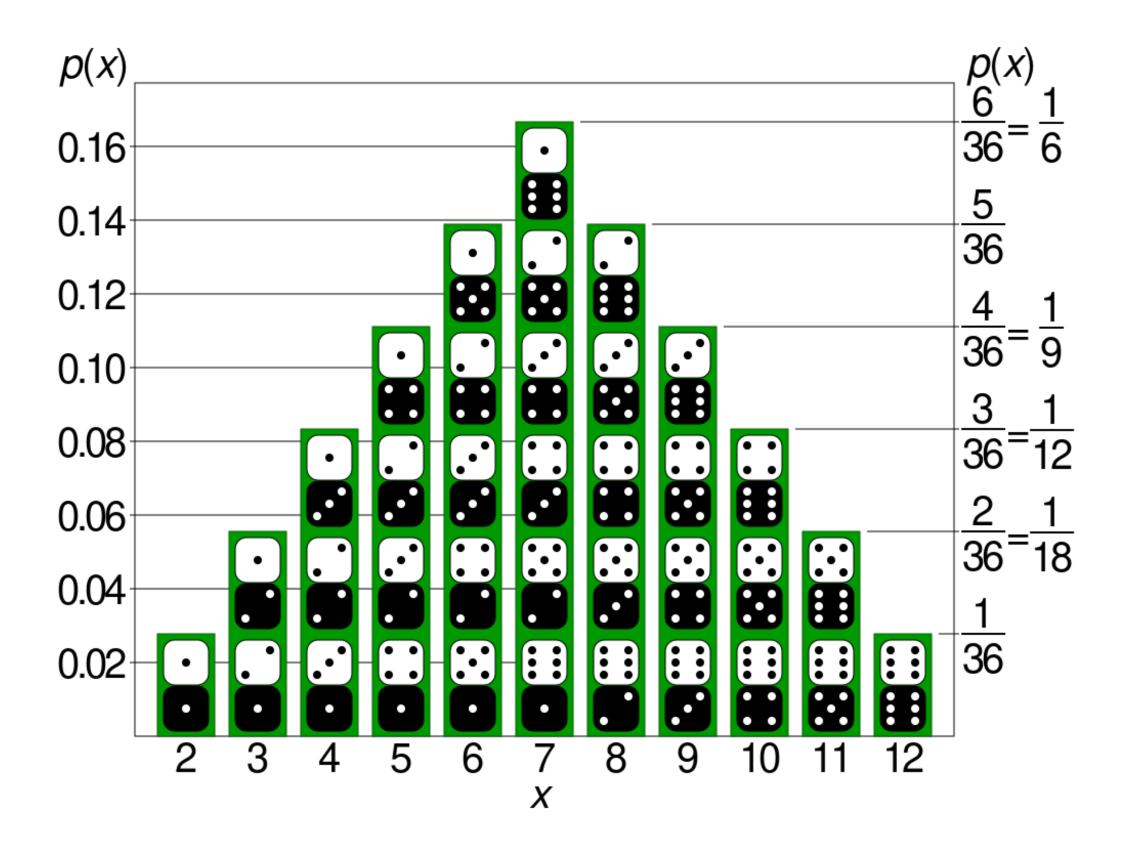
Random Variable (随机变量)

- Given (Ω, Σ, \Pr) , a <u>random variable</u> is a function $X : \Omega \to \mathbb{R}$
 - satisfying that $\forall x \in \mathbb{R}, \{\omega \in \Omega \mid X(\omega) \leq x\} \in \Sigma$ (i.e. X is <u> Σ -measurable</u>)
- $X \leq x$ (where $x \in \mathbb{R}$) denotes the event { $\omega \in \Omega \mid X(\omega) \leq x$ }
- X > x (where $x \in \mathbb{R}$) denotes the event { $\omega \in \Omega \mid X(\omega) > x$ }
- $X \in S$ (where $S \subseteq \mathbb{R}$ is countable \cap, \cup of intervals (y, x]) denotes the event $\{\omega \in \Omega \mid X(\omega) \in S\}$
- For discrete random variable $X : \Omega \to \mathbb{Z}$, this includes all subsets $S \subseteq \mathbb{Z}$

 $\Pr(X \in S)$

Distribution of Random Variable

• Let X be the sum of two independent v rolls.



Distribution (分布)

- The <u>cumulative distribution function</u> (CDF) (累积分布函数) or just <u>distribution</u> function (分布函数) of a random variable X is the $F_X : \mathbb{R} \to [0,1]$ given by $F_X(x) = \Pr(X \le x)$
- All probabilities regarding X can be deduced from $F_X{\mbox{. (Prob. space is no longer needed.)}}$
- Two random variables X and Y are identically distributed if $F_X = F_Y$
- <u>Monotone</u>: $\forall x, y \in \mathbb{R}$, if $x \leq y$ then $F_X(x) \leq F_X(y)$
- Bounded: $\lim_{x \to -\infty} F_X(x) = 0$ and $\lim_{x \to \infty} F_X(x) = 1$

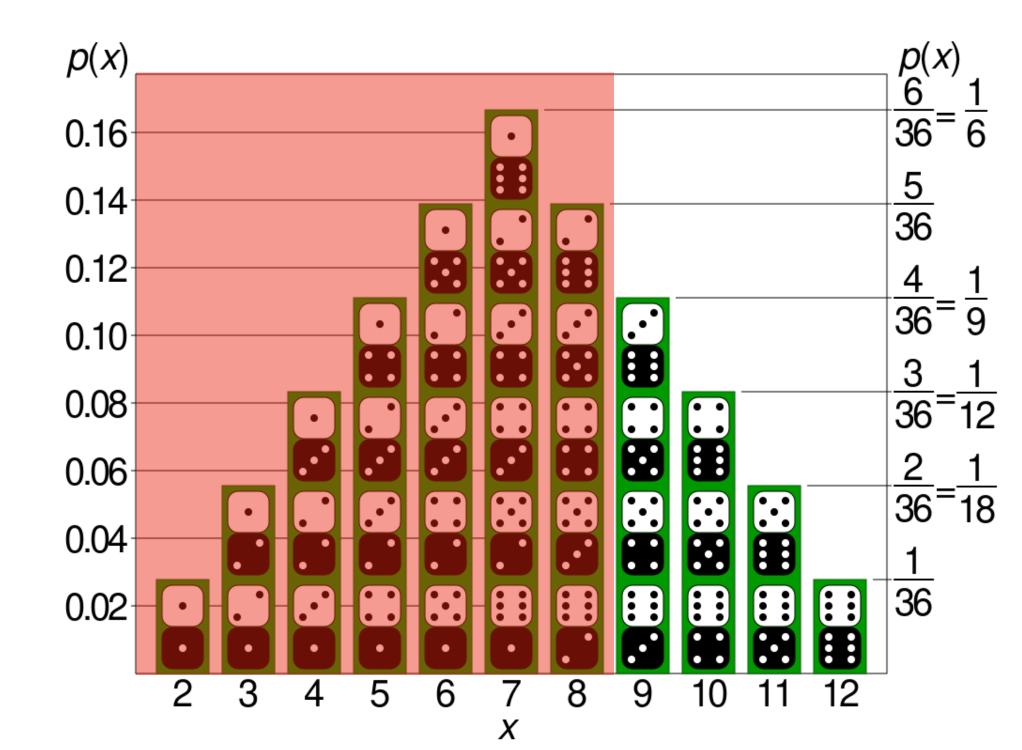
Discrete Random Variable

- A random variable $X : \Omega \to \mathbb{R}$ is called <u>discrete</u> if $X(\Omega)$ is countable.
- For a discrete random variable *X*, its probability mass function (pmf) (概率质量函数) $p_X : \mathbb{R} \to [0,1]$ is given by

$$p_X(x) = \Pr(X = x)$$

- The CDF F_X satisfies

$$F_X(y) = \sum_{\substack{x \le y}} p_X(x)$$



Continuous Random Variable

- A random variable $X: \Omega \to \mathbb{R}$ is called <u>continuous</u>, if its CDF can be expressed as
 - $F_X(y) = \Pr(X \leq$

- There are random variables that are neither discrete nor continuous.

$$\leq y) = \int_{-\infty}^{y} f_X(x) \, \mathrm{d}x$$

for some integrable probability density function (pdf) (概率密度函数) f_X .

• Never mind what type of integral for now. (Riemann integral? Lebesgue integral?)

Independence

- Two discrete random variables X and Y are independent if X = x and Y = y are independent events for all x and y.
- Discrete random variables X_1, \ldots, X_n are (mutually) independent if $X_1 = x_1, \ldots, X_n = x_n$ are mutually independent events for all x_1, \ldots, x_n $p_{(X_1,...,X_n)}(x_1,...,x_n) = \Pr(X_1 = x_1)$
- The pairwise (and k-wise) independence are defined in the same way.
 - out of *n* mutually independent random bits by XOR.

$$x_1 \cap \dots \cap X_n = x_n = p_{X_1}(x_1) \cdots p_{X_n}(x_n)$$

• Example: The construction of $2^n - 1$ pairwise independent random bits

• For general random variables, the events $X_i = x_i$ are replaced by $X_i \leq x_i$.

Random Vector (随机向量)

- random variable defined on the probability space (Ω, Σ, Pr) .
- The joint CDF (联合累积分布函数) F $F_X(x_1, \dots, x_n) = \Pr(X_1 \le x_1 \cap \dots \cap X_n \le x_n)$
- $p_X(x_1, \dots, x_n) = \Pr(x_1, \dots, x_n)$
- The marginal distribution of X_i in (X)

• Given (Ω, Σ, Pr) , a <u>random vector</u> is an $X = (X_1, \dots, X_n)$ where each X_i is a

$$Y_X : \mathbb{R}^n \to [0,1]$$
 is given by
 $(X_1 < x_1 \cap \dots \cap X_n < x_n)$

• For *discrete* random vector, the joint mass function (联合质量函数) is given by

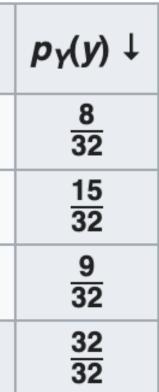
$$(X_1 = x_1 \cap \dots \cap X_n = x_n)$$

$$(X_1, \ldots, X_n)$$
 is given by

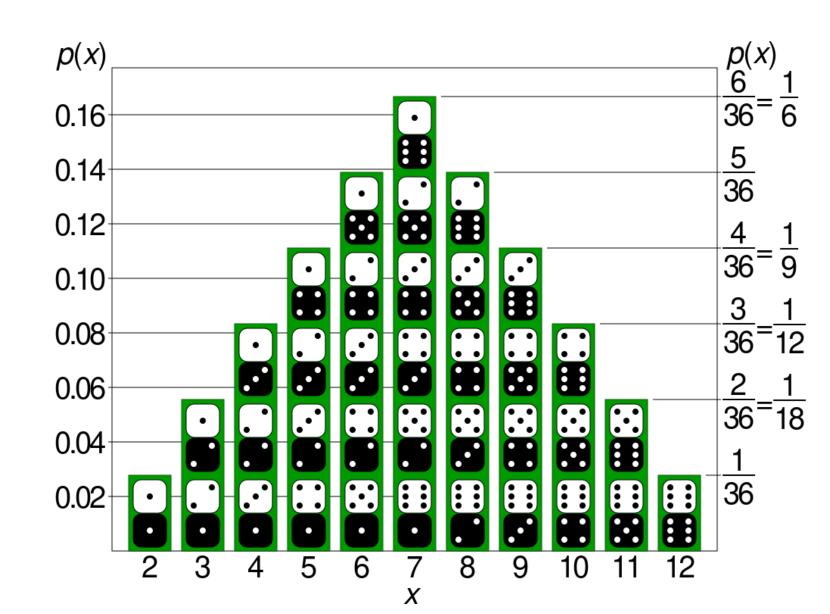
$$p_{(X_1,\ldots,X_n)}(x_1,\ldots,x_n)$$

 $x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_n$

Y Y	x 1	x 2	x 3	x 4
y 1	$\frac{4}{32}$	<u>2</u> 32	<u>1</u> 32	$\frac{1}{32}$
y 2	$\frac{3}{32}$	$\frac{6}{32}$	$\frac{3}{32}$	$\frac{3}{32}$
y 3	<u>9</u> 32	0	0	0
$p_X(x) \rightarrow$	<u>16</u> 32	<u>8</u> 32	<u>4</u> 32	<u>4</u> 32



Discrete Random Variable



Probability Mass Function (概率质量函数)

- Consider *integer-valued* discrete random variable $X: \Omega \to \mathbb{Z}$
- Its probability mass function (pmf) $p_X : \mathbb{Z} \to [0,1]$ is given by

- As histogram: p_X gives the "histogram" of the probability distribution
- <u>As vector</u>: p_X can be seen as a vector $p_X \in [0,1]^R$ such that $\|p_X(x)\|_1 = 1$, where $R = X(\Omega)$ is the range of values of X
- Its function Y = f(X) is also a discrete random variable, where $p_Y(y) = \sum_{x} p_X(x)$ x:f(x)=y

 $p_X(k) = \Pr(X = k)$

Discrete Random Variables

- Basic discrete probability distributions:
 - discrete uniform distribution (古典概型)
 - **Bernoulli trial** (coin flip)
 - **binomial distribution** (# of successes in *n* trials) **geometric distribution** (# of trials to get a success)

 - negative binomial distribution
 - hypergeometric distribution
 - **Poisson distribution** (idealized binomial distribution)
 -
- Probability distributions of discrete objects:
 - multinomial distribution (balls into bins)
 - Erdős–Rényi model (random graph)
 - Galton-Watson process (random tree)
 -

Bernoulli Trial (伯努利 (A coin flip)

- A <u>Bernoulli trial</u> is an experiment with two possible outcomes.
- A Bernoulli random variable X takes values in $\{0,1\}$, its pmf is
 - $p_X(k) = \Pr(X = k$
 - where $p \in [0,1]$ is a parameter.
- - $X = I(A) = \begin{cases} 1 & \text{if } A \text{ occurs} \\ 0 & \text{otherwise} \end{cases}$

$$k) = \begin{cases} p & \text{if } k = 1\\ 1 - p & \text{if } k = 0 \end{cases}$$

Indicator: For event A, the indicator X of A is a random variable defined by

a Bernoulli R.V. with parameter Pr(A)

Binomial Distribution (Number of HEADs in n coin flip

- Bernoulli trials with parameter p
- A binomial random variable X takes values in $\{0, 1, \ldots, n\}$, and

$$p_X(k) = \Pr(X = k) = \binom{n}{k} p^k (1-p)^{n-k}, \quad k = 0, 1, ..., n$$

• X: number of successes in *n i.i.d.* (independent and identically distributed)

• We say that X follows the binomial distribution with parameters n and p

denoted $X \sim Bin(n, p)$ or B(n, p)

Geometric Distribution (几何分布) (Number of coin flips to get a HEADs)

- X: number of i.i.d. Bernoulli trials needed to get one success
- A geometric random variable X takes values in $\{1, 2, ...\}$, and

$$p_X(k) = \Pr(X = k) =$$

- We say that X follows the <u>geometric distribution</u> with parameter $p \in [0,1]$ denoted $X \sim \text{Geo}(p)$ or Geometric(p)
- $(1-p)^{k-1}p, \quad k=1,2,\dots$

Geometric Distribution (几何分布) (Number of coin flips to get a HEADs)

- Geometric random variable $X \sim \text{Geo}(p)$ is <u>memoryless</u>: for $k \ge 1$, $n \ge 0$ $\Pr(X = k + n \mid$ **Proof:** $Pr(X = k + n \mid X > n) = \frac{Pr(X)}{Pr(X)}$
 - $=\frac{(1-p)^{k-1}p}{\sum_{k=0}^{\infty}(1-p)}$
- Geometric distribution is the only discrete memoryless distribution (with the range of values $\{1, 2, \ldots\}$).

$$X > n) = \Pr(X = k)$$

$$\frac{(k+n)}{(X>n)} = \frac{(1-p)^{n+k-1}p}{\sum_{k=n}^{\infty} (1-p)^{k}p}$$
$$\frac{(1-p)^{k-1}p}{(1-p)^{k-1}p}$$

Two Ways of Constructing Random Variables

- As a <u>function of random variables</u> $Y = f(X_1, X_2, \dots, X_n)$
 - Binomial Y: function f is sum, and (X_1, \ldots, X_n) are i.i.d. Bernoulli trials
 - independent $Y_1 \sim \text{Bin}(n_1, p), Y_2 \sim \text{Bin}(n_2, p) \Longrightarrow Y_1 + Y_2 \sim \text{Bin}(n_1 + n_2, p)$
- As a stopping time T of a sequence X_1, X_2, \ldots, X_T
 - A random variable *T* is a stopping time with respect to $X_1, X_2, ...$ if for all $t \ge 1$ the occurrence of T = t is determined by the values of $X_1, X_2, ..., X_t$
 - Geometric T: time for the first success in i.i.d. Bernoulli trials X_1, X_2, \ldots



Sum of Independent Random Variables

• If discrete random variables X and Y are independent, then:

$$p_{X+Y}(z) = \Pr(X+Y=z) = \sum_{x} \Pr(X=x \cap Y=z-x)$$
 (total probability (independence)
$$= \sum_{x} p_X(x) p_Y(z-x) = \sum_{y} p_X(z-y) p_Y(y)$$

• This defines a convolution (卷积) between mass functions:

 $p_{X+Y} = p_X * p_Y$

Sum of Independent Random Variables

• If discrete random variables X and Y are independent, then:

$$p_{X+Y}(z) = \sum_{x} p_X(x) p_Y(z-x) = \sum_{y} p_X(z-y) p_Y(y)$$

ernoulli random variables $X_1, \dots, X_n \in \{0,1\}$:
$$+\dots + X_n(k) = p \cdot p_{X_1 + \dots + X_{n-1}}(k-1) + (1-p) \cdot p_{X_1 + \dots + X_{n-1}}(k)$$
$$(k-1) + (1-p) \cdot p_{X_1 + \dots + X_{n-1}}(k)$$
$$(k-1) + (1-p)^{n-k} = \binom{n}{k} p^k (1-p)^{n-k}$$

• For *i.i.*

$$p_{X+Y}(z) = \sum_{x} p_X(x) p_Y(z-x) = \sum_{y} p_X(z-y) p_Y(y)$$

i.d. Bernoulli random variables $X_1, \dots, X_n \in \{0, 1\}$:

$$p_{X_1+\dots+X_n}(k) = p \cdot p_{X_1+\dots+X_{n-1}}(k-1) + (1-p) \cdot p_{X_1+\dots+X_{n-1}}(k)$$

$$= \binom{n-1}{k-1} p^k (1-p)^{n-k} + \binom{n-1}{k} p^k (1-p)^{n-k} = \binom{n}{k} p^k (1-p)^{n-k}$$

Negative Binomial Distribution (负二项分布) ("multiple successes" generalization of geometric distribution)

- X: number of failures in a sequence of i.i.d. Bernoulli trials before r successes • A <u>negative binomial random variable</u> X takes values in $\{0, 1, 2, \dots\}$, and $\binom{1}{(1-p)^{k}p^{r}} = (-1)^{k} \binom{-r}{k} (1-p)^{k}p^{r}$ *p*.

$$p_X(k) = \Pr(X = k) = \begin{pmatrix} k + r - k \\ k \end{pmatrix}$$

- We say that X follows the <u>negative binomial distribution</u> with parameters r, p $(X_r - 1)$ for i.i.d. $X_i \sim \text{Geo}(p)$

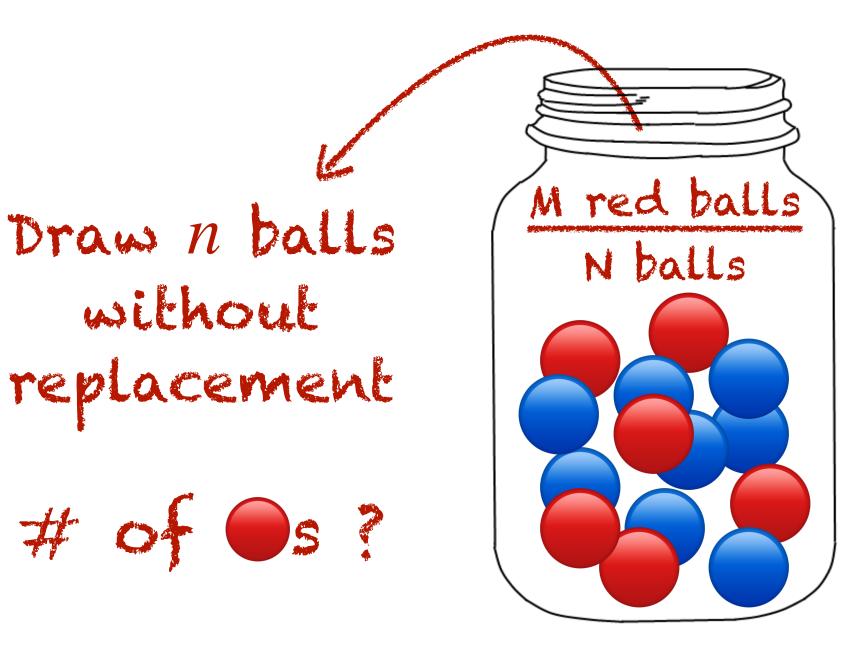
•
$$X = (X_1 - 1) + (X_2 - 1) + \dots + 0$$

for k = 0.1.2...

Hypergeometric Distribution (超几何分布) ("without replacement" variant of binomial distribution)

Draw n balls without replacement

• X: number of successes in n draws, without replacement (无放回), from a finite population of N objects, including exactly M ones, drawings of whom are counted as successes



Hypergeometric Distribution (超几何分布) ("without replacement" variant of binomial distribution)

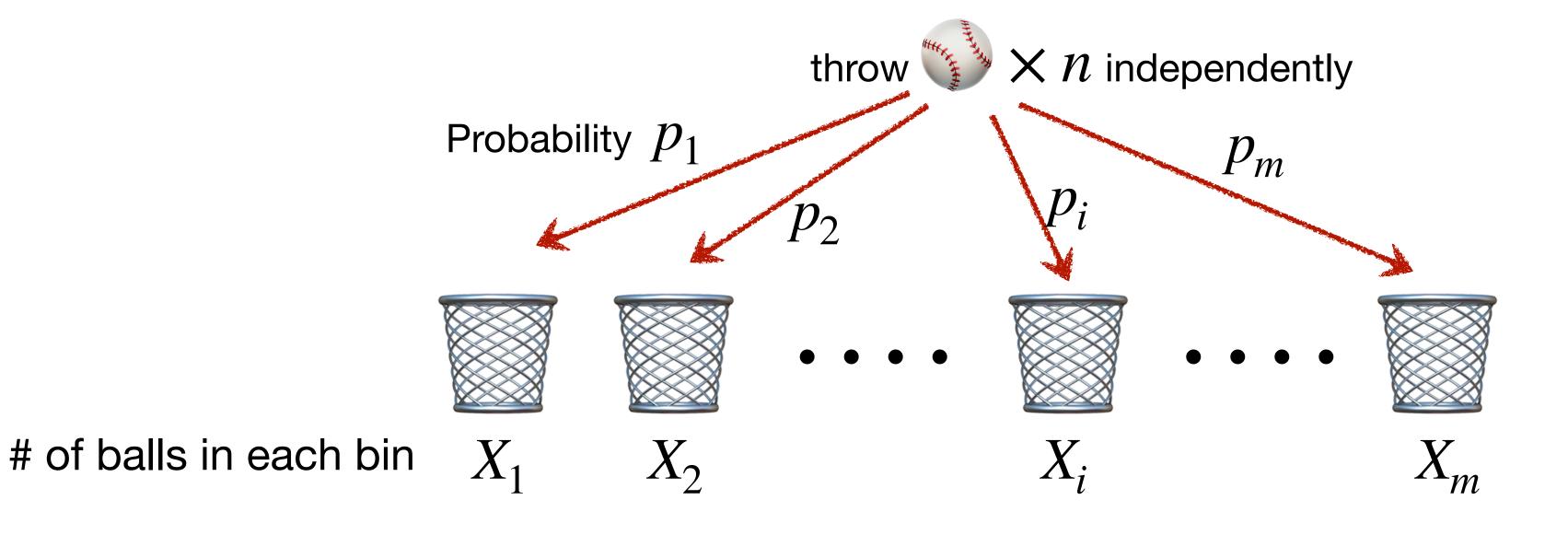
- X: number of successes in n draws, without replacement (无汝回), from a finite population of N objects, including exactly M ones, drawings of whom are counted as successes
- A hypergeometric random variable X takes values in $\{0, 1, ..., n\}$, and

$$p_X(k) = \Pr(X = k) = \binom{M}{k} \binom{N-M}{n-k} / \binom{N}{n}, \quad k = 0, 1, \dots, n$$

• We say that X follows the <u>hypergeometric distribution</u> with parameters N, M, n, where $N \ge 0, 0 \le M \le N$, and $0 \le n \le N$ are integers.

Multinomial Distribution (多项式分布) ("multi-dimensional" generalization of binomial distribution)

- where the probability of the *i*th outcome is p_i . Let X_i be the # of *i*th outcomes.



Trials with multiple outcomes: There are *n i.i.d.* trials, each having *m* possible outcomes,

Balls-into-bins model: Throw n balls into m bins. Each ball is thrown independently such that the *i*th bin receives the ball with probability p_i . Let X_i be the # of balls in the *i*th bin.

Multinomial Distribution (多项式分布) ("multi-dimensional" generalization of binomial distribution)

- Suppose that n balls are thrown into m bins, where each ball is thrown independently such that the *i*th bin receives the ball with probability p_i , where $p_1 + \cdots + p_m = 1$ is given.
- (X_1, X_2, \ldots, X_m) : the *i*th bin receives exactly X_i balls
- $(X_1, ...$

$$p_{(X_1,...,X_m)}(k_1,...,k_m) = \Pr\left(\bigcap_{i=1}^m (X_i = k_i)\right) = \frac{n!}{k_1!k_2!\cdots k_m!} p_1^{k_1} p_2^{k_2} \cdots p_m^{k_m}$$

- and $p = (p_1, ..., p_m) \in [0, 1]^m$ such that $p_1 + \cdots + p_m = 1$.

• We say that (X_1, X_2, \dots, X_m) follows the <u>multinomial distribution</u> with parameters m, n,

• $X_i \sim Bin(n, p_i)$ for each individual $1 \le i \le m$. (The marginal distribution of X_i is $Bin(n, p_i)$)

Binomial Distribution (Number of HEADs in n coin flip

- X: number of successes in n *i.i.d.* Bernoulli trials with parameter p
- A binomial random variable X takes values in $\{0, 1, \ldots, n\}$, and

$$p_X(k) = \Pr(X = k) = \binom{n}{k} p^k (1 - p)^k, \quad k = 0, 1, ..., n$$

• Typical in real life: large unknown population size $n \to \infty$ with known $np = \lambda$ $p_{\mathsf{Bin}(n,\lambda/n)}(k) = \binom{n}{k} \left(\frac{\lambda}{n}\right)^k \left(1 - \frac{\lambda}{n}\right)^{n-k} = \frac{n}{n} \frac{n}{k}$

$$\frac{n-1}{n} \cdots \frac{n-k+1}{n} \cdot \frac{\lambda^k}{k!} \left(1 - \frac{\lambda}{n}\right)^n \left(1 - \frac{\lambda}{n}\right)^{-k} \approx \frac{\lambda^k}{k!} e^{-\lambda}$$

A "universal" distribution for all sufficiently large n, knowing the mean $\lambda = np$?

Poisson Distribution (泊松分布) (Idealized binomial distribution when $n \to \infty$)

- A Poisson random variable X takes
 - $p_{X}(k) = \Pr(X = k) =$
- It is a well-defined probability distribution
- We say that X follows the <u>Poisson distribution</u> with parameter $\lambda > 0$

s values in
$$\{0,1,2,\ldots\}$$
, and

$$= e^{-\lambda} \frac{\lambda^k}{k!}, \quad k = 0, 1, 2, \dots$$

Solution over
$$\{0,1,2,\dots\}$$
: $\sum_{k=0}^{\infty} e^{-\lambda} \frac{\lambda^k}{k!} = 1$

denoted $X \sim \text{Pois}(\lambda)$

Sum of Poisson Variables

- Proo

$$f: p_{X+Y}(k) = \Pr(X+Y=k) = \sum_{i=0}^{k} \Pr(X=i \cap Y=k-i) = \sum_{i=0}^{k} p_X(i)p_Y(k-i)$$
$$= \sum_{i=0}^{k} \frac{e^{-\lambda_1}\lambda_1^i}{i!} \frac{e^{-\lambda_2}\lambda_2^{k-i}}{(k-i)!} = \frac{e^{-(\lambda_1+\lambda_2)}}{k!} \sum_{i=0}^{k} \binom{k}{i} \lambda_1^i \lambda_2^{k-i} = \frac{e^{-(\lambda_1+\lambda_2)}(\lambda_1+\lambda_2)^k}{k!}$$

• Independent $X \sim Bin(n_1, p), Y \sim Bin(n_2, p) \Longrightarrow X + Y \sim Bin(n_1 + n_2, p)$ • By the heuristics $Bin(n, p) \approx Pois(np)$, it seems that the following should hold: • independent $X \sim \text{Pois}(\lambda_1), Y \sim \text{Pois}(\lambda_2) \Longrightarrow X + Y \sim \text{Pois}(\lambda_1 + \lambda_2)$ k

Poisson Approximation

- (X_1, \ldots, X_m) follows the multinomial distribution with parameters $m, n, p_1 + \cdots + p_m = 1$ • *n* balls are thrown into *m* bins independently according to the distribution $(p_1, ..., p_m)$

 - after all *n* balls are thrown, the *i*th bin receives X_i balls

•
$$(Y_1, \ldots, Y_m)$$
: each $Y_i \sim \text{Pois}(\lambda_i)$ inc

$$\Pr[(Y_1, ..., Y_m) = (k_1, ..., k_m) \mid Y_1 + \frac{n!}{k_1! \cdots k_m!} p_1^{k_1} \cdots p_m^{k_m} =$$

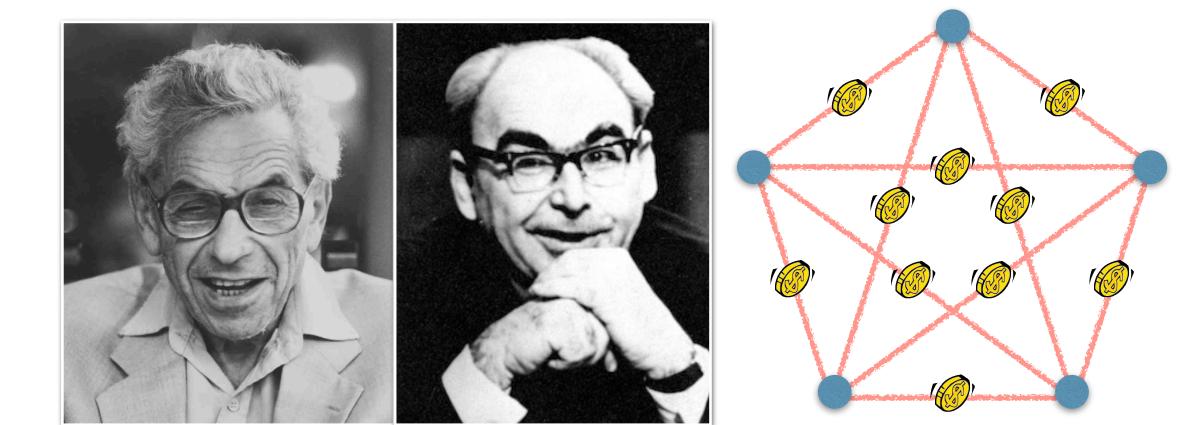
- dependently, where $\lambda_i = np_i$
- **Proposition**: $(X_1, ..., X_m)$ is identically distributed as $(Y_1, ..., Y_m)$ given that $\sum Y_i = n$ i=1**Proof:** Observe that $Y_1 + \cdots + Y_m \sim \text{Pois}(n)$. For any $k_1, \ldots, k_m \ge 0$ that $k_1 + \cdots + k_m = n$: $\cdots + Y_m = n] = \left(\prod_{l=1}^{m} \frac{e^{-np_i}(np_i)^{k_i}}{1-1}\right) / \left(\frac{e^{-nn}}{1-1}\right)$ $\begin{pmatrix} \mathbf{I} \\ i=1 \end{pmatrix}$ $K_i! \quad f' \quad n! \quad f$ $= \Pr[(X_1, ..., X_m) = (k_1, ..., k_m)]$

Balls into Bins (Random mapping)

- Throw *n* balls into *m* bins uniformly at random (*u.a.r.*).
- Uniform random $f: [n] \rightarrow [m]$.
- The numbers of balls received in each bins $(X_1, ..., X_m)$ follow the multinomial distribution with parameters m, n and (1/m, ..., 1/m).
 - Birthday problem: the property of being injective (1-1)
 - Coupon collector problem: the property of being surjective (onto)
 - Occupancy (load balancing) problem: the maximum load $\max_i X_i$

Random Graph (Erdős–Rényi random graph model)

- $G \sim G(n, p)$: There are *n* vertices. For each pair *u*, *v* of vertices, an *i.i.d.* Bernoulli trial with parameter *p* is conducted, and an edge $\{u, v\}$ is added if the trial succeeds.
- G(n, 1/2) gives the uniformly distributed random graph on n vertices.
- The number of edges in $G \sim G(n, p)$ follows the binomial distribution $Bin\left(\binom{n}{2}, p\right)$. (Therefore, G(n, p) is sometimes also called the *binomial random graph*)
- Random variables defined by $G \sim G(n, p)$: chromatic number $\chi(G)$, independence number $\alpha(G)$, clique number $\omega(G)$, diameter diam(G), connectivity, max-degree $\Delta(G)$, number of triangles, number of hamiltonian cycles, ...

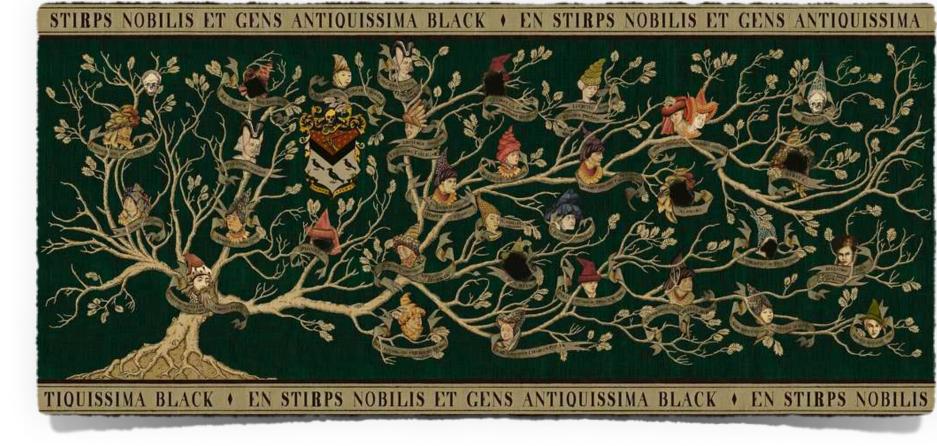


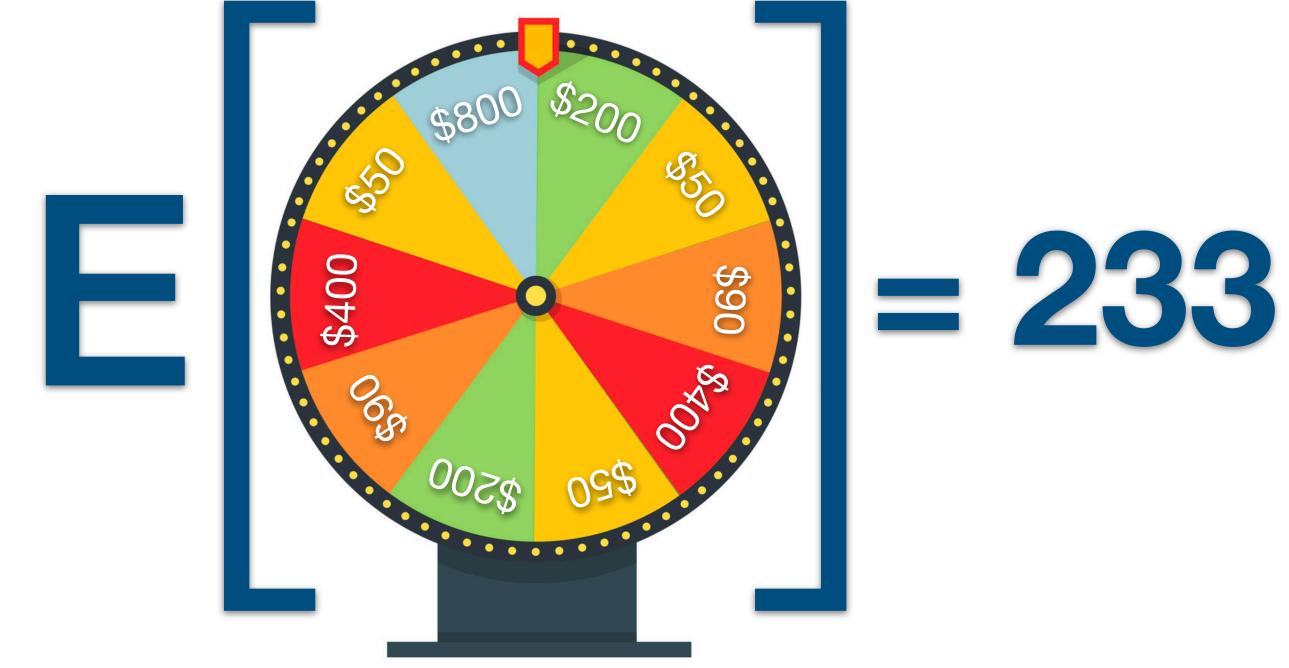
Random Tree (Galton–Watson branching process)

- A sequence of random variables X_0, X_1, X_2, \ldots recursively defined by $X_0 = 1 \text{ and } X_{n+1} = \sum_{i=1}^{X_n} \xi_i^{(n)}$ i=1

where $\{\xi_i^{(n)} \mid n, j \ge 0\}$ are *i.i.d.* non-negative integer-valued random variables (e.g. Poisson random variables)

- Random family tree: the *j*th family member in the *n*th generation has $\xi_i^{(n)}$ offsprings
- X_n : number of family members in the *n*th generation





Expectation(数学期望)

- The <u>expectation</u> (or <u>mean</u>) of a discrete random variable X is defined to be $\mathbb{E}[X] =$
 - where p_X denotes the *pmf* of X and the sum is taken over all x that $p_X(x) > 0$
- $\mathbb{E}[X]$ may be ∞ (we assume absolute convergence for $\mathbb{E}[X] < \infty$)
 - Example I: $p_X(2^k) = 2^{-k}$ for k = 1, 2, ... (the St. Petersburg paradox)
 - Example II: $X \in \mathbb{Z} \setminus \{0\}$ and $p_X(k) =$

$$\sum_{x} x \cdot p_X(x)$$

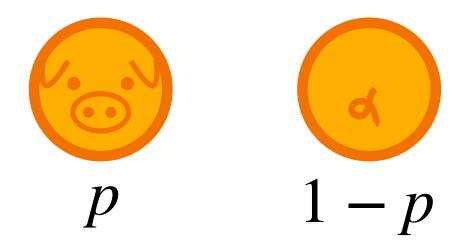
$$= \frac{1}{ak^2} \text{ where } a = \sum_{\substack{k \neq 0}} k^{-2} = \frac{\pi^2}{3}$$

Perspectives of Expectation

- Computation of expectation:
 - straightforward computation (by definition)
 - **linearity of expectation** (by linearity)
 - law of total expectation (by case)
- Upper/lower bounds of expectation:
 - Jensen's inequality (by convexity)
 - **Double counting** (tail sum for expectation)
 - monotonicity (by coupling)
- Implications of expectation:
 - averaging principle (the probabilistic method)
 - tail inequalities (the moment method)

Expectation of Indicator

- For Bernoulli random variable $X \in \{0,1\}$ with parameter p $\mathbb{E}[X] = 0 \cdot (1)$
- For the indicator random variable X = I(A) of event A, where X = 1 if A occurs and X = 0 if otherwise (i.e. $\forall \omega \in \Omega, X(\omega) = 1$ if $\omega \in A$ and $X(\omega) = 0$ if $\omega \notin A$)



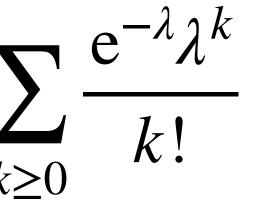
$$1 - p) + 1 \cdot p = p$$

 $\mathbb{E}[X] = 0 \cdot \Pr(A^{c}) + 1 \cdot \Pr(A) = \Pr(A)$

Poisson Distribution (泊松分布)

• Expectation of Poisson random variable $X \sim \text{Pois}(\lambda)$

$$\mathbb{E}[X] = \sum_{k\geq 0} k \frac{e^{-\lambda} \lambda^k}{k!}$$
$$= \sum_{k\geq 1} \frac{e^{-\lambda} \lambda^k}{(k-1)!}$$
$$= \sum_{k\geq 0} \frac{e^{-\lambda} \lambda^{k+1}}{k!} = \lambda \sum_{k\geq 0} \frac{e^{-\lambda} \lambda^{k+1}}{k!}$$
$$= \lambda$$



Change of Variables (Law Of The Unconscious Statistician, LOTUS)

- For $f: \mathbb{R} \to \mathbb{R}$, for discrete X and $X = (X_1, \dots, X_n)$:
 - $\mathbb{E}[f(X)] = \sum_{x} f(x) p_X(x)$
 - $\mathbb{E}[f(X_1, ..., X_n)] = \sum_{(x_1, ..., x_n)} f(x_1)$
- **Proof**: Let $Y = f(X_1, \ldots, X_n)$. Then y $y (x_1,...,x_n) \in f^{-1}(y)$ $(x_1, ..., x_n)$ = $\sum f(x_1, ..., x_n) p_X(x_1, ..., x_n)$ $(x_1,...,x_n)$

$$(x_1,\ldots,x_n)p_X(x_1,\ldots,x_n)$$

 $\mathbb{E}[f(X_1, \dots, X_n)] = \sum y \Pr(Y = y) = \sum y \qquad \sum \Pr((X_1, \dots, X_1) = (x_1, \dots, x_n))$ = $f(x_1, ..., x_n) \Pr((X_1, ..., X_1) = (x_1, ..., x_n))$

Linearity of Expectation

• For $a, b \in \mathbb{R}$ and random variables X and Y:

- $\mathbb{E}[aX+b] = a\mathbb{E}[X]+b$
- $\mathbb{E}[X + Y] = \mathbb{E}[X] + \mathbb{E}[Y]$
- **Proof:** $\mathbb{E}[aX+b] = \sum (ax+b)p_X(x) = a$ \boldsymbol{X}

$$E[X + Y] = \sum_{x,y} (x + y) \Pr((X, Y))$$
$$= \sum_{x,y} x \sum_{x,y} \Pr((X, Y)) =$$

$$=\sum_{x}^{x} x \Pr(X=x) + \sum_{y}^{y}$$

$$a\sum_{x} x p_X(x) + b\sum_{x} p_X(x) = a\mathbb{E}[X] + b$$

=(x, y))

 $(x, y)) + \sum y \sum \Pr((X, Y) = (x, y))$ $y \operatorname{Pr}(Y = y) = \mathbb{E}[X] + \mathbb{E}[Y]$

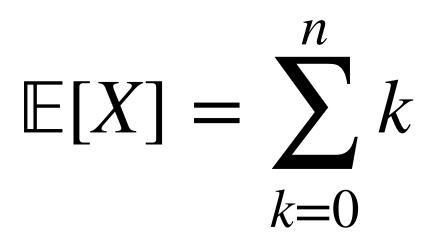
Linearity of Expectation

- For $a, b \in \mathbb{R}$ and random variables X and Y:
 - $\mathbb{E}[aX+b] = a\mathbb{E}[X]+b$
 - $\mathbb{E}[X + Y] = \mathbb{E}[X] + \mathbb{E}[Y]$
- For linear (affine) function f on random variables X_1, \ldots, X_n
- It holds for arbitrarily dependent X_1, \ldots, X_n

$\mathbb{E}[f(X_1, \dots, X_n)] = f(\mathbb{E}[X_1], \dots, \mathbb{E}[X_n])$

Binomial Distribution

• For binomial random variable $X \sim Bin(n, p)$



- Observation: $X \sim Bin(n, p)$ can be expressed as $X = X_1 + \cdots + X_n$, where X_1, \ldots, X_n are i.i.d. Bernoulli random variables with parameter p
- Linearity of expectation:
 - $\mathbb{E}[X] = \mathbb{E}[X_1] \dashv$

$$\binom{n}{k} p^k (1-p)^{n-k}$$

$$+ \cdots + \mathbb{E}[X_n] = np$$

Geometric Distributic

- For geometric random variable $X \sim \text{Geo}(p)$ $\mathbb{E}[X] = \sum_{k > 1}$
- **Observation**: $X \sim \text{Geo}(p)$ can be calculated by $X = \sum_{k>1} I_k$, where $I_k \in \{0,1\}$ indicates whether all of the first (k - 1) trials fail
- Linearity of expectation:

$$\mathbb{E}[X] = \sum_{k \ge 1} \mathbb{E}[I_k] = \sum_{k \ge 1} (1-p)^{k-1} = \frac{1}{p}$$

$$\sum_{\geq 1} k(1-p)^{k-1}p$$

Negative Binomial Distribution (负 二项分布)

- For negative binomial random variable X with parameters r, p $\mathbb{E}[X] = \sum_{k>1} k \binom{k}{k}$
- Observation: X can be expressed as $X = (X_1 1) + \cdots + (X_r 1)$, where X_1, \ldots, X_r are i.i.d. geometric random variables with parameter p
- Linearity of expectation:
 - $\mathbb{E}[X] = \mathbb{E}[X_1] + \cdots$

$$\binom{k+r-1}{k}(1-p)^{k}p^{r}$$

$$\cdot + \mathbb{E}[X_r] - r = r(1-p)/p$$

Hypergeometric Distribution (超几何分布)

For hypergeometric random variable X with parameters N, M, n

$$\mathbb{E}[X] = \sum_{k=0}^{n} k\binom{M}{k} \binom{N-M}{n-k} / \binom{N}{n}$$

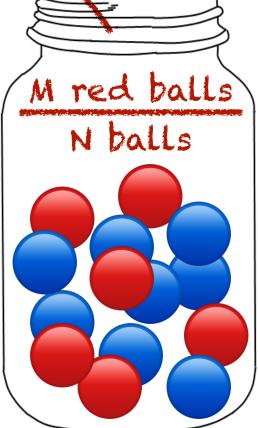
• **Observation**: each red ball (success) is drawn with probability $\binom{N-1}{n-1} / \binom{N}{n} = \frac{n}{N}$. Then $X = X_1 + \cdots + X_M$, where $X_i \in \{0,1\}$ indicates whether the *i*th red ball is drawn.

Linearity of expectation:

$\mathbb{E}[X] = \mathbb{E}[X_1]$

$$+\cdots+\mathbb{E}[X_M]=rac{nM}{N}$$

Draw n balls without replacement



Pattern Matching

- For pattern $\pi \in Q^k$, let X be the number of appearances of π in s as substring
- Let $I_i \in \{0,1\}$ indicate that $\pi = (s_i, s_{i+1}, s_{i+1})$
- Linearity of expectation:

n-k+1 $\mathbb{E}[X] = \sum_{i=1}^{n} \mathbb{E}_{i}$ i=1

Hamlet

• $s = (s_1, ..., s_n) \in Q^n$: uniform random string of *n* letters from alphabet *Q* with |Q| = q

$$\dots, S_{i+k-1}$$
). Then $X = \sum_{i=1}^{n-k+1} I_i$

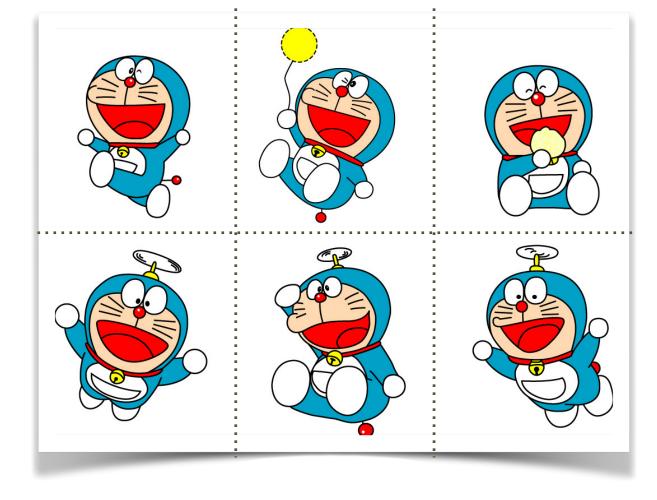
$$E[I_i] = (n - k + 1)q^{-k}$$

Expected time (position) for the first appearance? It may depend on the pattern π . Optional Stopping Theorem (OST)

Coupon Collector

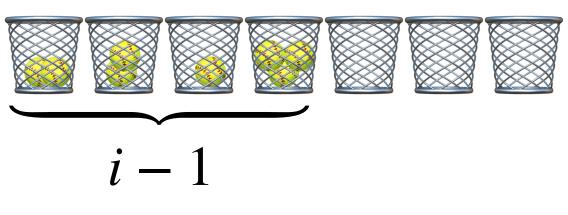
- Each cookie box comes with a uniform random coupon.
 - Number of cookie boxes opened to collect all n types of coupons
- - X: total number of balls thrown to make all n bins nonempty
 - X_i : number of balls thrown while there are exactly (i 1) nonempty bins
- X_i is geometric with parameter $p_i =$
- Linearity of expectation:

$$\mathbb{E}[X] = \sum_{i=1}^{n} \mathbb{E}[X_i] = \sum_{i=1}^{n} \frac{n}{n-i+1} = n \sum_{i=1}^{n} \frac{1}{i} = nH(n) \approx n \ln n$$
(Harmonic number)



Balls-into-bins model: throw balls one-by-one *u.a.r.* to occupy all *n* bins

$$1 - \frac{i-1}{n} \text{ and } X = \sum_{i=1}^{n} X_i$$



Double Counting (Tail sum for expectation)

• For nonnegative random variable X that takes values in $\{0, 1, 2, \dots\}$

 $\mathbb{E}[X] =$

Proof I (Double Counting):

$$\mathbb{E}[X] = \sum_{x \ge 0} x \Pr[X = x] = \sum_{x \ge 0} \sum_{k=0}^{x-1} \Pr[X = x] = \sum_{k \ge 0} \sum_{x > k} \Pr[X = x] = \sum_{k \ge 0} \Pr[X > k]$$

Then $X = \sum I_k$. By linearity, $\mathbb{E}[X] = \sum \mathbb{E}[I_k] = \sum \Pr[X > k]$ $k \geq 0$

$$\sum_{k=0}^{\infty} \Pr[X > k]$$

Proof II (Linearity of Expectation): Let $I_k \in \{0,1\}$ indicate whether X > k. *k*≥0 *k*≥0

Open Addressing with Uniform Hashing

- **Open addressing** (开放寻址): hash collision is resolved by a probing strategy - when searching for a key $x \in U$, the *i*th probed slot is given by h(x, i)
 - Linear probing: $h(x, i) = h(x) + i \pmod{m}$
 - Quadratic probing: $h(x, i) = h(x) + c_1i + c_2i^2 \pmod{m}$
 - Double hashing: $h(x, i) = h_1(x) + i \cdot h_2(x) \pmod{m}$

• Hash table: n keys from a universe U are mapped to m slots by hash function $h: U \rightarrow [m]$

• Uniform hashing: $h(x, i) = \pi(i)$ where π is a uniform random permutation of [m]

Open Addressing with Uniform Hashing

- **Proof**: Let X be the number of probes in an unsuccessful search. $\mathbb{E}[X] = \sum_{k=1}^{\infty} \Pr(X > k) = 1 + \sum_{k=1}^{\infty} \Pr(X > k)$ k=1k=0= 1 + $\sum_{i=1}^{k} \Pr(\bigcap_{i=1}^{k} A_i)$ (where A_i is the event that the *i*th probed slot is occupied) *k*=1 $= 1 + \sum_{i=1}^{\infty} \prod_{j=1}^{k} \Pr\left(A_i \mid \bigcap_{j < i} A_j\right) \quad \text{(by chain rule)}$ k=1 i=1 $= 1 + \sum_{k=1}^{\infty} \prod_{i=1}^{k} \frac{n-i+1}{m-i+1} \le 1 + \sum_{k=1}^{\infty} \frac{m-i+1}{m-i+1} \le 1 \le 1 + \sum_{k=1}^{\infty} \frac{m-$

• In a hash table with load factor $\alpha = n/m$, assuming uniform hashing, the expected number of probes in an unsuccessful search is at most $1/(1 - \alpha)$.

$$\sum_{k=1}^{k} \frac{n}{m} = 1 + \sum_{k=1}^{\infty} \alpha^{k} = \sum_{k=0}^{\infty} \alpha^{k} = \frac{1}{1 - \alpha}$$

Principle of Inclusion-Exclusion

 $(-1)^{|S|}$

i∈S

- $\star I(A^c) = 1 I(A)$ $\bullet I(A \cap B) = I(A) \cdot I(B)$
- For events $A_1, A_2, ..., A_n$:

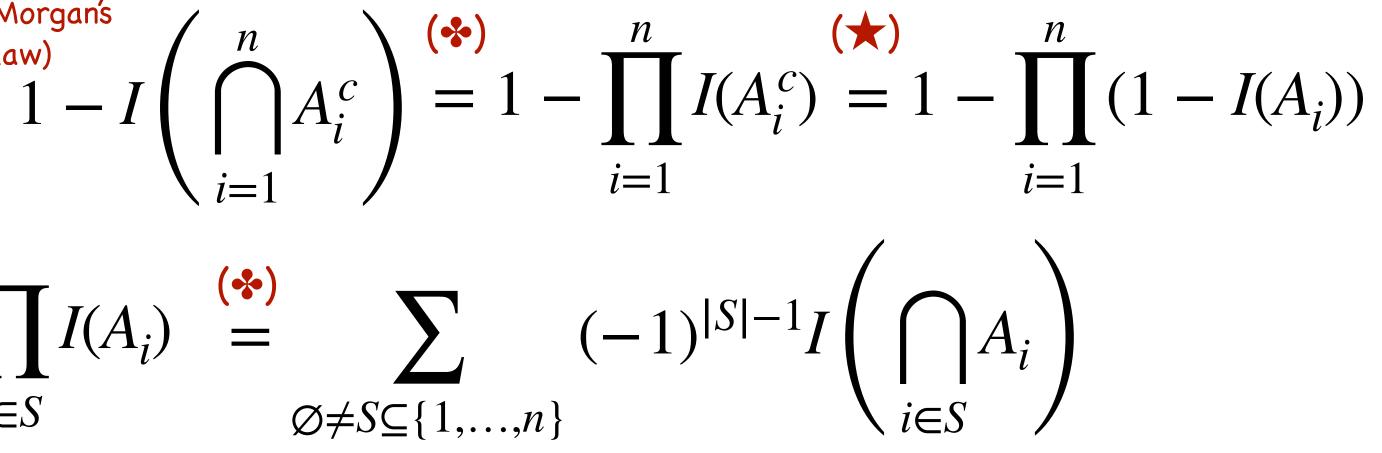
(binomial

theorem)

$$I\left(\bigcup_{i=1}^{n} A_{i}\right) \stackrel{(\bigstar)}{=} 1 - I\left(\left(\bigcup_{i=1}^{n} A_{i}\right)^{c}\right) \stackrel{(\text{De Morgan's}}{=} 1 - I$$

 $S \subseteq \{1, \dots, n\}$

• Let $I(A) \in \{0,1\}$ be the indicator random variable of event A. It's easy to verify:



Principle of Inclusion-Exclusion

- Let $I(A) \in \{0,1\}$ be the indicator random variable of event A.
- For events $A_1, A_2, ..., A_n$:

• By linearity of expectation:

$$\Pr\left(\bigcup_{i=1}^{n} A_i\right) = \sum_{\emptyset \neq S \subseteq \{1,\dots,n\}} (-1)^{|S|-1} \Pr\left(\bigcap_{i \in S} A_i\right)$$

$$I\left(\bigcup_{i=1}^{n} A_{i}\right) = \sum_{\emptyset \neq S \subseteq \{1,\dots,n\}} (-1)^{|S|-1} I\left(\bigcap_{i \in S} A_{i}\right)$$

Boole-Bonferroni Inequality

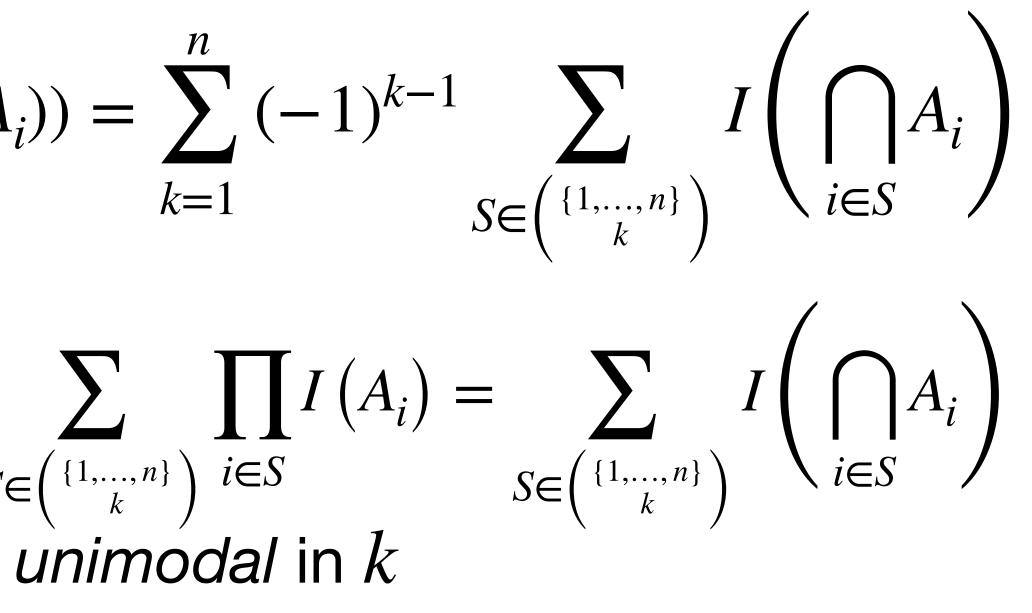
• For events A_1, A_2, \ldots, A_n :

$$I\left(\bigcup_{i=1}^{n} A_i\right) = 1 - \prod_{i=1}^{n} (1 - I(A_i))$$

• Observation: $X_k \triangleq \left(\begin{array}{c} \sum_{i=1}^n I(A_i) \\ k \end{array} \right) = \sum_{S \in \binom{\{1,\dots,n\}}{k}} \prod_{i \in S} I(A_i) = \sum_{S \in \binom{\{1,\dots,n\}}{k}} I\left(\bigcap_{i \in S} A_i\right)$

and X_k as a binomial coefficient is *unimodal* in k

- $k \leq 2t$
- Take expectation. By linearity of expectation \implies Bonferroni inequality



• For unimodal sequence X_k : $\sum (-1)^{k-1} X_k \le \sum (-1)^{k-1} X_k \le \sum (-1)^{k-1} X_k \le \sum (-1)^{k-1} X_k$ *k*=1 $k \leq 2t+1$

Limitation of Linearity

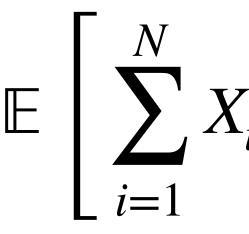
• Infinite sum: X_1, X_2, \ldots

$$\mathbb{E}\left[\sum_{i=1}^{\infty} X_i\right] = \sum_{i=1}^{\infty} \mathbb{E}[X_i] \text{ if the absolute convergence } \sum_{i=1}^{\infty} \mathbb{E}[|X_i|] < \infty \text{ holds}$$

This is possible: $\mathbb{E}\left[\sum_{i=1}^{\infty} X_i\right] < \infty \text{ and } \sum_{i=1}^{\infty} \mathbb{E}[X_i] < \infty \text{ but } \mathbb{E}\left[\sum_{i=1}^{\infty} X_i\right] \neq \sum_{i=1}^{\infty} \mathbb{E}[X_i]$

Counterexample: the martingale betting strategy in a fair gambling game

• A random number of random variables: X_1, X_2, \ldots, X_N for random N



 $\mathbb{E}\left[\sum_{i=1}^{N} X_{i}\right] = \mathbb{E}[N]\mathbb{E}[X_{1}]?$

Conditional Expectation (条件期望)

- The <u>conditional expectation</u> of a discrete random variable X given that event A occurs, is defined by
 - $\mathbb{E}[X \mid A] = \sum_{i=1}^{n}$

where the sum is taken over all x that Pr(X = x | A) > 0

- To be well-defined, assume:
 - $\Pr(A) > 0$
 - the sum $\sum_{x} x \Pr(X = x \mid A)$ converges absolutely

$$\sum x \Pr(X = x \mid A)$$

- \mathcal{X}

Conditional Distribution (条件分布)

• The probability mass function $p_{X|A} : \mathbb{Z} \to [0,1]$ of a discrete random variable X given that event A occurs, is given by

• $(X \mid A)$ can now be seen as a well-defined discrete random variable, whose distribution is described by the pmf $p_{X|A}$

•
$$\mathbb{E}[X \mid A] = \sum_{x} x \Pr(X = x \mid A)$$
 is

• $\mathbb{E}[X \mid A]$ satisfies the properties of expectation, e.g. linearity of expectation

 $p_{X|A}(x) = \Pr(X = x \mid A)$

just the expectation of $(X \mid A)$

Law of Total Expectation

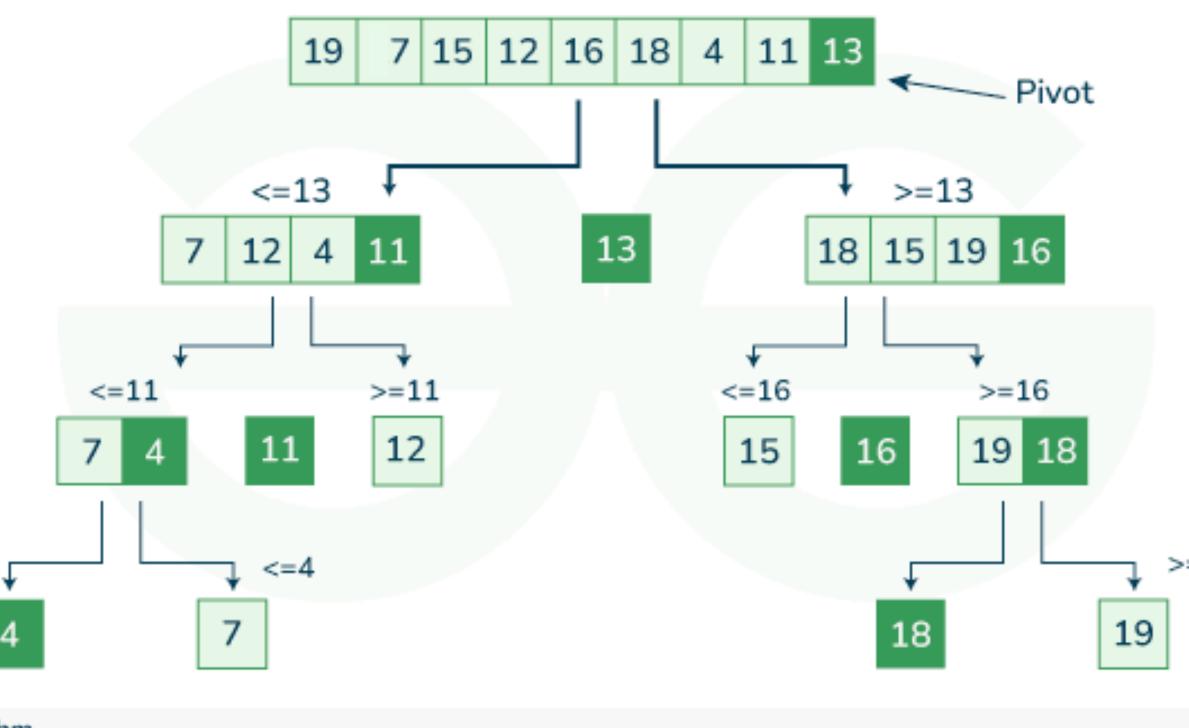
- Let *X* be a discrete random variable with finite $\mathbb{E}[X]$. Let events B_1, B_2, \dots, B_n be a partition of Ω such that $\Pr(B_i) > 0$ for all *i*. $\mathbb{E}[X] = \sum_{i=1}^n \mathbb{E}[X \mid B_i] \Pr(B_i)$
- The law of total probability is now a special case with X = I(A)

Proof:
$$\mathbb{E}[X] = \sum_{x} x \operatorname{Pr}(X = x) = \sum_{x} x \sum_{i=1}^{n} \operatorname{Pr}(X = x \mid B_i) \operatorname{Pr}(B_i)$$
 (law of total problem)
$$= \sum_{i=1}^{n} \operatorname{Pr}(B_i) \sum_{x} x \operatorname{Pr}(X = x \mid B_i) = \sum_{i=1}^{n} \mathbb{E}[X \mid B_i] \operatorname{Pr}(B_i)$$

QSort(A[1...n]): an array A[1...n] of distinct numbers If n > 1 then do: choose a pivot x = A[n]; partition A into L with all entries < x, and R with all entries > x; store $A[|L| + 1] \leftarrow x$, $A[1, \ldots, |L|] \leftarrow L,$ $A[|L|+2,...,n] \leftarrow R;$ QSort(A[1,..., |L|])and QSort(A[|L| + 2, ..., n]);

Quick Sort Algorithm

Quick Sort Algorithm



QSort(A[1...n]): an array A[1...n] of distinct numbers If n > 1 then do: choose a pivot x = A[n]; partition A into L with all entries < x, and R with all entries > x; store $A[|L|+1] \leftarrow x$, $A[1,\ldots,|L|] \leftarrow L,$ $A[|L|+2,\ldots,n] \leftarrow R;$ QSort(A[1,..., |L|])and QSort(A[|L| + 2, ..., n]);

- A comparison-based sorting algorithm
- # of comparisons
 - worst-case complexity: $O(n^2)$
 - always picks smallest/largest one
 - T(n) = (n 1) + T(n 1), T(1) = 0

•
$$T(n) = \sum_{i=1}^{n} (i-1) = \binom{n}{2} \approx n^2$$

QSort(A[1...n]): an array A[1...n] of distinct numbers If n > 1 then do: choose a pivot x = A[n]; partition A into L with all entries < x, and R with all entries > x; store $A[|L|+1] \leftarrow x$, $A[1,\ldots,|L|] \leftarrow L,$ $A[|L|+2,\ldots,n] \leftarrow R;$ QSort(A[1,..., |L|])and QSort(A[|L| + 2, ..., n]);

- A comparison-based sorting algorithm
- # of comparisons
 - worst-case complexity: $O(n^2)$
 - best-case?
 - always picks median
 - $T(n) = n 1 + 2 \cdot T(n/2), T(1) = 0$
 - $T(n) = O(n \log n)$
 - average-case?

QSort(A[1...n]): an array A[1...n] of distinct numbers If n > 1 then do: choose a pivot x = A[n]; partition A into L with all entries < x, and R with all entries > x; store $A[|L|+1] \leftarrow x$, $A[1,\ldots,|L|] \leftarrow L,$ $A[|L|+2,...,n] \leftarrow R;$ QSort(*A*[1,..., |*L*|]) and QSort(A[[L] + 2, ..., n]);

- A comparison-based sorting algorithm
- # of comparisons
 - worst-case complexity: $O(n^2)$
 - best-case complexity: $O(n \log n)$
 - average-case?
 - $\mathbb{E}[X]$, where X is # of comparisons used in QSort(A) on a **uniform** random permutation A of n distinct numbers

QuickSort in Average Case 7 15 12 16 18 4 11 13 19 >=13 <=13 18 15 19 16 13 7

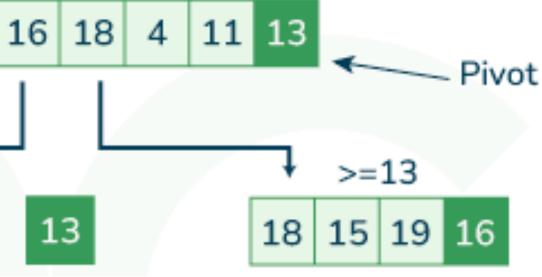
- Uniform random input & order-preserving:
 - A is a uniform random permutation of $a_1 < \cdots < a_n$
- Observation I: each pair of a_i, a_j are compared at most once.
 - Compare iff a_i or a_j is pivot when they are in the same array, never compare again.

 - Total number of comparisons is $X = \sum_{i < i} X_{ij}$

• Let $X_{ij} \in \{0,1\}$ indicate whether $\underline{a_i}$ and $\underline{a_j}$ are compared within QSort(A).

QuickSort in Average Case 19 7 15 12 16 18 4 11 13 <=13 >=13 18 15 19 16 13 7

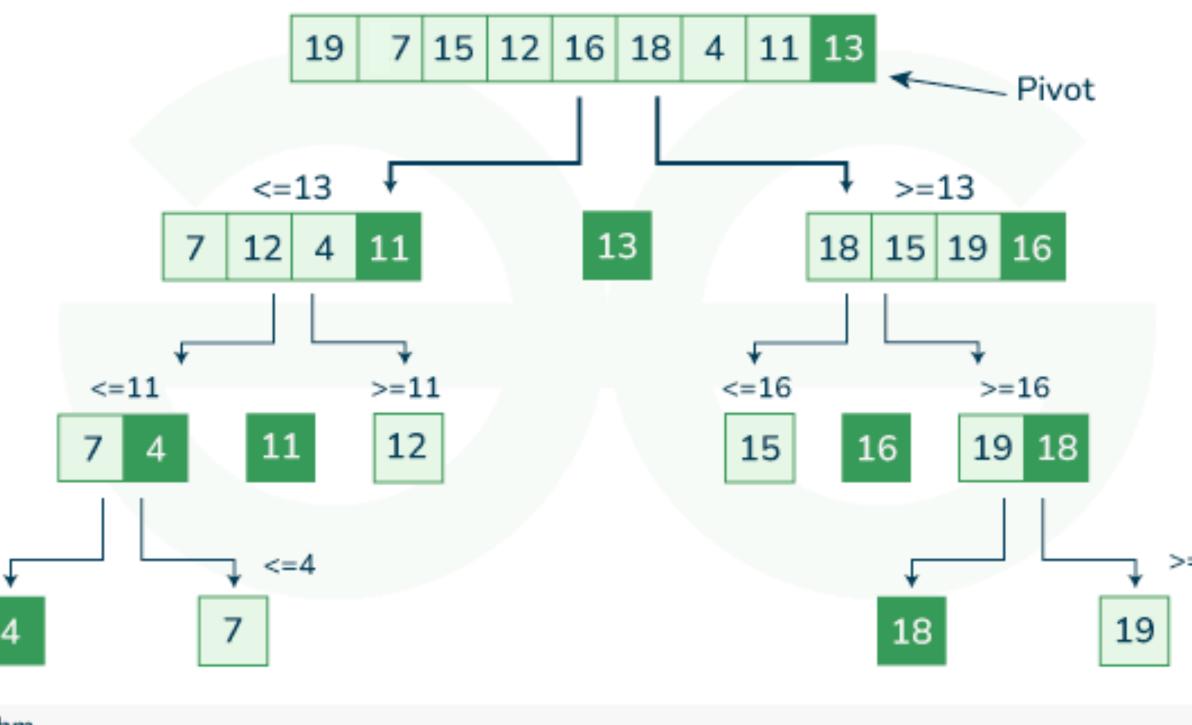
- Uniform random input & order-preserving:
 - A is a uniform random permutation of $a_1 < \cdots < a_n$
- **Observation I**: Total number of comparisons is $X = \sum_{i < i} X_{ij}$
 - ► Let $X_{ij} \in \{0,1\}$ indicate whether $\underline{a_i}$ and $\underline{a_j}$ are compared within QSort(A).
- **Observation II:** X_{ii} is fixed iff a_i, \ldots, a_j are in same array and a_k is pivot, with $i \le k \le j$



• Observation II: X_{ii} is fixed iff a_i, \ldots, a_j are in same array and a_k is pivot, with $i \le k \le j$ **QSort**(A[1...n]): an array A[1...n] of distinct numbers If n > 1 then do: choose a pivot x = A[n]; partition A into L with all entries < x, and R with all entries > x; store $A[|L|+1] \leftarrow x$, $A[1,\ldots,|L|] \leftarrow L,$ $A[|L|+2,\ldots,n] \leftarrow R;$ QSort(A[1,..., |L|])and QSort(A[|L| + 2, ..., n]);

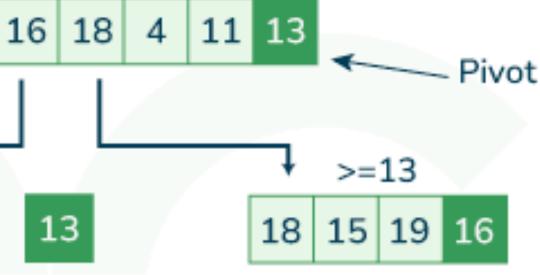
Quick Sort Algorithm

Quick Sort Algorithm



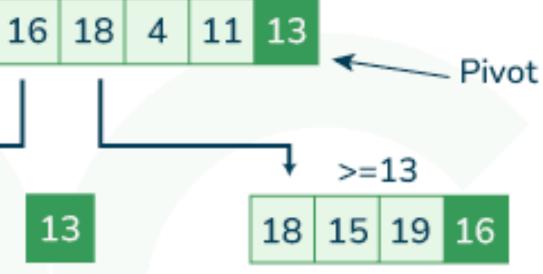
QuickSort in Average Case 19 7 15 12 16 18 4 11 13 >=13 <=13 18 15 19 16 13 7

- Uniform random input & order-preserving:
 - A is a uniform random permutation of $a_1 < \cdots < a_n$
- **Observation I**: Total number of comparisons is $X = \sum_{i < i} X_{ij}$
 - Let $X_{ij} \in \{0,1\}$ indicate whether $\underline{a_i}$ and $\underline{a_j}$ are compared within QSort(A).
- **Observation II**: X_{ii} is fixed iff a_i, \ldots, a_j are in same array and a_k is pivot, with $i \le k \le j$
 - $X_{ij} = 0$ iff a_i, \dots, a_j are in the same array and a_k is pivot, where i < k < j
 - $X_{ii} = 1$ iff a_i, \ldots, a_i are in the same array and a_i or a_i is pivot
 - $\Pr[X_{ii} = 1] = 2/(j i + 1) = \mathbb{E}[X_{ii}]$



QuickSort in Average Case 19 7 15 12 16 18 4 11 13 >=13 <=13 18 15 19 16 13 7

- Uniform random input & order-preserving:
 - A is a uniform random permutation of $a_1 < \cdots < a_n$
- **Observation I**: Total number of comparisons is $X = \sum_{i < i} X_{ij}$
 - ▶ Let $X_{ij} \in \{0,1\}$ indicate whether $\underline{a_i}$ and $\underline{a_j}$ are compared within QSort(A).
- **Observation II**: $\mathbb{E}[X_{ij}] = \Pr[X_{ij} = 1] = 2/(j i + 1)$
- Linearity of expectation: $\mathbb{E}[X] = \sum_{i < j} \mathbb{E}\left[X_{ij}\right] = \sum_{i < j} \frac{2}{j - i + 1} = \sum_{i = 1}^{n} \sum_{k=1}^{n-1} \sum_{k=1}^{n-1} \frac{2}{k}$



$$\sum_{k=2}^{n-i+1} \frac{2}{k} \le 2 \sum_{i=1}^{n} \sum_{k=1}^{n} \frac{1}{k} = 2nH(n) = 2n\ln n + O(n)$$

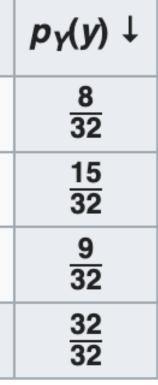
Conditional Expectation (条件期望)

• For random variables X, Y, the conditional expectation:

- Naturally generalized to $\mathbb{E}[X \mid Y, Z]$ for random variables X, Y, Z
- **Examples**:
 - $\mathbb{E}[X \mid Y]$: average height of the country of a random person on earth
 - $\mathbb{E}[X \mid Y, Z]$: average height of the gender of the country of a random person

Y Y	x 1	x 2	x 3	x 4
y 1	$\frac{4}{32}$	<u>2</u> 32	<u>1</u> 32	<u>1</u> 32
<i>y</i> ₂	$\frac{3}{32}$	$\frac{6}{32}$	$\frac{3}{32}$	$\frac{3}{32}$
y 3	<u>9</u> 32	0	0	0
$p_X(x) \rightarrow$	<u>16</u> 32	<u>8</u> 32	<u>4</u> 32	<u>4</u> 32

- $\mathbb{E}[X \mid Y]$
- is a random variable f(Y) whose value is $f(y) = \mathbb{E}[X \mid Y = y]$ when Y = y



Conditional Expectation (条件期望)

• For random variables X, Y, the conditional expectation:

- Law of Total Expectation: $\mathbb{E}[\mathbb{E}[X \mid Y]] = \mathbb{E}[X]$
- **Proof**: $\mathbb{E}[\mathbb{E}[X \mid Y]] = \sum \mathbb{E}[X \mid Y = y] \Pr(Y = y)$ (by definition) y $= \sqcup X$

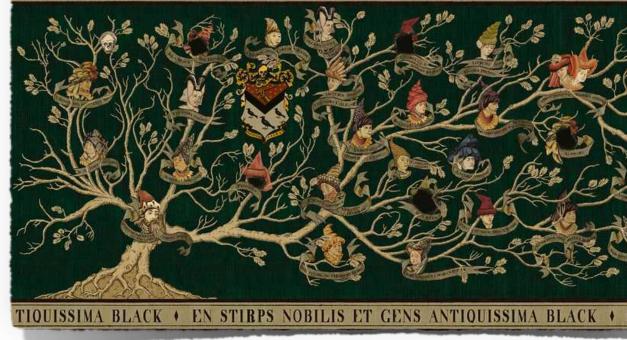
 $x_1 \mid x_2 \mid x_3 \mid x_4 \mid p_Y(y) \downarrow$ <u>2</u> 32 $\frac{4}{32}$ $\frac{1}{32}$ $\frac{1}{32}$ **y**₁ $\frac{3}{32}$ $\frac{6}{32}$ 3 32 $\frac{3}{32}$ **y**2 $\frac{9}{32}$ 0 0 **y**3 0 8 32 $\frac{4}{32}$ $\frac{4}{32}$ <u>16</u> 32 $p_X(x) \rightarrow$

- $\mathbb{E}[X \mid Y]$
- is a random variable f(Y) whose value is $f(y) = \mathbb{E}[X \mid Y = y]$ when Y = y

(law of total expectation)

Random Family Tree

- X_0, X_1, X_2, \dots is defined by $X_0 = 1$ and $X_{n+1} = \sum_{i=1}^{X_n} \xi_i^{(n)}$
 - where $\xi_i^{(n)} \in \mathbb{Z}_{\geq 0}$ are *i.i.d.* random variables with mean value $\mu = \mathbb{E}[\xi_i^{(n)}]$
- $X_0 = 1$ and $\mathbb{E}[X_1] = \mathbb{E}[\xi_1^{(0)}] = \mu$ • $\mathbb{E}[X_n \mid X_{n-1} = k] = \mathbb{E}\left[\sum_{j=1}^k \xi_j^{(n-1)} \mid X_{n-1}\right]$
- $\mathbb{E}[X_n] = \mathbb{E}[\mathbb{E}[X_n \mid X_{n-1}]] = \mathbb{E}[X_n]$ $\implies \mathbb{E} \left| \sum_{n \ge 0} X_n \right| = \sum_{n \ge 0} \mathbb{E}[X_n] =$



$$\begin{bmatrix} k \\ -1 \end{bmatrix} = k\mu \implies \mathbb{E}[X_n \mid X_{n-1}] = X_{n-1}\mu$$

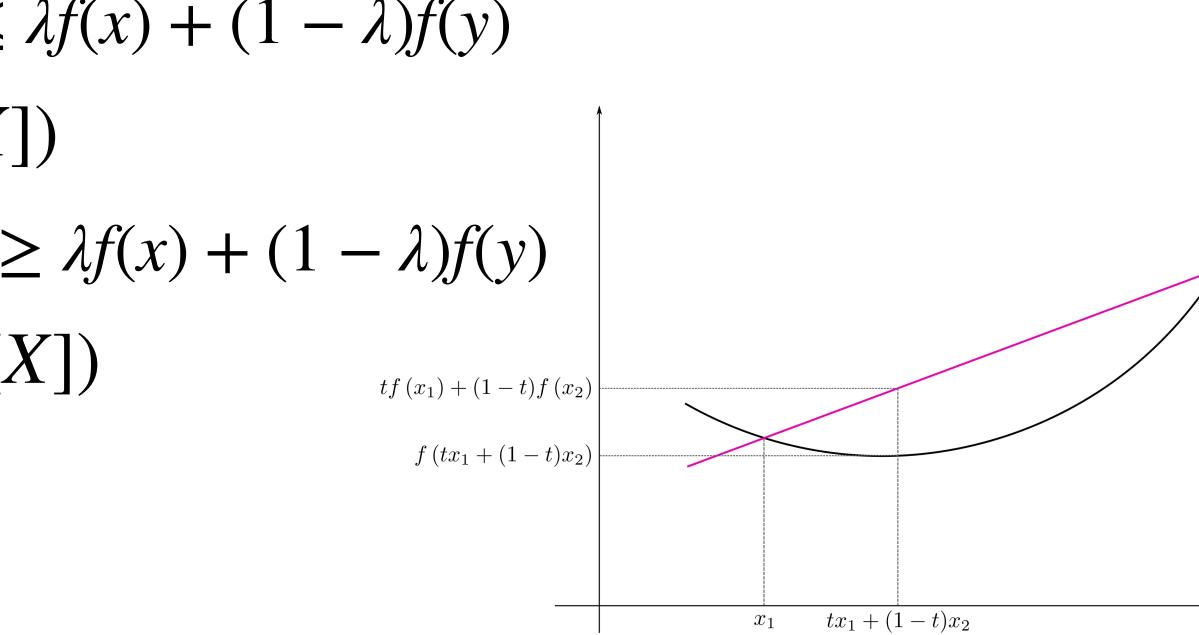
$$\begin{bmatrix} -1 \\ -1 \end{bmatrix} = \mathbb{E}[X_{n-1}] \cdot \mu = \mu^n$$

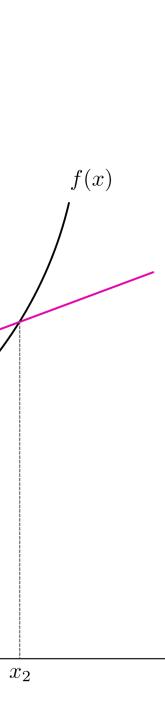
$$\sum_{n \ge 0} \mu^n = \begin{cases} \frac{1}{1-\mu} & \text{if } 0 < \mu < 1 \\ \infty & \text{if } \mu \ge 1 \end{cases}$$

Jensen's Inequality

- For general (non-linear) function f(X) of random variable X
- But if the convexity of f is known, then the **Jensen's inequality** applies:
 - f is convex $\iff f(\lambda x + (1 \lambda)y) \le \lambda f(x) + (1 \lambda)f(y)$
 - $\implies \mathbb{E}[f(X)] \ge f(\mathbb{E}[X])$
 - f is concave $\iff f(\lambda x + (1 \lambda)y) \ge \lambda f(x) + (1 \lambda)f(y)$ $\implies \mathbb{E}[f(X)] \leq f(\mathbb{E}[X])$

we don't have $\mathbb{E}[f(X)] = f(\mathbb{E}[X])$





Monotonicity of Expectation

- For random variables X and Y, for $c \in \mathbb{R}$: (Y stochastically dominates X)

 - If $X \leq Y$ a.s. (almost surely, i.e. $Pr(X \leq Y) = 1$), then $\mathbb{E}[X] \leq \mathbb{E}[Y]$ • If $X \leq c$ ($X \geq c$) a.s., then $\mathbb{E}[X] \leq c$ ($\mathbb{E}[X] \geq c$)
 - $\mathbb{E}[|X|] \ge |\mathbb{E}[X]| \ge 0$

Proof: $\mathbb{E}[X] = \sum x \Pr(X = x) = \sum x$ $= \sum x \sum \Pr((X, Y) = (x, X))$ $y \ge x$ $\boldsymbol{\chi}$ $\leq \sum y \Pr((X, Y) = (x, Y))$ $y \quad x \leq y$

$$\left(\Pr(X = x, Y < X) + \Pr(X = x, Y \ge X)\right)$$

$$y)) = \sum_{y} \sum_{x \le y} x \Pr((X, Y) = (x, y))$$
$$y)) = \sum_{y} y \Pr(Y = y) = \mathbb{E}[Y]$$

Averaging Principle

- $\Pr(X \leq \mathbb{E}[X]) > 0 \iff \inf \Pr(X > c) = 1$ then $\mathbb{E}[X] > c$, where $c = \mathbb{E}[X]$
- By the Probabilistic Method:

• $\Pr(X \ge \mathbb{E}[X]) > 0 \iff \inf \Pr(X < c) = 1$ then $\mathbb{E}[X] < c$, where $c = \mathbb{E}[X]$

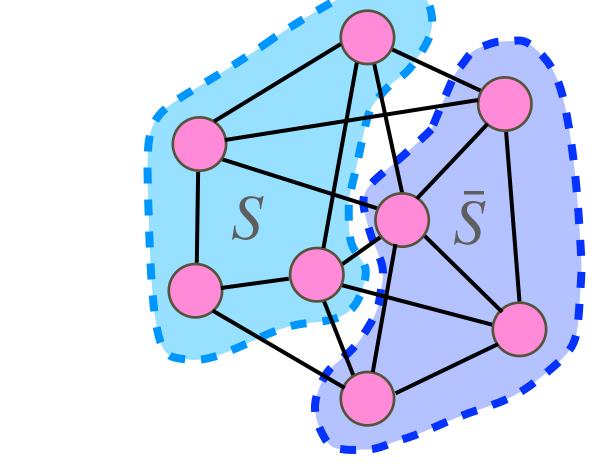
6'0"

mean 56

$\exists \omega \in \Omega$ such that $X(\omega) \geq \mathbb{E}[X]$ $\exists \omega \in \Omega$ such that $X(\omega) \leq \mathbb{E}[X]$

Maximum Cut

- For an undirected graph G(V, E):
- NP-hard problem (very unlikely to have efficient algorithms) The average cut generated by pairwise independent bits is $\geq |E|/2$. **Proposition**: There always exists a large enough cut of size $|\delta S| \ge |E|/2$. **Proof:** Let $Y_v \in \{0,1\}$, for $v \in V$, be mutually independent uniform random bits.
 - Each $v \in V$ joins S iff $Y_v = 1$. Then it holds
 - By linearity of expectation: $\mathbb{E}[|\delta S|] = \sum_{\{u,v\}\in E} \Pr(Y_u \neq Y_v) = |E|/2.$
 - Due to the probabilistic method: There exists such $S \subseteq V$ with $|\delta S| \ge |E|/2$.



• Find an $S \subseteq V$ with largest $\underline{cut} \, \delta S \triangleq \{ \{u, v\} \in E \mid u \in S \land v \notin S \}$

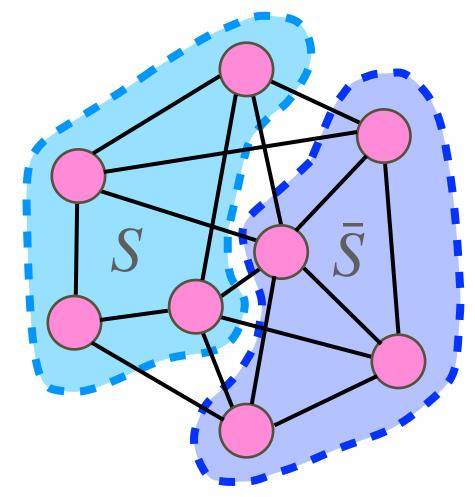
Ids that
$$|\delta S| = \sum_{\{u,v\}\in E} I(Y_u \neq Y_v).$$

Maximum Cut

- For an undirected graph G(V, E):
- NP-hard problem (very unlikely to have efficient algorithms)

Parity Search:
for all
$$b \in \{0,1\}^{\lceil \log n | l}$$

initialize $S_b = Q$
for $i = 1,2,...,$
if $\bigoplus_{j: \lfloor i/2^j \rfloor \mod l}$
return the S_b with the



• Find an $S \subseteq V$ with largest $\underline{cut} \, \delta S \triangleq \{ \{u, v\} \in E \mid u \in S \land v \notin S \}$

 $g_2(n+1)$].

Ø;

n:

$$b_i = 1$$
 then v_i joins S_b ;

d2 = 1

ne largest cut δS_h ;

Guarantees to return an $S \subseteq V$ with $|\delta S| \ge |E|/2$.