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Goals

• A quick introduction to the mathematics behind statistics

• Understand basic terminology

• Know how to formulate a statistical problem



What is statistics



The tale of Edmond Halley’s life table

Source: royalsocietypublishing.org

Published in 1693, Halley found applications of his life table in:
• Estimate the proportion of men in a population that could bear arms
• Pricing life annuity
• …

Data Summary
• Many details/information are being thrown away:

• How/when/where are they collected
• Abstraction/summary/modelling: to generalize

• “To think is to forget a difference, to generalize, to abstract.”  
-- Funes the Memorious by Jorge Luis Borges

Statistical modelling by probability (stochastic modelling)
• How do we quantify the quality of a model?
• How confident are we that a pattern is real?

https://royalsocietypublishing.org/doi/pdf/10.1098/rstl.1693.0007


See:
https://xkcd.com/882/

Note: there is even a talk show lamenting about “p-hacking” 



https://fivethirtyeight.com/features/science-isnt-broken/



Sally Clark’s case

Sally Clark was convicted for murdering her two sons, when both died within weeks after birth
Her conviction was largely based on a mis-use of statistics, for ruling out sudden infant death syndrome

• Recall the “Dominating false positive” example during probability lectures

Pr a	rare	natural	event	 innocence] ≠ Pr innocence	 a	rare	natural	event]

See also: https://en.wikipedia.org/wiki/Sally_Clark
• https://en.wikipedia.org/wiki/Base_rate_fallacy
• https://en.wikipedia.org/wiki/Prosecutor%27s_fallacy 
• TED talk by Peter Donnelly: How stats fool juries

https://en.wikipedia.org/wiki/Sally_Clark
https://en.wikipedia.org/wiki/Base_rate_fallacy
https://en.wikipedia.org/wiki/Prosecutor%27s_fallacy


Statistical questions: more examples

• Travel insurance: Should you purchase insurance for your next flight?
• The same flight has a delay record of 53%
• The insurance starts paying whenever the flight is delayed for more than 10 minutes

• Clinical trial:
• Treatment I: “100% effective”, cured 3 out of 3.
• Treatment II: “95% effective”, cured 19 out of 20.
• Treatment III: “90% effective”, cured 90 out of 100.

• Which treatment is more effective?

• Dam construction in hydrology: 
• Dam should be high enough for most floods
• Should not be unnecessarily high (expensive)



• Should you allow AdBlocker on your website?

• Why museums charge differently based on group?
• What’s the basis of student discount?

• Frequency analysis in cryptography
• Deciphering the Enigma in World War II



What is common in these questions?

• In expectation

• Need to quantify chance (Is it worth it? Is it effective?)

• Significance of our conclusion 



Probability vs. Statistics

In probability, we often consider a well-defined/idealized random 
experiment.

• Flip a fair/unbiased coin
• Roll a fair/unloaded dice
• Draw a card



Probability vs. Statistics

In statistics, we first need a (probabilistic) model of the real world.
Randomness can come from:
• the probabilistic model (biased coin, flight delay)
• using “simple process”+ “noise” in the modelling

A statistic is anything that can be computed from collected data.
The goal is often to make inferences from collected data.

Statistical mechanics, but not probabilistic mechanics; 
Probabilistic combinatorics, but not statistical combinatorics 
(not to confuse with combinatorial statistics)

All models are wrong
but some are useful



Probability vs. Statistics

In probability: 
Previous studies found the treatment is 80% effective. Then we expect that for 
a study of 100 patients, on average 80 will be cured. And the probability that at 
least 65 will be cured is at least 99.99%.

In statistics:
Observe that 78/100 patients were cured. We will be able to conclude that: if 
we repeat this experiment, then we are 95% confident that the number of 
cured patients are between 69 to 87.

Later in class: can be derived from Chernoff-Hoeffding bound

Compute probabilities from a parametric model with known parameters

Estimate the probability of parameters given a parametric model and collected data from it



A toy model

Say we model the problem of predicting flight delays as 
independent Bernoulli’s with unknown parameter 𝑝

Why probabilistic modelling?
 We abstract our “lack of knowledge” about the physical laws of flight 
delays, using stochasticity.

Why Bernoulli?
 We assume that the problem follows a distribution that 
conceptualizes what is a typical instance: 
 If we see a new flight, how much delay do we expect to see?



A toy model

Say we model the problem of predicting flight delays as 
independent Bernoulli’s with unknown parameter 𝑝

We observe 100 times. 

Given that there were 55 delays, what is a good estimate for 𝑝 ?

How about 𝑝̂ = 0.55 ?

In general, a statistical model is a parametric probabilistic model



Maximum likelihood estimates (MLE)

MLE asks: 
Which parameter maximizes the chances of seeing the observed data?

This is known as a point estimate.
Compare with: outputting an interval, or an estimated p.d.f.

In our toy model of independent Bernoulli’s with unknown parameter 𝑝
Pr 55	ℎ𝑒𝑎𝑑𝑠	|	𝑝 =

100
55

𝑝!! 1 − 𝑝 "!

Likelihood, or likelihood function



Maximum likelihood estimates (MLE)

MLE asks: 
Which parameter maximizes the chances of seeing the observed data?

In our toy model of independent Bernoulli’s with unknown parameter 𝑝
Pr 55	ℎ𝑒𝑎𝑑𝑠	|	𝑝 =

100
55

𝑝00 1 − 𝑝 10

𝑑
𝑑𝑝

Pr 55	ℎ𝑒𝑎𝑑𝑠	|	𝑝 =
100
55

55𝑝01 1 − 𝑝 10 − 45𝑝00 1 − 𝑝 11

Setting derivative to 0 we have 𝑝̂ = 0.55

Equivalently, one can try to maximize log-likelihood



Maximum likelihood estimates (MLE)

MLE = sample mean holds for
• 𝑛 independent Bernoulli’s with unknown parameter 𝑝
• Poisson with unknown parameter
• Gaussian

(derivations are similar)

Algorithms for MLE: often iterative, see Expectation-Maximization algorithm



Maximum likelihood estimates (MLE)

Many real-world applications:
Lifetime of a light bulb, or your hard disk: often modelled by an 
exponential distribution with unknown parameter

Mark and recapture method for estimating the size of a population: 
recall balls and bins experiments

> 171 years!



Bayesian inference

We associate a prior distribution to the unknown model and 
parameters

Then we apply Bayes’ law to transfer this from the collected 
data to a distribution on the unknown parameters.

This is called the posterior distribution.

Types of problems:
• Estimation
• Hypothesis testing



Maximum A Posteriori (MAP)

We are estimating 𝑝 given data
Why maximize Pr data|	𝑝  instead of Pr 𝑝|data  ?

Recall Bayes’ law:

Pr 𝑝|data =
Pr data|	𝑝 Pr 𝑝

Pr data

Need to choose a prior, and different priors lead to different estimate

Example: IMDB score

PriorlikelihoodPosterior



Estimation theory
We saw two estimators for the parameter 𝑝 given 𝑛 iid samples from 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝):

• MLE:
• Frequentists approach
• Inference based on likelihood
• 𝑝 is an unknown parameter, we estimate it purely based on data

• MAP:
• Bayesian approach
• 𝑝 is unknown, but it follows a prior distribution
• Inference based on posterior distribution
• we estimate it based on the observed data and our prior belief

• How do we compare different estimators? 
• Bayesian: mean squared error
• Frequentist: risk

Parameter: fixed
Data: random

Parameter: random
Data: fixed



Minimum mean squared error estimators

Mean squared error: in our toy model, if 𝑝 is random and 𝑝̂ is a 
constant

𝔼 𝑝̂ − 𝑝 =

Observe that 𝔼 𝑝̂ − 𝑝 = = 𝑣𝑎𝑟 𝑝 + 𝔼𝑝 − 𝑝̂ = is minimized when
𝑝̂ ≔ 𝔼𝑝

If 𝑝̂ depends on the data, the mean squared error is then:
𝔼 𝑝̂ − 𝑝 = 𝑑𝑎𝑡𝑎]

By a similar argument, MMSE is given by 𝑝̂ ≔ 𝔼[𝑝|𝑑𝑎𝑡𝑎]



Frequentists risk
Consider 𝑛 iid samples from 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝) with an unknown parameter 𝑝:
• Loss: 𝐿(𝑝, 𝛿) measures how bad an estimate is

• 𝐿 𝑝, 𝛿 = 𝑝 − 𝛿 ! is known as the squared loss
• Risk of an estimator:  

• Expected loss, where expectation is taken over the distribution of data

Example

• 𝛿! 𝑋", 𝑋#, … , 𝑋$ = ∑%
&"
$

• 𝔼𝛿! 𝑋", 𝑋#, … , 𝑋$ = 𝑝,  so unbiased
• Risk under mean squared loss:  𝔼 𝑝 − 𝛿! # = 𝑉𝑎𝑟 𝛿! = ' "('

$

Consider two other estimators: 𝛿" =
")∑" &"

$
, 𝛿# =

+)∑" &"
"!)$

Let’s plot their risk functions

Compared with Bayesian MMSE: 
expectation is taken over prior!

𝛿!

𝛿"

𝛿#



Frequentists risk
Example

• 𝛿" 𝑋#, 𝑋$, … , 𝑋% = ∑&
'!
%

• 𝔼𝛿" 𝑋#, 𝑋$, … , 𝑋% = 𝑝,  so unbiased
• Risk under mean squared loss:  𝔼 𝑝 − 𝛿" $ = 𝑉𝑎𝑟 𝛿" = ( #)(

%
Consider two other estimators: 𝛿# =

#*∑! '!
%

, 𝛿$ =
,*∑! '!
#"*%

𝛿# may look stupid. But 𝛿" vs 𝛿$ is trickier…

Rules for choosing THE BEST one:
• Average risk: choose a prior over 𝑝	 →	 Bayesian!
• Worst-case risk: minimax estimator
• Only consider unbiased estimator: (see next)

Compared with Bayesian MMSE: 
expectation is taken over prior!

𝛿!

𝛿"

𝛿#



Sufficient statistics

Suppose 𝑋#, … , 𝑋$	~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 𝑝 :
Consider 𝑇 𝑋 ≔ 𝑋# +⋯+ 𝑋$	~	𝐵𝑖𝑛(𝑛, 𝑝)
𝑋#, … , 𝑋$ 	→ 	 𝑇(𝑋) can throw away information
To estimate 𝑝 however, 𝑇(𝑋) is just as informative as 𝑋#, … , 𝑋$	

Definition. 𝑇(𝑋) is a sufficient statistic for a parameter 𝑝, if the distribution 
of 𝑋 does not depend on 𝑝 given 𝑇

Sufficient statistics are the only information needed to build an estimator
 

Pr 𝑋 = 𝑥 𝑇 = 𝑡 =
Pr 𝑋 = 𝑥, 𝑇 = 𝑡

Pr 𝑇 = 𝑡

Parameter Sufficient statistics Samples



Minimal sufficiency
There are many sufficient statistics for our toy model:

• 𝑋!, … , 𝑋$
• 𝑋% ! , … , 𝑋% $

• 𝑋! +⋯+ 𝑋$

Definition. 𝑇(𝑋) is a minimal sufficient statistic for a parameter 𝑝, if 𝑇 is sufficient, and any other sufficient statistic 

𝑆(𝑋), 𝑇 𝑋 = 𝑓(𝑆 𝑋 ) for some 𝑓

Intuitively, minimal sufficient statistics are the most efficient statistics capturing all the information about the 
parameter

Roughly speaking, if 𝑇	determines the likelihood ratio in a “one-to-one fashion”, then 𝑇 is minimal sufficient.
See also: Fisher’s factorization theorem.



Sufficiency principle: Rao-Blackwellization

Let 𝑇(𝑋) be a sufficient statistic, and 𝛿I 𝑋  an estimator.
Consider a new estimator 𝛿J 𝑇(𝑋) ≔ 𝔼 𝛿I 𝑋 	 𝑇(𝑋)]

For convex losses, the Rao–Blackwell estimator 𝛿J is at least as good as 𝛿I

In practice, can lead to enormous difference.

See Textbook [BT] page 426 Exercises for examples



Minimum variance unbiased estimator (optional)

Lehmann–Scheffé theorem roughly says that any unbiased estimator 
through a complete and sufficient statistic, is the unique minimum 
variance unbiased estimator.

See also: Cramér–Rao bound, which gives a bound on how efficient an 
unbiased estimator can be.

Complete statistic
Roughly, 𝑇 is complete if there is no non-trivial estimate of 0 through 𝑇
Different estimates of  𝑇 lead to different distributions



Caution about unbiasedness  (optional topic)

Not always a good idea to insist unbiasedness, because Cramér–Rao 
bound may not be achievable

Example:
Data samples 𝑋~𝐵𝑖𝑛(1000, 𝑝), want to estimate Pr[𝑋 ≥ 500].
One can show that the minimum variance unbiased estimator is just 
𝕀 𝑋 ≥ 500
• This means that if 𝑋 = 500, our estimate is 1
• if 𝑋 = 499, our estimate is 0



Confidence interval
How do you interpret the results of an estimation?
• By LLN/CLT, any (asymptotically) unbiased estimator converges to the true parameter as the sample size tends 

to infinity
• By Chernoff-Hoeffding bound, we also get a finite size bound

Suppose 𝑋!, … , 𝑋$~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 𝑝  are iid r.v. , and 𝑆$ = ∑& 𝑋&  then for any 𝑡 > 0

Pr 𝑆$ − 𝑛𝑝 ≥ 𝑡 ≤ 2e'
#(!
)

Setting 𝛼 = 2e'
!"!
# , we have 𝑡 = $	 +) #/-

#
.

This means that with probability 1 − 𝛼,

𝑝 ∈
𝑆$
𝑛 −

ln 2
𝛼

2𝑛 ,
𝑆$
𝑛 +

ln 2/𝛼
2𝑛 .

It is important to note that this probability is over the distribution of 𝑺𝒏



Confidence interval: interpretations

A 95% confidence interval is NOT an interval that contains the true parameter with 
probability at least 95%

The confidence interval is a function of the data
After observing the data, the confidence interval is a fixed interval
It either contains the true parameter, or not

To bring back probabilistic interpretation:
• Consider repeating the experiments, over and over again

• Now you have new, fresh, random data, so that the confidence interval can be treated as a 
random object over future repeated experiments of the assumed statistical/generative model

• In particle physics, usually a five-sigma rule, unless ground-breaking discovery
• Bayesian approach: credible region

• Only way to conclude from what we have already observed

https://arxiv.org/pdf/1310.1284.pdf


Recall Probability vs. Statistics

In probability: 
Previous studies found the treatment is 80% effective. Then we expect that for 
a study of 100 patients, on average 80 will be cured. And the probability that at 
least 65 will be cured is at least 99.99%.

In statistics:
Observe that 78/100 patients were cured. We will be able to conclude that: if 
we repeat this experiment, then we are 95% confident that the number of 
cured patients are between 69 to 87.

Compute probabilities from a parametric model with known parameters

Estimate the probability of parameters given a parametric model and collected data from it



Bayesian vs. frequentist

Bayesian
• Inference based on posterior
• A feature or a bug: Prior
• Probabilities can be interpreted
• Prior is made explicit
• Prior can be subjective
• No canonical prior: can change under re-

parameterization
• Hierarchical Bayesian, graphical model
• Computation/sampling of posterior can 

be hard
• Frontiers of many research

Frequentist
• Inference based on likelihood
• No prior
• Objective – everyone gets the same 

answer
• Often gets mis-interpreted
• Needs to completely specify an 

experiment AND the data analysis, before 
collecting data and actually doing the 
analysis

• No adaptive re-use of the same dataset
• There is an entire field for systematically 

coping with adaptive data analysis

https://adaptivedataanalysis.com/

