# Probability Theory and Mathematical Statistics 

Jingcheng Liu

## Goals

- A quick introduction to the mathematics behind statistics
- Understand basic terminology
- Know how to formulate a statistical problem


## What is statistics

Q 研究表明

WEB IMAGES VIDEOS ACADEMIC DICT MAPS

About 27，800，000 results Any time v
研究人员招募了 36 名健康成年人，并将其随机分配到发酵或高纤维饮食方案小组中，使其维持该方案 10 周，并在实验开展前 3 周，采取分组饮食后 10 周，以及结束实验饮食方案4周后，采集参与者血液和粪便样本进行分析。研究人员发现，这两种饮食方式对肠道微生物和免疫系统产生了不同影响。食用酸奶，发酵白干酪，泡菜和其他发酵疏菜及相关饮品等，会增加人体微生物多样性，食用量越大，影响越强。＂这是一个惊人的发现。＂斯坦福大学微生物学和免疫学副教授Justin Sonnenburg说，该研究说明了简单的饮食改变是如何重塑健康人体内的微生物群的。

新研究表明发酵食品益处多－－－－中国科学院
숭 www．cas．cn／kj／202107／t20210714＿4798455．shtml

Was this helpful？

楁研究表明：2050年全球8．4亿多人腰痛，女性病例高于男性 ．．．
https：／／www．thepaper．cn／newsDetail＿forward＿23233269 v
Web May 26，2023－一项基于 30 多年数据的分析表明，全球腰痛病例数量正在增加。•模型显示，到2050年，由于人口增长和人口老龄化，将有8．43亿人受到这种疾病的影响。．相关论文将发表于 6月刊的《柳叶刀－风湿病学》。．由于腰痛是全球人类致残的主要原因，研究人员．

## The tale of Edmond Halley's life table

Published in 1693, Halley found applications of his life table in:

- Estimate the proportion of men in a population that could bear arms
- Pricing life annuity
- ...

Data Summary

- Many details/information are being thrown away:
- How/when/where are they collected
- Abstraction/summary/modelling: to generalize
- "To think is to forget a difference, to generalize, to abstract."
-- Funes the Memorious by Jorge Luis Borges

Statistical modelling by probability (stochastic modelling)

- How do we quantify the quality of a model?
- How confident are we that a pattern is real?
(600)
gradually decline till there be none left to die; as may be feen at one View in the Table.
From Idea of the State and Condition of Mankind, than any thing yet extant that I know of. It exhibits the Number of People in the City of Brelaw of all Ages, from the Birth to extream Old Age, and thereby fhews the Chances of Mortality at all Ages, and likewie how to make a certain Eftimate of the value of Annaities for Lives, which hitherto has been only done by an imaginary, aluation: Allo the Cbances hive tory other Ase given ; with many more, as I hall hereafter thew. This Table does fhew the number of Perfons that are living in the Age current annexed thereto, as follows:


Thus it appears, that the whole Peop oes confirit of 3400 Souls, being the Sum Total of tie Perfons of all Ages in the Table: The firft ufe hereof


俍ishearch Fings Are False
John P. A. loannidis
Published: August 30, 2005 • https://doi.org/10.1371/journal.pmed. 0020124

| Article | Authors | Metrics | Comments | Media Coverage |
| :--- | :--- | :--- | :--- | :--- |
| $\approx$ |  |  |  |  |

## Correction

Abstract
Modeling the Framework for False Positive Findings
Bias
Testing by Several
Independent Teams

## Corollaries

Most Research Findings Are False for Most Research Designs and for Most Fields
Claimed Research Findings May Often Be Simply Accurate Measures of the Prevailing Bias

How Can We Improve the Situation?
References

## - Correction

25 Aug 2022: loannidis JPA (2022) Correction: Why Most Published Research Findings Are False. PLOS Medicine 19(8): e1004085. https://doi.org/10.1371/journal.pmed. 1004085 I View correction

## Abstract

## Summary

There is increasing concern that most current published research findings are false. The probability that a research claim is true may depend on study power and bias, the number of other studies on the same question, and, importantly, the ratio of true to no relationships among the relationships probed in each scientific field. In this framework, a research finding is les likely to be true when the studies conducted in a field are smaller; when effect sizes are smaller; when there is a greater number and lesser preselection of tested relationships; where there is greater flexibility in designs, definitions, outcomes, and analytical modes; when there is greater financial and other interest and prejudice; and when more teams are involved in a scientific field in chase of statistical significance. Simulations show that for most study designs and settings, it is more likely for a research claim to be false than true. Moreover, for many current scientific fields, claimed research findings may often be simply accurate measures of the prevailing bias. In this essay, I discuss the implications of these problems for the conduct and interpretation of research.

## See:

https://xkcd.com/882/

Note: there is even a talk show lamenting about "p-hacking"

7
he problems with food questionnaires go even deeper. They aren't just unreliable, they also produce huge data sets with many, many variables. The resulting cornucopia of possible variable combinations makes it easy to p-hack your way to sexy (and false) results, as we learned when we invited readers to take an FFQ and answer a few other questions about themselves. We ended up with 54 complete responses and then looked for associations - much as researchers look for links between foods and dreaded diseases. It was silly easy to find them.

Our shocking new study finds that ...

| EATING OR DRINKING | IS LINKED TO | P-VALUE |
| :--- | :--- | ---: |
| Raw tomatoes | Judaism | $<0.0001$ |
| Egg rolls | Dog ownership | $<0.0001$ |
| Energy drinks | Smoking | $<0.0001$ |
| Potato chips | Higher score on SAT math vs. verbal | 0.0001 |
| Soda | Weird rash in the past year | 0.0002 |
| Shellfish | Right-handedness | 0.0002 |
| Lemonade | Belief that "Crash" deserved to win best picture | 0.0004 |
| Fried/breaded fish | Democratic Party affiliation | 0.0007 |
| Beer | Frequent smoking | 0.0013 |
| Coffee | Cat ownership | 0.0016 |
| Table salt | Positive relationship with Internet service <br> provider | 0.0014 |
| Steak with fat trimmed | Lack of belief in a god | 0.0030 |
| Iced tea | Belief that "Crash" didn't deserve to win best <br> picture | 0.0043 |
| Bananas | Higher score on SAT verbal vs. math | 0.0073 |
| Cabbage | Innie bellybutton | 0.0097 |
|  |  |  |

## The Statistical Crisis in Science

Data-dependent analysis-a "garden of forking paths"- explains why many statistically significant comparisons don't hold up.

```
Andrew Gelman and Eric Loken
```

 here is a growing realization
that reported "statisticiclly sim that report
nficicat
pubicion
Researcher con. Researchers typically exerpess of $p$-value: the probability that a per
ceived result is actually the result




This multiple compprisons issue is
ell known in statistics and has been


## Science Isn't Broken

It's just a hell of a lot harder than we give it credit for.

> By Christie Aschwanden
> Graphics by Ritchie King
> Filed under Scientific Method

## Hack Your Way To Scientific Glory

You're a social scientist with a hunch: The U.S. economy is affected by whether Republicans or Democrats are in office. Try to show that a connection exists, using real data going back to or Democrats are in office. Try to show that a connection exists, using real data going back to are "statistically significant" by achieving a low enough p-value.

https://fivethirtyeight.com/features/science-isnt-broken/

## Sally Clark's case

Sally Clark was convicted for murdering her two sons, when both died within weeks after birth Her conviction was largely based on a mis-use of statistics, for ruling out sudden infant death syndrome

- Recall the "Dominating false positive" example during probability lectures
$\operatorname{Pr}[$ a rare natural event $\mid$ innocence $] \neq \operatorname{Pr}[$ innocence $\mid$ a rare natural event $]$

See also: https://en.wikipedia.org/wiki/Sally Clark

- https://en.wikipedia.org/wiki/Base rate fallacy
- https://en.wikipedia.org/wiki/Prosecutor\'s fallacy
- TED talk by Peter Donnelly: How stats fool juries


## Statistical questions: more examples

- Travel insurance: Should you purchase insurance for your next flight?
- The same flight has a delay record of $53 \%$
- The insurance starts paying whenever the flight is delayed for more than 10 minutes
- Clinical trial:
- Treatment I: "100\% effective", cured 3 out of 3.
- Treatment II: "95\% effective", cured 19 out of 20.
- Treatment III: "90\% effective", cured 90 out of 100.
- Which treatment is more effective?
- Dam construction in hydrology:
- Dam should be high enough for most floods
- Should not be unnecessarily high (expensive)
- Should you allow AdBlocker on your website?
- Why museums charge differently based on group?
- What's the basis of student discount?
- Frequency analysis in cryptography
- Deciphering the Enigma in World War II


## What is common in these questions?

- In expectation
- Need to quantify chance (Is it worth it? Is it effective?)
- Significance of our conclusion


## Probability vs. Statistics

In probability, we often consider a well-defined/idealized random experiment.

- Flip a fair/unbiased coin
- Roll a fair/unloaded dice
- Draw a card


## Probability vs. Statistics

In statistics, we first need a (probabilistic) model of the real world. Randomness can come from:

- the probabilistic model (biased coin, flight delay)
- using "simple process" + "noise" in the modelling

A statistic is anything that can be computed from collected data. The goal is often to make inferences from collected data.

Statistical mechanics, but not probabilistic mechanics; Probabilistic combinatorics, but not statistical combinatorics (not to confuse with combinatorial statistics)

## Probability vs. Statistics

In probability:
Compute probabilities from a parametric model with known parameters
Previous studies found the treatment is $80 \%$ effective. Then we expect that for a study of 100 patients, on average 80 will be cured. And the probability that at least 65 will be cured is at least $99.99 \%$.

In statistics:
Estimate the probability of parameters given a parametric model and collected data from it
Observe that 78/100 patients were cured. We will be able to conclude that: if we repeat this experiment, then we are $95 \%$ confident that the number of cured patients are between 69 to 87 .

## A toy model

Say we model the problem of predicting flight delays as independent Bernoulli's with unknown parameter $p$

## Why probabilistic modelling?

We abstract our "lack of knowledge" about the physical laws of flight delays, using stochasticity.

## Why Bernoulli?

We assume that the problem follows a distribution that conceptualizes what is a typical instance:

If we see a new flight, how much delay do we expect to see?

## A toy model

Say we model the problem of predicting flight delays as independent Bernoulli's with unknown parameter $p$

We observe 100 times.
Given that there were 55 delays, what is a good estimate for $p$ ?
How about $\hat{p}=0.55$ ?
In general, a statistical model is a parametric probabilistic model

## Maximum likelihood estimates (MLE)

MLE asks:
Which parameter maximizes the chances of seeing the observed data?

This is known as a point estimate.
Compare with: outputting an interval, or an estimated p.d.f.

In our toy model of independent Bernoulli's with unknown parameter $p$

$$
\operatorname{Pr}[55 \text { heads } \mid p]=\binom{100}{55} p^{55}(1-p)^{45}
$$

Likelihood, or likelihood function

## Maximum likelihood estimates (MLE)

MLE asks:
Which parameter maximizes the chances of seeing the observed data?

In our toy model of independent Bernoulli's with unknown parameter $p$

$$
\begin{gathered}
\operatorname{Pr}[55 \text { heads } \mid p]=\binom{100}{55} p^{55}(1-p)^{45} \\
\frac{d}{d p} \operatorname{Pr}[55 \text { heads } \mid p]=\binom{100}{55}\left(55 p^{54}(1-p)^{45}-45 p^{55}(1-p)^{44}\right)
\end{gathered}
$$

Setting derivative to 0 we have $\hat{p}=0.55$

## Maximum likelihood estimates (MLE)

MLE = sample mean holds for

- $n$ independent Bernoulli's with unknown parameter $p$
- Poisson with unknown parameter
- Gaussian
(derivations are similar)

Algorithms for MLE: often iterative, see Expectation-Maximization algorithm

## Maximum likelihood estimates (MLE)

Many real-world applications:
Lifetime of a light bulb, or your hard disk: often modelled by an exponential distribution with unknown parameter


Mark and recapture method for estimating the size of a population: recall balls and bins experiments

## Bayesian inference

We associate a prior distribution to the unknown model and parameters

Then we apply Bayes' law to transfer this from the collected data to a distribution on the unknown parameters.

This is called the posterior distribution.

Types of problems:

- Estimation
- Hypothesis testing
$P\left(\begin{array}{l|l|l}\text { I'M NEAR } \\ \text { THE OCEAN } & \text { I PICKED UP } \\ \text { ASEASHELL }\end{array}\right)=$
$P\left(\begin{array}{l|l}I \\ \text { PICKED UP } \\ \text { ASEASHELL } & \text { IMM NEAR } \\ \text { THE OCEAN }\end{array}\right) P\binom{$ IM NERR }{ THE OCENN }


STATISTICALLY SPEAKING, IF YOU PICK UPA SEASHELL AND DONT HOLD IT TO YOUR EAR, YOU CAN PROBABLY HEAR THE OCEAN.

## Maximum A Posteriori (MAP)

We are estimating $p$ given data
Why maximize $\operatorname{Pr}[$ data $\mid p]$ instead of $\operatorname{Pr}[p \mid$ data $]$ ?

Recall Bayes' law:

$$
\begin{array}{cc}
\text { Posterior } & \text { likelihood }
\end{array} \begin{gathered}
\text { Prior } \\
\operatorname{Pr}[p \mid \text { data }]=
\end{gathered} \frac{\operatorname{Pr}[\text { data } \mid p] \operatorname{Pr}[p]}{\operatorname{Prata}]}
$$

Need to choose a prior, and different priors lead to different estimate

Example: IMDB score

## Estimation theory

We saw two estimators for the parameter $p$ given $n$ iid samples from $\operatorname{Bernoulli}(p)$ :

- MLE:
- Frequentists approach
- Inference based on likelihood
- $p$ is an unknown parameter, we estimate it purely based on data
- MAP:
- Bayesian approach
- $p$ is unknown, but it follows a prior distribution
- Inference based on posterior distribution
- we estimate it based on the observed data and our prior belief

Parameter: random
Data: fixed
Parameter: fixed
Data: random

- How do we compare different estimators?
- Bayesian: mean squared error
- Frequentist: risk


## Minimum mean squared error estimators

Mean squared error: in our toy model, if $p$ is random and $\hat{p}$ is a constant

$$
\mathbb{E}(\hat{p}-p)^{2}
$$

Observe that $\mathbb{E}(\hat{p}-p)^{2}=\operatorname{var}(p)+(\mathbb{E} p-\hat{p})^{2}$ is minimized when

$$
\hat{p}:=\mathbb{E} p
$$

If $\hat{p}$ depends on the data, the mean squared error is then:

$$
\mathbb{E}\left[(\hat{p}-p)^{2} \mid \text { data }\right]
$$

By a similar argument, MMSE is given by $\hat{p}:=\mathbb{E}[p \mid$ data $]$

## Frequentists risk

Consider $n$ iid samples from $\operatorname{Bernoulli}(p)$ with an unknown parameter $p$ :

- Loss: $L(p, \delta)$ measures how bad an estimate is
- $L(p, \delta)=(p-\delta)^{2}$ is known as the squared loss
- Risk of an estimator:
- Expected loss, where expectation is taken over the distribution of data


## Example

- $\delta_{0}\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\sum_{i} \frac{X_{i}}{n}$
- $\mathbb{E} \delta_{0}\left(X_{1}, X_{2}, \ldots, X_{n}\right)=p$, so unbiased
- Risk under mean squared loss: $\mathbb{E}\left(p-\delta_{0}\right)^{2}=\operatorname{Var}\left(\delta_{0}\right)=\frac{p(1-p)}{n}$

Consider two other estimators: $\delta_{1}=\frac{1+\sum_{i} X_{i}}{n}, \delta_{2}=\frac{5+\sum_{i} X_{i}}{10+n}$
Let's plot their risk functions


## Frequentists risk

## Example

- $\delta_{0}\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\sum_{i} \frac{X_{i}}{n}$
- $\mathbb{E} \delta_{0}\left(X_{1}, X_{2}, \ldots, X_{n}\right)=p$, so unbiased
- Risk under mean squared loss: $\mathbb{E}\left(p-\delta_{0}\right)^{2}=\operatorname{Var}\left(\delta_{0}\right)=\frac{p(1-p)}{n}$

Consider two other estimators: $\delta_{1}=\frac{1+\sum_{i} X_{i}}{n}, \delta_{2}=\frac{5+\sum_{i} X_{i}}{10+n}$
$\delta_{1}$ may look stupid. But $\delta_{0}$ vs $\delta_{2}$ is trickier...

Rules for choosing THE BEST one:

- Average risk: choose a prior over $p \rightarrow$ Bayesian!
- Worst-case risk: minimax estimator
- Only consider unbiased estimator: (see next)



## Sufficient statistics

Suppose $X_{1}, \ldots, X_{n} \sim \operatorname{Bernoulli(p):~}$
Consider $T(X):=X_{1}+\cdots+X_{n} \sim \operatorname{Bin}(n, p)$

$$
\operatorname{Pr}[X=x \mid T=t]=\frac{\operatorname{Pr}[X=x, T=t]}{\operatorname{Pr}[T=t]}
$$

$X_{1}, \ldots, X_{n} \rightarrow T(X)$ can throw away information
To estimate $p$ however, $T(X)$ is just as informative as $X_{1}, \ldots, X_{n}$
Definition. $T(X)$ is a sufficient statistic for a parameter $p$, if the distribution of $X$ does not depend on $p$ given $T$

Sufficient statistics are the only information needed to build an estimator

## Minimal sufficiency

There are many sufficient statistics for our toy model:

- $X_{1}, \ldots, X_{n}$
- $X_{\sigma(1)}, \ldots, X_{\sigma(n)}$
- $X_{1}+\cdots+X_{n}$

Definition. $T(X)$ is a minimal sufficient statistic for a parameter $p$, if $T$ is sufficient, and any other sufficient statistic $S(X), T(X)=f(S(X))$ for some $f$

Intuitively, minimal sufficient statistics are the most efficient statistics capturing all the information about the parameter

Roughly speaking, if $T$ determines the likelihood ratio in a "one-to-one fashion", then $T$ is minimal sufficient. See also: Fisher's factorization theorem.

## Sufficiency principle: Rao-Blackwellization

Let $T(X)$ be a sufficient statistic, and $\delta_{0}(X)$ an estimator.
Consider a new estimator $\delta_{1}(T(X)):=\mathbb{E}\left[\delta_{0}(X) \mid T(X)\right]$

For convex losses, the Rao-Blackwell estimator $\delta_{1}$ is at least as good as $\delta_{0}$

In practice, can lead to enormous difference.

See Textbook [BT] page 426 Exercises for examples

## Minimum variance unbiased estimator (optional)

Lehmann-Scheffé theorem roughly says that any unbiased estimator through a complete and sufficient statistic, is the unique minimum variance unbiased estimator.

```
Complete statistic
Roughly, T is complete if there is no non-trivial estimate of 0 through T
Different estimates of T lead to different distributions
```

See also: Cramér-Rao bound, which gives a bound on how efficient an unbiased estimator can be.

## Caution about unbiasedness (optional topic)

Not always a good idea to insist unbiasedness, because Cramér-Rao bound may not be achievable

Example:
Data samples $X \sim \operatorname{Bin}(1000, p)$, want to estimate $\operatorname{Pr}[X \geq 500]$.
One can show that the minimum variance unbiased estimator is just
$\mathbb{I}[X \geq 500]$

- This means that if $X=500$, our estimate is 1
- if $X=499$, our estimate is 0


## Confidence interval

How do you interpret the results of an estimation?

- By LLN/CLT, any (asymptotically) unbiased estimator converges to the true parameter as the sample size tends to infinity
- By Chernoff-Hoeffding bound, we also get a finite size bound

Suppose $X_{1}, \ldots, X_{n} \sim \operatorname{Bernoulli}(p)$ are iid r.v. , and $S_{n}=\sum_{i} X_{i}$ then for any $t>0$

$$
\operatorname{Pr}\left[\left|S_{n}-n p\right| \geq t\right] \leq 2 \mathrm{e}^{-\frac{2 \mathrm{t}^{2}}{\mathrm{n}}}
$$

Setting $\alpha=2 \mathrm{e}^{-\frac{2 \mathrm{t}^{2}}{\mathrm{n}}}$, we have $t=\sqrt{\frac{n \ln (2 / \alpha)}{2}}$.

This means that with probability $1-\alpha$,

$$
p \in\left(\frac{S_{n}}{n}-\sqrt{\frac{\ln \left(\frac{2}{\alpha}\right)}{2 n}}, \quad \frac{S_{n}}{n}+\sqrt{\frac{\ln (2 / \alpha)}{2 n}}\right)
$$

It is important to note that this probability is over the distribution of $\boldsymbol{S}_{\boldsymbol{n}}$

## Confidence interval: interpretations

A 95\% confidence interval is NOT an interval that contains the true parameter with probability at least 95\%

The confidence interval is a function of the data
After observing the data, the confidence interval is a fixed interval It either contains the true parameter, or not

To bring back probabilistic interpretation:

- Consider repeating the experiments, over and over again
- Now you have new, fresh, random data, so that the confidence interval can be treated as a random object over future repeated experiments of the assumed statistical/generative model
- In particle physics, usually a five-sigma rule, unless ground-breaking discovery
- Bayesian approach: credible region
- Only way to conclude from what we have already observed


## Recall Probability vs. Statistics

In probability: Compute probabilities from a parametric model with known parameters
Previous studies found the treatment is $80 \%$ effective. Then we expect that for a study of 100 patients, on average 80 will be cured. And the probability that at least 65 will be cured is at least $99.99 \%$.

In statistics:
Estimate the probability of parameters given a parametric model and collected data from it
Observe that 78/100 patients were cured. We will be able to conclude that: if we repeat this experiment, then we are $95 \%$ confident that the number of cured patients are between 69 to 87 .

## Bayesian vs. frequentist

## Bayesian

- Inference based on posterior
- A feature or a bug: Prior
- Probabilities can be interpreted
- Prior is made explicit
- Prior can be subjective
- No canonical prior: can change under reparameterization
- Hierarchical Bayesian, graphical model
- Computation/sampling of posterior can be hard
- Frontiers of many research


## Frequentist

- Inference based on likelihood
- No prior
- Objective - everyone gets the same answer
- Often gets mis-interpreted
- Needs to completely specify an experiment AND the data analysis, before collecting data and actually doing the analysis
- No adaptive re-use of the same dataset
- There is an entire field for systematically coping with adaptive data analysis

