
Advanced Algorithms
Spectral methods and algorithms

尹一通 栗师 刘景铖

Recall: Cut Sparsifiers

Definition. A graph 𝐻 is an 𝜖-cut approximator of a graph 𝐺 if for all 𝑆 ⊆ 𝑉,

1 − 𝜖 ⋅ 𝑤 𝛿𝐺 𝑆 ≤ 𝑤 𝛿𝐻 𝑆 ≤ 1 + 𝜖 ⋅ 𝑤 𝛿𝐺 𝑆 .

Theorem. [Benczur, Karger 96] Any graph 𝐺 has an 𝜖-cut approximator 𝐻 with 𝑂
𝑛 log 𝑛

𝜖2 edges.

.

Theorem. [Batson,Spielman, Srivastava] Any graph 𝐺 has an 𝜖-spectral approximator 𝐻 with 𝑂
𝑛

𝜖2 edges.

Spectral Sparsification

Definition. [Spielman, Teng] A graph 𝐻 is an 𝜖-spectral approximator of a graph 𝐺 if

1 − 𝜖 𝐿𝐺 ≼ 𝐿𝐻 ≼ 1 + 𝜖 𝐿𝐺 .

Observation. An 𝜖-spectral approximator is an 𝜖-cut approximator. Converse is not always true (Path vs. cycle)

𝜒𝑆
⊤𝐿𝐺𝜒𝑆 = ෍

𝑢𝑣∈𝐸

𝑤𝑢𝑣 𝜒𝑆 𝑢 − 𝜒𝑆(𝑣) 2 = 𝑤 𝛿𝐺 𝑆

Side note: this is a “physical approximation”: 𝐻 and 𝐺 as electrical networks generate roughly the same energy

Theorem. [Spielman, Srivastava] Any graph 𝐺 has an 𝜖-spectral approximator 𝐻 with 𝑂
𝑛 log 𝑛

𝜖2 edges.

𝐴 ≼ 𝐵 ⟺ 𝐵 − 𝐴 ≽ 0
⟺ ∀𝑥 ∈ ℝ𝑛, 𝑥⊤𝐴𝑥 ≤ 𝑥⊤𝐵𝑥

Spectral approximation and comparison

Exercise: Let G be a 𝑑-regular graph with spectral radius 𝛼 = 𝜖𝑑, and 𝑊 be
its random walk matrix. Then

1 − 𝜖 𝐼 − 𝐽 ≼ 𝐼 − 𝑊 ≼ (1 + 𝜖)(𝐼 − 𝐽)

 where J is the all 1/n matrix.

Example:
• If 𝐻 is a subgraph of 𝐺, then 𝐿𝐻 ≼ 𝐿𝐺

• If 𝐴 ≼ 𝐵, then ∀𝑘, 𝜆𝑘 𝐴 ≤ 𝜆𝑘 𝐵

Exercise:
• If ∀𝑘, 𝜆𝑘 𝐴 ≤ 𝜆𝑘 𝐵 , do we have 𝐴 ≼ 𝐵?

The level set of a quadratic form 𝑥⊤𝐴𝑥 ≤ 1 defines an ellipsoid
So 𝐴 ≼ 𝐵 is asking about ellipsoid containment

Path inequality

If P is a path of length r with endpoints a and b, then
𝐿(𝑎,𝑏) ≼ 𝑟 ⋅ 𝐿𝑃

Proof Idea: write 𝐿(𝑎,𝑏) as a telescoping sum over the path.

Bounding 𝜆2 of a Path graph

Idea: We compare the path with a complete graph, and use known
bounds for the complete graph to deduce a bound for the path

• 𝐿𝐾𝑛
= σ𝑎<𝑏 𝐿𝐺𝑎,𝑏

• Recall that 𝜆2 𝐿𝐾𝑛
= 𝑛

• For every 𝑎 < 𝑏, let 𝑃𝑎,𝑏 be the path connecting 𝑎, 𝑎 + 1, … , 𝑏 − 1, 𝑏

• Path inequality tells us that 𝐿𝐺𝑎,𝑏
≼ 𝑏 − 𝑎 𝐿𝑃𝑎,𝑏

≼ 𝑏 − 𝑎 𝐿𝑃𝑛

• Thus 𝐿𝐾𝑛
≼ σ𝑎<𝑏 𝑏 − 𝑎 𝐿𝑃𝑛

=
𝑛 𝑛+1 𝑛−1

6
𝐿𝑃𝑛

• Therefore 𝜆2 𝐿𝑃𝑛
≥

6

𝑛+1 𝑛−1

Spectral Sparsification: Linear Algebraic Formulation
There is a reduction from the spectral sparsification problem to a purely linear algebraic problem.

Theorem. Suppose 𝑣1, … , 𝑣𝑚 ∈ ℝ𝑛 are given with σ𝑖=1
𝑚 𝑣𝑖𝑣𝑖

⊤ = 𝐼𝑛.

 There exist scalars 𝑠1, … , 𝑠𝑚 with at most 𝑂
𝑛 log 𝑛

𝜖2 nonzeros such that

1 − 𝜖 ⋅ 𝐼𝑛 ≼ ෍

𝑖=1

𝑚

𝑠𝑖𝑣𝑖𝑣𝑖
⊤ ≼ 1 + 𝜖 ⋅ 𝐼𝑛

Recall that in spectral approximation, we want to find 𝐿𝐻 such that 1 − 𝜖 𝐿𝐺 ≼ 𝐿𝐻 ≼ 1 + 𝜖 𝐿𝐺.

Note that 𝐿𝐺 = σ𝑒 𝑏𝑒𝑏𝑒
⊤, and we would like to choose a subset of these vectors to form

𝐿𝐻 = ෍

𝑒

𝑠𝑒 𝑏𝑒𝑏𝑒
⊤

In general, this defines an ellipsoid, and spectral approximation is asking for ellipsoid containment

Notice that rescaling by a PSD matrix preserves Loewner order

So 1 − 𝜖 𝐿𝐺 ≼ 𝐿𝐻 ≼ 1 + 𝜖 𝐿𝐺 ⟺ 1 − 𝜖 ⋅ 𝐼𝑛 ≼ 𝐿𝐺

−
1

2 𝐿𝐻𝐿𝐺

−
1

2 ≼ 1 + 𝜖 ⋅ 𝐼𝑛

⟺ 1 − 𝜖 ⋅ 𝐼𝑛 ≼ ෍

𝑒

𝑠𝑒𝐿𝐺

−
1
2𝑏𝑒𝑏𝑒

⊤ 𝐿𝐺

−
1
2 ≼ 1 + 𝜖 ⋅ 𝐼𝑛

𝑣𝑒

𝐿𝐺 = ෍

𝑖≥2

𝜆𝑖𝑢𝑖𝑢𝑖
⊤

𝐿𝐺

−
1
2 = ෍

𝑖≥2

1

𝜆𝑖

𝑢𝑖𝑢𝑖
⊤

Isotropy Condition
The condition σ𝑖=1

𝑚 𝑣𝑖𝑣𝑖
⊤ = 𝐼𝑛 is called the “isotropy” condition.

Another way to think of it is as an overcomplete basis.

• If 𝑚 = 𝑛, then 𝑣𝑖 forms an orthonormal basis

• In general 𝑚 ≥ 𝑛

• Quadratic form is the same in every direction for unit vectors (circle), so equally important directions

• Longer vectors are therefore more important

• Such rescaling does not seem to have a combinatorial correspondence

Recall that 𝑣𝑒 = 𝐿𝐺

−
1

2𝑏𝑒

The length of a vector 𝑣𝑒 2
2 = 𝑏𝑒

⊤𝐿𝐺
− 1𝑏𝑒 has a physical meaning: effective resistance!

Also known as leverage score in numerical linear algebra

Intuition for an algorithm
Idea: Random Sampling (from Karger).

• Uniform sampling won’t work.

• Non-uniform sampling?

• Need to bias towards the middle edges in a dumb-bell graph

• Intuition from effective resistance:

• Higher resistance means fewer alternative paths, or electrically “important”

• Lower resistance means more alternative paths, or electrically “redundant”

Sampling algorithm for approximating identity

• Initialization: 𝐹 ← ∅, Ԧ𝑠 ← 0, 𝐶 =
9𝑛 log 𝑛

𝜖2 .

• For 1 ≤ 𝑡 ≤ 𝐶 do

 Sample 𝑖 with probability 𝑝𝑖 =
1

𝑛
𝑣𝑖 2

2, update 𝐹 ← 𝐹 ∪ 𝑖 and 𝑠𝑖 ← 𝑠𝑖 +
1

𝐶𝑝𝑖
.

• Return σ𝑖∈𝐹 𝑠𝑖𝑣𝑖𝑣𝑖
⊤ as our solution.

Note that σ𝑖 𝑝𝑖 =
1

𝑛
σ𝑖 𝑣𝑖

⊤𝑣𝑖 =
1

𝑛
σ𝑖 𝑇𝑟 𝑣𝑖𝑣𝑖

⊤ =
1

𝑛
𝑇𝑟 σ𝑖 𝑣𝑖𝑣𝑖

⊤ = 1

Trace trick: 𝑇𝑟 𝐴𝐵 = 𝑇𝑟(𝐵𝐴)

Matrix Chernoff Bound
There is an elegant generalization of Chernoff bound to the matrix setting.

Theorem. Let 𝑋1, … , 𝑋𝑚 be independent 𝑛 × 𝑛 real symmetric matrices with 0 ≼ 𝑋𝑖 ≼ 𝑅 ⋅ 𝐼 for some 𝑅 ∈ ℝ.

 Let 𝜇min𝐼 ≼ σ𝑖=1
𝑚 𝐸 𝑋𝑖 ≼ 𝜇max𝐼. For any 0 < 𝜖 ≤ 1,

Pr 𝜆max ෍

𝑖=1

𝑚

𝑋𝑖 ≥ (1 + 𝜖)𝜇max ≤ 𝑛𝑒−
𝜖2𝜇max

3𝑅

Pr 𝜆min ෍

𝑖=1

𝑚

𝑋𝑖 ≤ (1 − 𝜖)𝜇min ≤ 𝑛𝑒−
𝜖2𝜇m𝑖𝑛

2𝑅 .

Concentration
The random variables are 𝑋𝑡 =

𝑣𝑖𝑣𝑖
𝑇

𝐶 𝑝𝑖
 with probability 𝑝𝑖. We apply Matrix Chernoff:

𝔼𝑋𝑡 = ෍

𝑖

𝑝𝑖

𝑣𝑖𝑣𝑖
𝑇

𝐶𝑝𝑖
=

1

𝐶
𝐼

This gives a multiplicative approximation with high probability

Sample 𝐶 random matrices with replacement, each with probability 𝑝𝑖 =
1

𝑛
𝑣𝑖 2

2 and reweighted by
1

𝐶𝑝𝑖

approximates works whp

𝐶 =
9𝑛 log 𝑛

𝜖2

Effective Resistance
What is the sampling probability?

Recall that 𝑣𝑒 = 𝐿𝐺

−
1

2𝑏𝑒

𝑣𝑒 2
2 = 𝑏𝑒

⊤𝐿𝐺
− 1𝑏𝑒

In the graph case, it is possible to compute good approximations of the sampling probabilities

 in near-linear time. The idea is to do dimension reduction.

Discussion on sampling based sparsification

• Other ways to think about the sampling probability:
• “leverage score” in numerical linear algebra

• ∀𝑢𝑣 ∈ 𝐸, 𝑅eff 𝑢, 𝑣 ⋅ 𝑤𝑢𝑣 = Pr[𝑒 ∈ 𝑇], where T is a uniformly random spanning tree.

• Matrix-tree theorem

• Tight example: Consider σ𝑖=1
𝑛 𝑒𝑖𝑒𝑖

𝑇 = 𝐼𝑛

• Pick one direction uniformly at random each time

• By coupon collector, an extra O(log n) factor is necessary!

• However, a greedy approach might do better: find the missing direction, then add the corresponding
direction

Linear-Sized Spectral Sparsifiers

Theorem. [Batson Spielman, Srivastava] Any graph 𝐺 has an 𝜖-spectral approximator 𝐻 with 𝑂
𝑛

𝜖2 edges.

• The proof is purely linear algebraic, and it gives a deterministic greedy algorithm to construct a sparsifier

• There are near-linear time algorithms to find a linear-sized spectral sparsifier now

• Converting to vectors seems to be the best way to look at the graph sparsification problem

• The ideas are extended to lead to a breakthrough in mathematics (Kadison-Singer problem)

• There is also an interpretation of BSS’s result in the matrix multiplicative weight update framework

• Other sampling distribution: sample O(log(n)) random spanning trees

• Matrix concentration from strongly Rayleigh of spanning tree distribution (real-stability)

Cauchy Interlacing

What happens when you add a rank-one update to a matrix

• Eigenvalues are determined by roots of characteristic polynomials
𝑝𝐴 𝑥 = det(𝒙𝑰 − 𝑨)

• 𝑝𝐴+𝑣𝑣⊤ 𝑥 = det 𝒙𝑰 − 𝑨 − 𝑣𝑣⊤

 = det(𝒙𝑰 − 𝑨)det 𝑰 − 𝒙𝑰 − 𝑨 −1𝑣𝑣⊤

 = det(𝒙𝑰 − 𝑨) 𝑰 − 𝑣⊤ 𝒙𝑰 − 𝑨 −1𝑣

 = 𝑝𝐴 𝑥 𝟏 − σ𝑖
1

𝑥−𝜆𝑖
𝑢𝑖 , 𝑣 2

The new eigenvalues are therefore 𝑥 such that 𝟏 = σ𝑖
1

𝑥−𝜆𝑖
𝑢𝑖 , 𝑣 2

𝒙𝑰 − 𝑨 −1 = ෍

𝑖

1

𝑥 − 𝜆𝑖
𝑢𝑖𝑢𝑖

⊤

Adding a balanced vector
By choosing 𝑣𝑖 uniformly at random,

∀𝑦 ∈ ℝ𝑛, 𝔼 𝑦, 𝑣𝑖
2 =

1

𝑚
෍

𝑖=1

𝑚

𝑦⊤𝑣𝑖𝑣𝑖
⊤ 𝑦 =

1

𝑚
𝑦⊤𝑦

If one can add a very balanced vector that behaves like the expectation

𝑝𝐴+𝑣𝑣⊤ 𝑥 = 𝑝𝐴 𝑥 𝟏 − ෍

𝑖

1

𝑥 − 𝜆𝑖
𝑢𝑖 , 𝑣 2 = 𝑝𝐴 𝑥 𝟏 −

1

𝑚
෍

𝑖

1

𝑥 − 𝜆𝑖

𝔼 𝑝𝐴+𝑣𝑣⊤ 𝑥 = 1 −
1

𝑚

𝜕

𝜕𝑥
𝑝𝐴 𝑥

This is not a proof because roots(𝔼𝑝)≠ 𝔼roots(𝑝)
But there is a way to make this essentially happens

By a barrier argument, BSS showed that one can evenly move the eigenvectors
through a greedy algorithm

෍

𝑖=1

𝑚

𝑣𝑖𝑣𝑖
⊤ = 𝐼𝑛

Applications: Reductions between
randomized nearly linear time algorithms
• Solve ෠𝐿𝑥 = 𝑏 for ෠𝐿 ≈ 𝐿

• Solve 𝐿𝑥 = 𝑏 or compute 𝐿Ɨ𝑏

• Approximate one-pair effective resistance

• Approximate all pairs effective resistances

• Spectral sparsification

Electrical networks
Electrical flows, effective resistance, hitting time and cover time

Why hitting time and cover time?

U. Feige

Hitting time

• Finding bipartite matching
• Use random walk to find an augmenting cycle
• Interested in the first return time, in expectation

• 2SAT, and more generally the Moser-Tardos algorithm
• Can be seen as a random walk over all assignments
• Interested in the first time of hitting a satisfying assignment, in expectation

Cover time? Imagine you want to explore the graph

Using DFS/BFS, you need time 𝑂 𝐸 + |𝑉| and space 𝑂(𝑉)

What if we use random walk instead?

Space = 𝑂(log 𝑛), expected running time = cover time ≤ 𝑂(𝑉 |𝐸|)

In fact, U. Feige showed that there is an entire spectrum of time-space trade-off:

For every 𝑠 there is an algorithm using space 𝑠 and time ෨𝑂
𝑉 𝐸

𝑠
 that covers all vertices w.h.p.

https://core.ac.uk/download/pdf/82332441.pdf

Electrical Flow

An electrical network is an undirected graph where every edge is a resistor of resistance 𝑟𝑒.

The electrical flows on this network are governed by two laws:

1) Kirchhoff’s law: The sum of incoming currents is equal to the sum of outgoing currents.

2) Ohm’s law: There exists a voltage vector 𝜙: 𝑉 → ℝ such that 𝜙 𝑢 − 𝜙 𝑣 = 𝑖𝑢𝑣𝑟𝑢𝑣 for all 𝑒 ∈ 𝐸,

 where 𝑖𝑢𝑣 is positive in the forward direction and negative in the backward direction

Given an electrical network, how do you compute these quantities?

Not every graph is series-parallel

https://www.graphclasses.org/classes/gc_275.html

Matrix formulation of electrical networks

Input: graph 𝐺 = (𝑉, 𝐸), resistance 𝑟𝑒 or conductance 𝑤𝑒 = 1/𝑟𝑒 for 𝑒 ∈ 𝐸, demand 𝑏𝑣 for 𝑣 ∈ 𝑉.

Output: the current/flow 𝑖𝑢𝑣 on each edge 𝑢𝑣 ∈ 𝐸, and the voltage 𝜙𝑣 on each vertex 𝑣 ∈ 𝑉.

Ohm’s law: 𝜙 𝑢 − 𝜙 𝑣 = 𝑖𝑢𝑣𝑟𝑢𝑣 ⇔ 𝑖𝑢𝑣 = 𝑤𝑢𝑣 𝜙 𝑢 − 𝜙 𝑣 for all 𝑢𝑣 ∈ 𝐸.

Kirchhoff’s law: The sum of incoming flows is equal to the sum of outgoing flows.

෍

𝑢:𝑣𝑢∈𝐸

𝑖𝑣𝑢 = 𝑏𝑣, ∀𝑣 ∈ 𝑉

Combined:

𝑏𝑣 = ෍

𝑢:𝑣𝑢∈𝐸

𝑖𝑣𝑢 = ෍

𝑢:𝑣𝑢∈𝐸

𝑤𝑢𝑣 𝜙 𝑣 − 𝜙 𝑢 = deg𝑤(𝑣) 𝜙 𝑣 − ෍

𝑢:𝑣𝑢∈𝐸

𝑤𝑢𝑣𝜙 𝑢

where deg𝑤(𝑣) = σ𝑢:𝑣𝑢∈𝐸 𝑤𝑢𝑣 is a weighted degree. Specifically, if 𝑤𝑢𝑣 = 1, the above is simply 𝑏 = 𝐿𝜙

𝑏𝑣 > 0 if injecting a flow; source
𝑏𝑣 < 0 if outputting a flow; sink
𝑏𝑣 = 0 everywhere else

In general, we have a weighted Laplacian

Matrix formulation of electrical networks

Given resistor network, we inject 1A current into a node 𝑠, and let the current flow out of a node 𝑡

How do you compute the voltages? Solve the equations 𝑏 = 𝐿𝜙
Now that we have the voltages 𝜙, by Ohm’s law, the current 𝑖𝑢𝑣 = 𝑤𝑢𝑣 𝜙 𝑢 − 𝜙 𝑣

Consider the incidence matrix 𝐵, we have റ𝑖 = 𝑊𝐵⊤𝜙 for a diagonal matrix 𝑊 of conductances

Then the Laplacian can also be written as:

𝐿 = ෍

𝑒

𝑤𝑒𝑏𝑒𝑏𝑒
⊤ = 𝐵𝑊𝐵⊤

Then 𝑏 = 𝐿𝜙 = 𝐵𝑊𝐵⊤𝜙 = 𝐵റ𝑖, which is exactly the law of flow conservation (Kirchhoff’s law)

To relate electrical quantities to random walks, we observe that they follow the same set of equations
Question: is there always a solution to these equations? Are they unique?

Solution Space and Pseudo-inverse of 𝐿

𝐿 is not of full rank, so inverse doesn’t exist, e.g. can’t say 𝑥 = 𝐿−1𝑏 is the unique solution.

But if 𝐺 is connected (WLOG), then the nullspace of 𝐿 is spanned by 1, and we can characterize the solutions.

Claim. If 𝐿𝑥 = 𝑏, then 𝑏 ⊥ 1.

Proof:

Suppose 𝐿𝑥 = 𝑏, where 𝑥 = σ𝑖 𝑐𝑖𝑣𝑖. Then 𝐿𝑥 = σ𝑖≥2 𝑐𝑖𝜆𝑖𝑣𝑖 is orthogonal to 𝑣1 =
1

𝑛
1

This makes sense for electrical flow, because the sum of demands should be equal to zero.

Solution Space and Pseudo-inverse of 𝐿

Claim. If 𝑏 ⊥ 1, then there exists 𝑥 such that 𝐿𝑥 = 𝑏.

Proof: Let 𝑏 = σ𝑖=2
𝑛 𝑎𝑖 𝑣𝑖. Consider 𝑥 = σ𝑖=2

𝑛 𝑎𝑖

𝜆𝑖
𝑣𝑖. Then 𝐿𝑥 = σ𝑖=2

𝑛 𝑎𝑖 𝑣𝑖 = 𝑏.

The pseudo-inverse of 𝐿 is defined as 𝐿Ɨ ≔ σ𝑖=2
𝑛 1

𝜆𝑖
𝑣𝑖𝑣𝑖

𝑇.

𝐿Ɨ maps any vector 𝑏 ⊥ 1 to the unique vector 𝑥 such that 𝐿𝑥 = 𝑏 and 𝑥 ⊥ 1.

So, the set of all solutions for 𝐿𝑥 = 𝑏 is 𝐿Ɨ𝑏 + 𝑐1 𝑐 ∈ ℝ , a “translation” of the solution 𝐿Ɨ𝑏. (So, Ԧ𝑖 is unique.)

In particular, if we fix the value of one node, e.g. 𝑥𝑡 = 0, then there is a unique solution.

Any Laplacian system can be thought of as an electrical flow problem!

Effective resistance

The effective resistance 𝑅eff 𝑠, 𝑡 between vertices 𝑠 and 𝑡 is defined as 𝜙 𝑠 − 𝜙(𝑡),

 where 𝜙 satisfies 𝐿𝜙 = 𝑏 for a demand 𝑏 sending one unit of electrical flow from 𝑠 to 𝑡.

We should think of it as the resistance of the whole graph as a single big resistor.

Claim. 𝑅eff 𝑠, 𝑡 = 𝑏𝑠𝑡
⊤ 𝐿Ɨ𝑏𝑠𝑡 where 𝑏𝑠𝑡 ∈ ℝ𝑛 with 𝑏𝑠𝑡 𝑠 = 1, 𝑏𝑠𝑡 𝑡 = −1, and zero otherwise.

Proof: 𝑅eff 𝑠, 𝑡 = 𝑏𝑠𝑡
⊤ 𝜙 = 𝑏𝑠𝑡

⊤ 𝐿Ɨ𝑏𝑠𝑡

Energy

The energy of an electrical flow is defined as

Ɛ Ԧ𝑖 ≔ ෍

𝑒∈𝐸

𝑖𝑒
2 ⋅ 𝑟𝑒

Intuitively, if we think of the graph as a big resistor, then Ɛ Ԧ𝑖 = 𝑅eff 𝑠, 𝑡 .

Claim. Ɛ Ԧ𝑖 = 𝑅eff 𝑠, 𝑡 , where Ԧ𝑖 is a one-unit electrical flow from 𝑠 to 𝑡.

Proof:

෍

𝑒∈𝐸

𝑖𝑒
2 ⋅ 𝑟𝑒 = ෍

𝑒

𝜙 𝑢 − 𝜙 𝑣
2

𝑟𝑒
= 𝜙⊤𝐿𝜙

where 𝜙 satisfies 𝐿𝜙 = 𝑏𝑠𝑡, so that 𝜙 = 𝐿Ɨ𝑏𝑠𝑡. Thus, Ɛ Ԧ𝑖 = 𝑏𝑠𝑡
⊤ 𝐿Ɨ𝑏𝑠𝑡 = 𝑅eff 𝑠, 𝑡

In words, the effective resistance between 𝑠 and 𝑡 is the energy of a one-unit electrical 𝑠-𝑡 flow.

Thompson’s Principle

Theorem. 𝑅eff 𝑠, 𝑡 ≤ Ɛ Ԧ𝑔 where Ԧ𝑔 is a one-unit 𝑠-𝑡 flow.

For simplicity we assume 𝑟𝑒 = 1, ∀𝑟𝑒

Proof (sketch):

Consider min Ɛ Ԧ𝑔 = min σ𝑒∈𝐸 𝑔𝑒
2, s.t. 𝐵 റ𝑔 = 𝑏𝑠𝑡

As a convex constrained optimization problem, it is minimized when the gradient of the Lagrangian is zero:
∃𝜙 ∈ ℝ𝑛 𝑠. 𝑡. 𝐵⊤𝜙 = റ𝑔

This is precisely the Ohm’s law: റ𝑔 is a flow determined by a voltage vector 𝜙

This means that റ𝑔 is an electrical flow

(For an elementary proof, consider Ԧ𝑔 = Ԧ𝑖 + Ԧ𝑐, then try to show that the cross-terms are zero in the energy)

So, the one unit 𝑠-𝑡 electrical flow is the flow that minimizes the energy among all one unit 𝑠-𝑡 flow.

Rayleigh’s Monotonicity Principle

Theorem. If 𝑟′ ≥ Ԧ𝑟, then 𝑅
eff,𝑟′ 𝑠, 𝑡 ≥ 𝑅eff, Ԧ𝑟 𝑠, 𝑡 .

Proof: Let Ԧ𝑖 be a one-unit s-t electrical flow in the network of resistors Ԧ𝑟, and 𝑖′ be that of resistors 𝑟′

𝑅eff, Ԧ𝑟 𝑠, 𝑡 = Ɛ Ԧ𝑟 Ԧ𝑖 ≤ Ɛ Ԧ𝑟 𝑖′ ≤ Ɛ𝑟′ 𝑖′ = 𝑅
eff,𝑟′ 𝑠, 𝑡

The first inequality follows from Thompson’s principle, and the second from 𝑟′ ≥ Ԧ𝑟 and Ɛ Ԧ𝑟 Ԧ𝑖 ≔ σ𝑒∈𝐸 𝑖𝑒
2 ⋅ 𝑟𝑒

This is very intuitive, increasing the resistance of an edge could never decrease the effective resistance,

 and decreasing the resistance of an edge could never increase the effective resistance.

Effective Resistances as Distances

Effective resistance is probably a better distance function to measure how close are two nodes

Especially for random walks

It is known that effective resistances satisfy the triangle inequality

Lemma. 𝑅eff 𝑎, 𝑏 + 𝑅eff 𝑏, 𝑐 ≥ 𝑅eff 𝑎, 𝑐 for any 𝑎, 𝑏, 𝑐

Random Walks on Undirected Graphs

We study some interesting quantities about random walks in undirected graphs.

1. Hitting time: 𝐻𝑢,𝑣 ≔ min 𝑡 ≥ 1 | 𝑋1 = 𝑢 𝑎𝑛𝑑 𝑋𝑡 = 𝑣 and ℎ𝑢,𝑣 = 𝔼[𝐻𝑢,𝑣].

2. Commute time: 𝐶𝑢,𝑣 ≔ ℎ𝑢,𝑣 + ℎ𝑣,𝑢.

3. Cover time: cover𝑣 is defined as expected time to visit every vertex at least once

 if the random walk starts at 𝑣, and cover𝐺 ≔ max
v

 cover𝑣

Commute Time

Theorem. For any two vertices 𝑠 and 𝑡, 𝐶𝑠,𝑡 = 2𝑚𝑅eff 𝑠, 𝑡 , where 𝑚 = 𝐸 𝐺

Proof:

Fix any node 𝑡, let ℎ𝑢,𝑡 be the hitting time from node 𝑢 to node 𝑡, then ∀𝑢 ≠ 𝑡

ℎ𝑢,𝑡 = 1 +
1

𝑑𝑢
෍

𝑣∼𝑢

ℎ𝑣,𝑡 ⇒ 𝑑𝑢ℎ𝑢,𝑡 − ෍

𝑣∼𝑢

ℎ𝑣,𝑡 = 𝑑𝑢

Consider the vector ℎ∗,𝑡 , it satisfies:

𝐷 − 𝐴 ℎ𝑢,𝑡

ℎ𝑡,𝑡

=
𝑑𝑢

𝑑𝑡 − 2𝑚

Note that we have artificially added one row of equation on ℎ𝑡,𝑡

To ensure there is a solution, we have to make sure that the right hand side sum up to 0

(To be cont’d..)

Commute Time

Theorem. For any two vertices 𝑠 and 𝑡, 𝐶𝑠,𝑡 = 2𝑚𝑅eff 𝑠, 𝑡 , where 𝑚 = 𝐸 𝐺

Proof (cont’d):

Fix any node 𝑠, let ℎ𝑢,𝑠 be the hitting time from node 𝑢 to node 𝑠, then ∀𝑢 ≠ 𝑠

ℎ𝑢,𝑠 = 1 +
1

𝑑𝑢
෍

𝑣∼𝑢

ℎ𝑣,𝑠 ⇒ 𝑑𝑢ℎ𝑢,𝑠 − ෍

𝑣∼𝑢

ℎ𝑣,𝑠 = 𝑑𝑢

Consider the vector ℎ∗,𝑠 , it satisfies:

𝐷 − 𝐴

ℎ𝑠,𝑠

ℎ𝑢,𝑠

ℎ𝑡,𝑠

=

𝑑𝑠 − 2𝑚
𝑑𝑢

𝑑𝑡

Again, we have artificially added one row of equation on ℎ𝑠,𝑠

(To be cont’d..)

Commute Time

Theorem. For any two vertices 𝑠 and 𝑡, 𝐶𝑠,𝑡 = 2𝑚𝑅eff 𝑠, 𝑡 , where 𝑚 = 𝐸 𝐺

Proof (cont’d):

𝐿 ℎ∗,𝑡 − ℎ∗,𝑠 =

𝑑𝑠

𝑑𝑢

⋮
𝑑𝑡 − 2𝑚

−

𝑑𝑠 − 2𝑚
𝑑𝑢

⋮
𝑑𝑡

=

2𝑚
0
⋮

−2𝑚

Thus,
𝐿 ℎ∗,𝑡−ℎ∗,𝑠

2𝑚
= 𝑏𝑠,𝑡

Recall that 𝐿𝜙 = 𝑏𝑠𝑡 has a solution that is unique up to translation

Let 𝜙 =
ℎ∗,𝑡−ℎ∗,𝑠

2𝑚
, we have

𝑅eff 𝑠, 𝑡 = 𝜙 𝑠 − 𝜙 𝑡 =
ℎ𝑠,𝑡 − ℎ𝑠,𝑠

2𝑚
 −

ℎ𝑡,𝑡 − ℎ𝑡,𝑠

2𝑚
=

ℎ𝑠,𝑡 + ℎ𝑡,𝑠

2𝑚
=

𝐶𝑠,𝑡

2𝑚

Cover Time

Corollary. 𝐶𝑢,𝑣 ≤ 2𝑚 for every edge 𝑢𝑣 ∈ 𝐸.

Proof: Notice that 𝑅eff 𝑢, 𝑣 ≤ 1 for every edge 𝑢𝑣 ∈ 𝐸. Then it follows from 𝐶𝑢,𝑣 = 2𝑚𝑅eff 𝑢, 𝑣 ≤ 2𝑚

Theorem. The cover time of a connected graph is at most 2𝑚(𝑛 − 1).

Proof: Consider any spanning tree 𝑇.

Then the cover time is at most traversing the time to commute along each tree edges of 𝑇.

Approximating Cover Time by Resistance
Diameter
Theorem. Let 𝑅 𝐺 ≔ max

𝑢,𝑣
 𝑅eff 𝑢, 𝑣 be the resistance diameter. Then,

𝑚 ⋅ 𝑅 𝐺 ≤ cover 𝐺 ≤ 2𝑒3𝑚 ⋅ 𝑅 𝐺 ⋅ ln 𝑛 + 𝑛

Proof: Firstly,

cover 𝐺 ≥ max ℎ𝑢𝑣, ℎ𝑣𝑢 ≥
𝐶𝑢𝑣

2
= 𝑚𝑅𝑢𝑣 ,

which is the lowerbound.

For the upperbound, notice that the maximum commute time from any vertex is at most 2𝑚𝑅 𝐺

If the random walk is run for 2𝑒3𝑚 ⋅ 𝑅 𝐺 , by Markov’s inequality, the probability that a vertex is not visited is at most 1/𝑒3

If we repeat this ln 𝑛 times, the probability that a vertex is not visited is at most 1/𝑛3

By a union bound, the probability that there exists a vertex not visited is at most 1/𝑛2

In such cases, we can pay for another pessimistic cover time of 𝑛3

Combined, we have cover 𝐺 ≤ 2𝑒3𝑚 ⋅ 𝑅 𝐺 ⋅ ln 𝑛 +
1

𝑛2 𝑛3

Graph Connectivity

Reingold’s Theorem

Theorem. There is an 𝑂 𝑛3 time algorithm to solve 𝑠-𝑡 connectivity using only 𝑂(log 𝑛) space

Using random walk, the space requirement is 𝑂(log 𝑛) and expected running time is 𝑂 𝑉 𝐸 = 𝑂 𝑛3

You may wonder, is randomness necessary for checking graph connectivity in log-space?

Definition. A sequence 𝜎 is (𝑑, 𝑛)-universal if for every labeled connected 𝑑-regular graphs and every starting
vertex 𝑠, the walk defined by 𝜎 started from 𝑠 covers every vertices

Theorem. There exists (𝑑, 𝑛)-universal sequence of length 𝑂 𝑛3𝑑2 log 𝑛𝑑 for undirected graphs

HINT: Cover time is at most 𝑂(𝑛2𝑑) for 𝑑-regular graphs

Reingold’s Theorem For undirected graphs, one can explicitly construct such a universal sequence in log-space

It is an open problem to derandomize log-space connectivity
Though likely not through “directed” universal sequences

https://dl.acm.org/doi/10.1145/1391289.1391291

	Slide 1: Advanced Algorithms
	Slide 2: Recall: Cut Sparsifiers
	Slide 3: Spectral Sparsification
	Slide 4: Spectral approximation and comparison
	Slide 5: Path inequality
	Slide 6: Bounding 2 of a Path graph
	Slide 7: Spectral Sparsification: Linear Algebraic Formulation
	Slide 8: Isotropy Condition
	Slide 9: Intuition for an algorithm
	Slide 10: Sampling algorithm for approximating identity
	Slide 12: Matrix Chernoff Bound
	Slide 13: Concentration
	Slide 14: Effective Resistance
	Slide 15: Discussion on sampling based sparsification
	Slide 16: Linear-Sized Spectral Sparsifiers
	Slide 17: Cauchy Interlacing
	Slide 18: Adding a balanced vector
	Slide 19: Applications: Reductions between randomized nearly linear time algorithms
	Slide 20: Electrical networks
	Slide 21: Why hitting time and cover time?
	Slide 22: Electrical Flow
	Slide 23: Matrix formulation of electrical networks
	Slide 24: Matrix formulation of electrical networks
	Slide 25: Solution Space and Pseudo-inverse of L
	Slide 26: Solution Space and Pseudo-inverse of L
	Slide 27: Effective resistance
	Slide 28: Energy
	Slide 29: Thompson’s Principle
	Slide 30: Rayleigh’s Monotonicity Principle
	Slide 32: Effective Resistances as Distances
	Slide 33: Random Walks on Undirected Graphs
	Slide 34: Commute Time
	Slide 35: Commute Time
	Slide 36: Commute Time
	Slide 37: Cover Time
	Slide 38: Approximating Cover Time by Resistance Diameter
	Slide 39: Graph Connectivity

