# Advanced Algorithms

Spectral methods and algorithms

尹一通 栗师 刘景铖

#### Recap

#### **Previous lecture:**

Random walks on undirected graphs

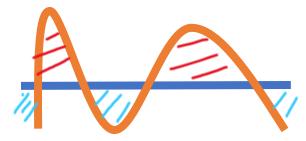
- Fundamental theorem of Markov chains
- Spectral analysis
- Mixing time
- Random sampling

#### What next?

Random walks on undirected graphs

- From sampling to counting and MCMC
- Expander graphs and random walks





Given distributions p and q over [n], a <u>coupling</u> between them is a joint distribution  $\mu$  over  $[n] \times [n]$  such that the marginals are p and q, respectively:

$$\sum_{j \in [n]} \mu(i,j) = p(i)$$

$$\sum_{i \in [n]} \mu(i,j) = q(j)$$

Independently joining p and q is obviously a coupling. More interesting are when they are not independent.

#### **Theorem**

For any distributions p and q, and any coupling  $\mu$  between them,  $d_{TV}(p,q) \leq \Pr_{(X,Y) \sim \mu}[X \neq Y]$ 

Furthermore, there is a coupling  $\mu$  such that  $d_{TV}(p,q) = \Pr_{(X,Y) \sim \mu}[X \neq Y]$ 

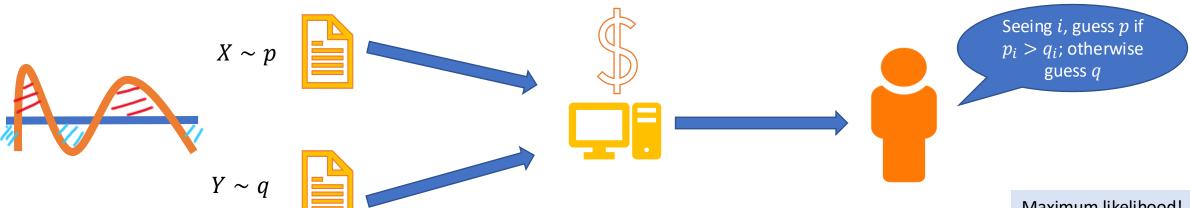
Intuitively, the best we can do is to make the random variables equal in the overlapping regions, that is,  $\min\{p_i, q_i\}$ ; then with the remaining probability, they must be unequal.

Note that the region in red, and the region in light blue have the same area.

# Coupling vs Indistinguishing game

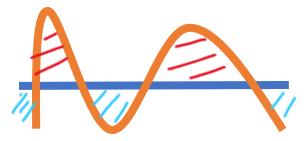
TV distance is also known as statistical distance

- A game to distinguish two distributions p and q over [n]
- Player A draw a sample  $X \sim p$  and a sample  $Y \sim q$
- Player A flips a fair coin to decide which sample to send to Player B
- Player B now needs to guess which distribution does it came from









Let  $(X_t)$  and  $(Y_t)$  be two copies of a Markov chain over [n]. A <u>coupling</u> between them is a joint **process**  $(X_t, Y_t)$  over  $[n] \times [n]$  such that

- 1. Marginally, viewed in isolation,  $(X_t)$  and  $(Y_t)$  are both copies of the original chain
- $2. X_t = Y_t \Rightarrow X_{t+1} = Y_{t+1}$

Basically, one can think of two random walkers on the same graph  ${\cal G}$  In isolation, they each behave faithfully as a random walk on  ${\cal G}$  But their moves could be dependent

The coupling technique is to design a joint moving process, such that

- The two random walkers meet quickly
- Once they meet, they make identical moves thereafter

Then by the coupling theorem, we know that the time they meet will roughly be an upperbound of mixing time

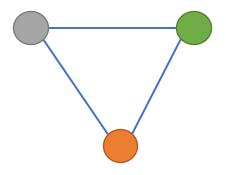
#### Random walk on the hypercube

- Start with  $\sigma \in \{0,1\}^n$
- Pick a coordinate  $i \in [n]$  u.a.r., and  $b \in \{0, 1\}$  u.a.r.
- Update  $\sigma_i = b$

To analyze its mixing time, we consider the following coupling Say we have two arbitrary copies of the Markov chain,  $(X_t)$  and  $(Y_t)$  At each step, we let them choose the same coordinate i and same b

Then, the time that they perfectly couple together is exactly the coupon collecting time! Note that the probability of not collecting the coupon i after r rounds is at most  $\left(1-\frac{1}{n}\right)^r$  By a union bound, the probability of not collecting all the coupons after  $n\ln\frac{n}{\epsilon}$  rounds is at most  $\epsilon$  So, the  $\epsilon$ -mixing time for a random walk on the hypercube is  $n\ln\frac{n}{\epsilon}$ 





Given an undirected graph with max. degree  $\Delta$  and k colors Goal: generate a k-coloring uniformly at random

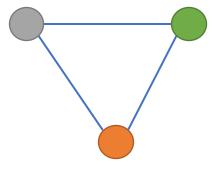
This is presumably harder than deciding if there is a k-coloring Nevertheless, the following random walk has a stationary distribution uniform over all k-colorings:

- Start with any k-coloring  $\sigma$
- Pick a vertex v and a color c uniformly at random, recolor v with c if it is legal; otherwise do nothing;

This Markov chain is irreducible provided that  $k \ge \Delta + 2$ , and aperiodic

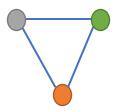
We prove rapid mixing assuming  $k \ge 4\Delta + 1$ , based on a coupling argument, and explain ideas for  $k \ge 2\Delta + 1$ State of the art:  $k \ge (\frac{11}{6} - \epsilon)\Delta$  for a small  $\epsilon$ , or  $k \ge \Delta + 3$  for sufficiently large girth graphs

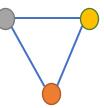
## Coupling for Graph Coloring



- Start with any k-coloring  $\sigma$
- Pick a vertex v and a color c uniformly at random, recolor v with c if it is legal; otherwise do nothing

Say we have two arbitrary copies of the Markov chain,  $(X_t)$  and  $(Y_t)$  At each step, we let them choose the same vertex v and same color c Let  $d_t = \text{number of vertices } X_t$  disagree with  $Y_t$  Unlike the previous example,  $d_t$  can increase now We need to consider Good Moves that decrease  $d_t$ , and balance them with Bad Moves that increase  $d_t$ 





Start with any k-coloring  $\sigma$  Pick a vertex v and a color c u.a.r., recolor v with c if legal

# Coupling for Graph Coloring

Say we have two arbitrary copies of the Markov chain,  $(X_t)$  and  $(Y_t)$ At each step, we let them choose the same vertex v and same color cLet  $d_t$  = number of vertices  $X_t$  disagree with  $Y_t$ 

#### Good Moves that decrease $d_t$ :

If we chose a disagreeing vertex v, and color c does not appear in the neighborhood of v in  $X_t$  or  $Y_t$ , this is a good move

Because we can safely recolor a disagreeing vertex v with color c, and they agree from then on

Let  $g_t$  be the number of good moves (among all possible kn choices)

There are  $d_t$  vertices to choose from, and each disagreeing vertex has a neighborhood of at most  $\Delta$  colors in either process, so each disagreeing vertex has  $k-2\Delta$  "safe colors"

$$g_t \ge d_t(k - 2\Delta)$$

Start with any k-coloring  $\sigma$ Pick a vertex v and a color c u.a.r., recolor v with c if legal

# Coupling for Graph Coloring

Say we have two arbitrary copies of the Markov chain,  $(X_t)$  and  $(Y_t)$  At each step, we let them choose the same vertex v and same color c Let  $d_t = \text{number of vertices } X_t \text{ disagree with } Y_t$ 

Bad Moves that increase  $d_t$ : a legal move in one process but not the other This happens when (and only when) the chosen color c is already the color of some neighbor of v in one process but not the other

In other words, v must be a neighbor of some disagreeing vertex u, and c must be the color of u in either  $X_t$  or  $Y_t$ 

Let  $b_t$  be the number of bad moves (among all possible kn choices) There are  $d_t$  choices of disagreeing vertex u, then  $\Delta$  choices for v, then 2 for  $X_t$  or  $Y_t$   $b_t \leq 2\Delta d_t$ 

Start with any k-coloring  $\sigma$ Pick a vertex v and a color c u.a.r., recolor v with c if legal

# Coupling for Graph Coloring

Say we have two arbitrary copies of the Markov chain,  $(X_t)$  and  $(Y_t)$  At each step, we let them choose the same vertex v and same color c Let  $d_t = \text{number of vertices } X_t \text{ disagree with } Y_t$ 

Combined: 
$$\mathbb{E}[d_{t+1}|d_t] = d_t + \frac{b_t - g_t}{kn} \le d_t + d_t \frac{4\Delta - k}{kn} \le d_t \left(1 - \frac{1}{kn}\right)$$

Since  $d_0 \le n$ , we have  $\mathbb{E}[d_t|d_0] \le 1/e$  for  $t = 2k \ n \ln n$ . Thus,

$$d_{TV}(p_t, \pi) \le \Pr_{(X_t, Y_t) \sim \mu} [X_t \ne Y_t] \le \Pr[d_t > 0 | X_0, Y_0] = \Pr[d_t \ge 1 | X_0, Y_0] \le \mathbb{E}[d_t | d_0] \le 1/e$$

This concludes that the  $\epsilon$ -mixing time is  $O\left(nk\log\frac{n}{\epsilon}\right)$ 

To improve this to  $k \ge 2\Delta + 1$ , one tries to pair bad moves in  $(X_t)$  but blocked in  $(Y_t)$ , with bad moves in  $(Y_t)$  but blocked in  $(X_t)$ 

Now that we have a Markov chain that outputs a k-coloring  $\sigma$  almost uniformly at random from all proper colorings after  $O\left(nk\log\frac{n}{\epsilon}\right)$  steps

Can we estimate the total number of proper colorings?

This task is known as *approximate counting* 

For many natural concrete problems

 $ApproxCount \equiv ApproxSample \equiv UniformSample \subset ExactCount$ 

Denote the number of proper colorings of a graph G by  $Z_G$  We start by finding an arbitrary proper coloring  $\sigma$  in G Then, we reveal the colors in G one by one We count how many proper colorings are consistent with the revealed colors

Let  $Z_i$  be the number of proper colorings  $\tau$  such that in the first i coordinates,  $\tau$  agrees with  $\sigma$ 

Notice that 
$$Z_0=Z_G$$
 ,  $Z_n=1$  , and 
$$Z_G=\frac{Z_0}{Z_1}\cdot\frac{Z_1}{Z_2}\cdots\frac{Z_{n-1}}{Z_n}$$

Let  $Z_i$  be the number of proper colorings au such that in the first i coordinates, au agrees with  $\sigma$ 

Notice that 
$$Z_0=Z_G$$
 ,  $Z_n=1$  , and 
$$Z_G=\frac{Z_0}{Z_1}\cdot\frac{Z_1}{Z_2}\cdots\frac{Z_{n-1}}{Z_n}$$

Suppose we estimate each ratio within  $\left(1\pm\frac{\epsilon}{2n}\right)\cdot\frac{Z_{i+1}}{Z_i}$  except with prob.  $\frac{\delta}{n}$  Then multiplying them all together gives  $(1\pm\epsilon)\cdot Z_G$  except with prob.  $\delta$ 

Let  $Z_i$  be the number of proper colorings  $\tau$  such that: in the first i coordinates,  $\tau$  agrees with  $\sigma$ Let  $\pi_i$  be the uniform distribution of proper colorings  $\tau$  such that: in the first i coordinates,  $\tau$  agrees with  $\sigma$ 

Recall that  $Z_0 = Z_G$ ,  $Z_n = 1$ , and

$$Z_G = \frac{Z_0}{Z_1} \cdot \frac{Z_1}{Z_2} \cdots \frac{Z_{n-1}}{Z_n}$$

How do we estimate each ratio  $\frac{Z_{i+1}}{Z_i}$ ?

We run a Markov chain that samples from  $\pi_i$ , and use Monte Carlo method to estimate how many are counted in  $Z_{i+1}$ 

<u>Markov chain</u>: in the first i coordinates, we fix the colorings as in  $\sigma$ , and only update the remaining n-i coordinates <u>Monte Carlo</u>: given a sample  $\tau$ , we check if  $\tau_{i+1}=\sigma_{i+1}$ 

Sampling from  $\pi_i$  is an unbiased estimator for the ratio:

$$E_{\tau \sim \pi_i} [[\tau_{i+1} = \sigma_{i+1}]] = \frac{Z_{i+1}}{Z_i}$$

Sampling from a rapidly mixing Markov chain  $p_t$  only introduces a small bias (recall the def. of TV distance):

$$\left| E_{\tau \sim p_t} \left[ \left[ \tau_{i+1} = \sigma_{i+1} \right] \right] - E_{\tau \sim \pi_i} \left[ \left[ \tau_{i+1} = \sigma_{i+1} \right] \right] \right| \le d_{TV}(p_t, \pi_i)$$

$$d_{TV}(p_t, \pi) = \max_{S \subseteq [n]} |p_t(S) - \pi(S)|$$

We run a Markov chain that samples from  $\pi_i$ , and use Monte Carlo method to estimate how many are counted in  $Z_{i+1}$ 

<u>Markov chain</u>: in the first i coordinates, we fix the colorings as in  $\sigma$ , and only update the remaining <u>Monte Carlo</u>: given a sample  $\tau$ , we check if  $\tau_{i+1} = \sigma_{i+1}$ 

Sampling from  $\pi_i$  is an unbiased estimator for the ratio:

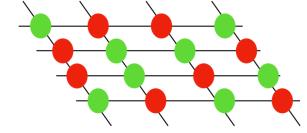
$$E_{\tau \sim \pi_i} [[\tau_{i+1} = \sigma_{i+1}]] = \frac{Z_{i+1}}{Z_i}$$

Variance can also be bounded because  $\frac{Z_{i+1}}{Z_i}$  is strictly between (0,1):  $\left(\frac{k-\Delta-1}{k-\Delta}\right)^{\Delta} \cdot \frac{1}{k} \leq \frac{Z_{i+1}}{Z_i} \leq \frac{1}{k-\Delta}$ 

It suffices to take the average over poly  $\left(n, \frac{1}{\epsilon}, \frac{1}{\delta}\right)$  samples

Then apply Chebyshev's inequality

Upperbound for the ratio follows from having many colors available lowerbound from bounding the prob. that any neighbors take the same color



#### Integration, sampling, and inference

#### Statistical physics model

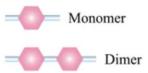
Ferromagnets



Hardcore lattice gas



Monomer dimer



Spin systems

#### **Combinatorial interpretation**

- Cuts generating polynomial
- Independence polynomial

$$\forall S \in \operatorname{Ind}(G), \quad \mu(S) := \frac{\lambda^{|S|}}{Z(G)}$$

- Matching polynomial
- Constraint satisfaction problem
  - Example: 3-SAT
  - Variables:  $x_1, x_2, ..., x_n \in \{T, F\}$
  - Constraints:  $(x_1 OR x_2 OR \overline{x_3}) AND \dots$

#### 1D Ising model

We consider 1D Ising model (Lenz 1920, Ising 1925)
Ising (1925) exactly solved this model in his thesis to show that there is no *phase transition* in 1D

We will see a "coupling proof" of a related phenomenon: the Glauber dynamics mixes rapidly in 1D even with mixed interactions

**Configuration**: Each vertex v of a path graph gets a spin  $\sigma_v \in \{\pm 1\}$ 

<u>Interaction</u>: For every adjacent pair of vertices, there is an interaction strength  $J_{x,x+1}$ 

The **energy** of a configuration is given by the *Hamiltonian* function

$$H(\sigma) := \sum_{x} J_{x,x+1} \cdot \sigma_{x} \cdot \sigma_{x+1}$$

The Boltzmann/Gibbs distribution is given by  $\Pr[\sigma] \propto \exp(H(\sigma))$ 

The normalizing "constant" is known as the *partition function*  $Z(J) \coloneqq \sum_{\sigma} \exp(H(\sigma))$ 

Combinatorially, partition functions can be seen as generating polynomials

## 1D Ising model

**Configuration**: Each vertex v of a path graph gets a spin  $\sigma_v \in \{\pm 1\}$ 

<u>Interaction</u>: For every adjacent pair of vertices, there is an interaction strength  $J_{x,x+1}$ 

The **energy** of a configuration is given by the *Hamiltonian* function

$$H(\sigma) \coloneqq \sum_{x} J_{x,x+1} \cdot \sigma_{x} \cdot \sigma_{x+1}$$

The Boltzmann/Gibbs distribution is given by  $Pr[\sigma] \propto exp(H(\sigma))$ 

The normalizing "constant" is known as the *partition function*  $Z(J) := \sum_{\sigma} \exp(H(\sigma))$ Combinatorially, partition functions can be seen as generating polynomials

Suppose that for some J>0,  $\forall x$ ,  $J_{x,x+1}=J$ , smaller cuts are preferred, "ferro-magnets" by setting  $\beta=\exp(-J)$ ,

$$Z(J) = \sum_{S \subset V} \beta^{|E(S,S^c)| - (|E| - |E(S,S^c)|)} = \beta^{-|E|} \sum_{S \subset V} \beta^{2|E(S,S^c)|}$$

Suppose that for some J < 0,  $\forall x$ ,  $J_{x,x+1} = J$ , larger cuts are preferred, "Antiferro-magnets" Suppose that  $\forall x$ ,  $J_{x,x+1} = 0$ , then there is no interaction in the system, a product distribution

#### Counting, sampling vs. inference

Computing  $(1 \pm \epsilon) Z$ 

Equivalent to

(Approximate) sampling

Sampling from the Gibbs distribution?

Approximate inference

Given partial observation of the system, what can you infer about the rest?

• . . .

Given a Gibbs distribution  $\pi$ , how do you design a Markov chain with  $\pi$  as its stationary distribution?

#### Reversible Markov chains

Markov chains are random walks on directed graphs in general
The analog of "random walks on undirected graphs" are reversible MC

#### **Definition**

Let  $\pi$  be a distribution. A Markov chain P is *reversible* with respect to  $\pi$  if  $\pi(x)P(x,y)=\pi(y)P(y,x), \forall x,y.$ 

A symmetric transition matrix P is trivially reversible w.r.t the uniform distribution

This is also known as the *detailed balance* condition

#### **Observation**

If a Markov chain P is reversible w.r.t.  $\pi$ , then  $\pi$  is a stationary distribution for P. *Proof*.

$$(\pi P)(y) = \sum_{x} \pi(x) P(x, y) = \sum_{x} \pi(y) P(y, x) = \pi(y) \sum_{x} P(y, x) = \pi(y).$$

#### Reversible Markov chains

Markov chains are random walks on directed graphs in general

The analog of "random walks on undirected graphs" are reversible MC

#### **Definition**

Let  $\pi$  be a distribution. A Markov chain P is *reversible* with respect to  $\pi$  if  $\pi(x)P(x,y)=\pi(y)P(y,x), \forall x,y$ 

A symmetric transition matrix *P* is trivially reversible w.r.t the uniform distribution

This is also known as the detailed balance condition

#### **Observation**

If a Markov chain P is reversible w.r.t.  $\pi$ , then  $\pi$  is a stationary distribution for P.

#### **Observation**

If a Markov chain P is reversible w.r.t.  $\pi$ , then P is similar to a symmetric matrix.

*Proof.* Let 
$$T = diag\left(\sqrt{\pi(x)}\right)$$
. Then, reversibility means  $\sqrt{\frac{\pi(x)}{\pi(y)}}P(x,y) = \sqrt{\frac{\pi(y)}{\pi(x)}}P(y,x)$ , so  $TPT^{-1}$  is symmetric

## Glauber Dynamics

A general way to construct Markov chains with stationarity

$$\pi(\sigma) = \frac{w(\sigma)}{Z}$$

Let  $\sigma$  be the current state:

- Choose a vertex v u.a.r
- Update the spin  $\sigma_v \leftarrow \tau$  with probability  $\propto \pi (\sigma_{\setminus v} \cup \{\sigma_v = \tau\})$

Note that for Ising model, one only needs to know how many neighbors of  $\boldsymbol{v}$  is assigned +/-

In other words, it suffices to know  $\sigma_{N(v)}$ 

#### Aside: Phase transitions and Markov chains

How fast can a system out-of-equilibrium, return to a unique thermal equilibrium (Gibbs measure)?

Glauber dynamics is a Markov chain (algorithm) that also attempts to model such a process

Rapid (thermally) mixing

Torpid mixing



#### Example: Mean-field model of Imitation

Binary vote: option A or option B

N individuals/voters, each time an individual i will cast a vote

$$\sigma_i(t) = egin{cases} +1, & \text{option A} \\ -1, & \text{option B} \end{cases}$$

They are influenced by the global trend, i.e. by the "mean-field"  $\Pr[\sigma_i(t+1)=+1] \propto \exp(\text{global trend}(t) \times J)$ ,

global trend(t) = 
$$\sum_{j=1}^{N} \sigma_j(t)$$

J= "inverse temperature" decides how much individuals rely on the dominating trend

Essentially, the Glauber dynamics for Ising model on a complete graph





#### 1D Ising model with mixed interactions

Ising (1925) exactly solved this model in his thesis to show that there is no phase transition in 1D

We see a ``coupling proof'' of a related phenomenon: the Glauber dynamics mixes rapidly in 1D even with mixed interactions

We assume that all interactions have the same absolute magnitude, but may not have the same sign

$$\left|J_{x,x+1}\right| = \left|J_{y,y+1}\right|, \forall x, y$$

#### Glauber dynamics:

- Choose a vertex v u.a.r
- The neighbors of v are v-1 and v+1

• Update 
$$\sigma_v \leftarrow \begin{cases} +1$$
, with probability  $\propto \exp(J_{v-1,v} \cdot \sigma_{v-1} + J_{v,v+1} \cdot \sigma_{v+1}) \\ -1$ , with probability  $\propto \exp(-J_{v-1,v} \cdot \sigma_{v-1} - J_{v,v+1} \cdot \sigma_{v+1}) \end{cases}$ 

#### Glauber dynamics:

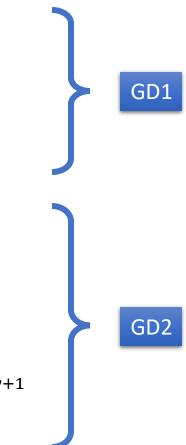
- Choose a vertex v u.a.r
- The neighbors of v are v-1 and v+1
- Update  $\sigma_v \leftarrow \begin{cases} +1$ , with probability  $\propto \exp(J_{v-1,v} \cdot \sigma_{v-1} + J_{v,v+1} \cdot \sigma_{v+1}) \\ -1$ , with probability  $\propto \exp(-J_{v-1,v} \cdot \sigma_{v-1} J_{v,v+1} \cdot \sigma_{v+1}) \end{cases}$

Let 
$$\theta := \frac{2 \exp(-|J_{v-1,v}| - |J_{v,v+1}|)}{\exp(-|J_{v-1,v}| - |J_{v,v+1}|) + \exp(|J_{v-1,v}| + |J_{v,v+1}|)}$$

An equivalent description of the dynamics:

- Choose a vertex v u.a.r
- With probability  $\theta$ , we update  $\sigma_v \leftarrow \text{Bernoulli}\left(\frac{1}{2}\right)$
- With probability  $1-\theta$ , we look at the value  $K\coloneqq J_{v-1,v}\cdot\sigma_{v-1}+J_{v,v+1}\cdot\sigma_{v+1}$  If  $K\in\{\pm(|J_{v-1,v}|+|J_{v,v+1}|)\}$ , update  $\sigma_v\in\mathrm{sign}(K)$ 

  - If K = 0, update  $\sigma_v \leftarrow \text{Bernoulli}\left(\frac{1}{2}\right)$



Let 
$$\theta \coloneqq \frac{2 \exp(-|J_{v-1,v}| - |J_{v,v+1}|)}{\exp(-|J_{v-1,v}| - |J_{v,v+1}|) + \exp(|J_{v-1,v}| + |J_{v,v+1}|)}$$

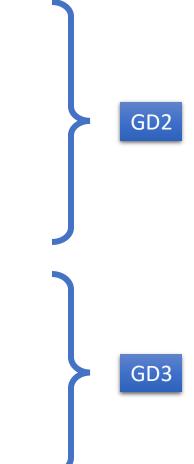
An equivalent description of the dynamics:

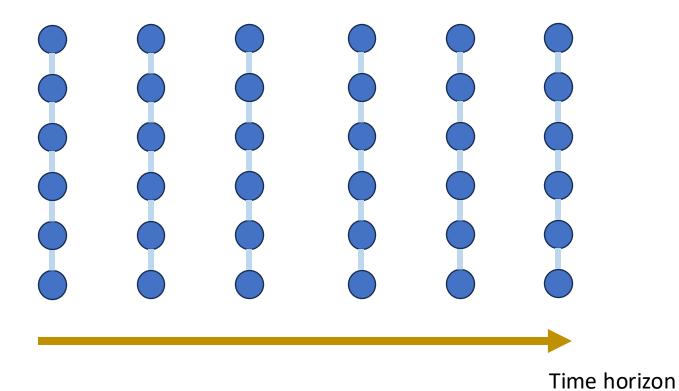
- Choose a vertex v u.a.r
- With probability  $\theta$ , we update  $\sigma_v \leftarrow \text{Bernoulli}\left(\frac{1}{2}\right)$
- With probability  $1-\theta$ , we look at the value  $K\coloneqq J_{v-1,v}\cdot\sigma_{v-1}+J_{v,v+1}\cdot\sigma_{v+1}$  If  $K\in\{\pm(|J_{v-1,v}|+|J_{v,v+1}|)\}$ , update  $\sigma_v\leftarrow\mathrm{sign}(K)$ 

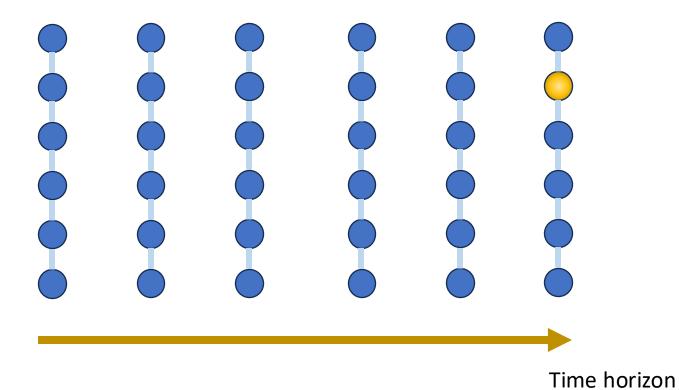
  - If K=0, update  $\sigma_v \leftarrow \text{Bernoulli}\left(\frac{1}{2}\right)$

Furthermore, this is equivalent to the following:

- Choose a vertex v u.a.r
- With probability  $\theta$ , we update  $\sigma_v \leftarrow \text{Bernoulli}\left(\frac{1}{2}\right)$
- With probability  $1 \theta$ , we choose a random neighbor  $u \in \{v 1, v + 1\}$ and update  $\sigma_v \leftarrow \text{sign}(J_{u,v}\sigma_u)$





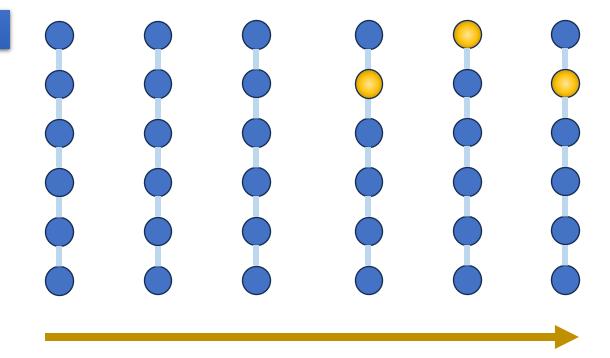


A random walk on  $\mathbb{Z}_n$  that dies with probability heta

After  $\frac{1}{\theta} \ln n$  updates per vertex, the probability that there is any surviving branch is small

Balls into bins tells us that this can be achieved after  $\frac{c}{\theta}n\ln n$  steps of Glauber dynamics for large C

Chernoff + union bound



#### Expander Graphs

- Combinatorial: graphs with good expansion
- Probabilistic: graphs in which random walks mix rapidly
- Algebraic: graphs with large spectral gap

Let G be a d-regular graph, and let  $d = \alpha_1 \ge \alpha_2 \ge \cdots \ge \alpha_n \ge -d$  be the spectrum of its adjacency matrix.

We will be interested in the <u>spectral radius</u>, given by  $\alpha := \max\{\alpha_2, |\alpha_n|\}$ 

If  $\alpha$  is much smaller than d, we have good **spectral expansion**.

There are many nice properties associated with expander graphs

Among others, say if we want more than one sample in MCMC, do we have to resample entirely?

$$\langle u, v \rangle \le \sqrt{\langle u, u \rangle} \cdot \sqrt{\langle v, v \rangle}$$

#### Expander Mixing lemma

Intuitively, an expander can be seen as an approximation to the complete graph, because edges are distributed evenly

Induced edges:  $E(S,T) := \{(u,v): u \in S, v \in T, uv \in E\}$ 

We also allow non-disjoint S, T, in which case an edge can be counted twice.

#### **Expander Mixing lemma**

Let G be a d-regular graph with n vertices. If the spectral radius of G is  $\alpha$ , then for every  $S \subseteq [n], T \subseteq [n]$ , we have  $\left| E(S,T) - \frac{d|S||T|}{n} \right| \leq \alpha \sqrt{|S||T|}$ .

Proof: Note that  $E(S,T) = \chi_S^T A \chi_T$ . Let  $\chi_S = \sum_i a_i v_i$ ,  $\chi_T = \sum_i b_i v_i$ , where  $\{v_i\}$  is an orthonormal basis for A, with eigenvalues  $\{a_i\}$ .

$$E(S,T) = \frac{d|S||T|}{n} + \sum_{i\geq 2} \alpha_i a_i b_i.$$

By Cauchy-Schwarz,

$$\left| E(S,T) - \frac{d|S||T|}{n} \right| \le \alpha ||a||_2 ||b||_2 = \alpha ||\chi_S||_2 ||\chi_T||_2 = \alpha \sqrt{|S||T|}$$

#### Expander Mixing lemma

Intuition: Expander mixing lemma tells us that a spectral expander looks like a random graph.

**Exercise**: Let G be a d-regular graph with spectral radius  $\alpha$ . Show that the size of the maximum independent set of G is at most  $\frac{\alpha n}{d}$ .

Use this result to conclude that the chromatic number is at least  $\frac{d}{\alpha}$ .

#### Converse to Expander Mixing lemma

(By Bilu and Linial)

Suppose that for every  $S \subseteq [n]$ ,  $T \subseteq [n]$  with  $S \cap T = \emptyset$ , we have

$$\left| E(S,T) - \frac{d|S||T|}{n} \right| \le \alpha \sqrt{|S||T|}.$$

Then all but the largest eigenvalue of A in absolute value is at most

$$O\left(\alpha\left(1+\log\frac{d}{a}\right)\right)$$

- Proof is based on LP duality
- Would be nice to see an analog of Trevisan's Cheeger's rounding proof

#### Existence of expanders

- Complete graphs are obviously the best expanders in terms of "expansion" (in all three notions of "expansion")
- What's interesting is the existence of sparse expanders: e.g. d-regular expanders for constant d

- ullet A random d-regular graph is a (combinatorial) expander with high probability
- However, deterministic and explicit construction of expanders seems to be much harder to come up with

#### Alon-Boppana Bound

- $\bullet$  For d-regular graphs, how small can the spectral radius be?
- Ramanujan graphs: graphs whose spectral radius are at most  $2\sqrt{d-1}$

#### **Alon-Boppana Bound**

Let G be a d-regular graph with n vertices, and  $\alpha_2$  be the second largest eigenvalue of its adjacency matrix. Then

$$\alpha_2 \ge 2\sqrt{d-1} - \frac{2\sqrt{d-1} - 1}{\left[\operatorname{diam}(G)/2\right]}$$

#### Alon-Boppana Bound

#### An easy lower bound on spectral radius

Let G be a d-regular graph with n vertices, and  $\alpha$  be its spectral radius. Then  $\alpha \geq \sqrt{d} \cdot \sqrt{\frac{n-d}{n-1}}$ .

Proof: Consider  $Tr(A^2)$ . Counting length-2 walks we have  $Tr(A^2) \ge nd$ 

On the other hand,  $\operatorname{Tr}(A^2) = \sum_i \alpha_i^2 \le d^2 + (n-1)\alpha^2$ .

Combined, we have  $\alpha \geq \sqrt{d} \cdot \sqrt{\frac{n-d}{n-1}}$ .

For the Alon-Boppana bound, one may consider  $Tr(A^{2k})$ .

#### Random walks in expanders

- We knew that it mixes rapidly, in time  $O\left(\frac{\log n}{1-\epsilon}\right)$  for  $\alpha=\epsilon d$ .
- Perhaps surprisingly, not just the final vertex is close to the uniform distribution, but the entire sequence of walks looks like a sequence of independent samples for many applications.

In fact, expander random walks can fool many test functions:
 Expander random walks: a Fourier-analytic approach, by Cohen, Peri and Ta-Shma

# Probability amplification

Say you have a randomized algorithm that fails with probability  $\beta$ 

To boost success probability, we can run it multiple times until it succeed

Run independently for t rounds, the failure probability becomes  $eta^t$ 

Q: Can we save randomness while still achieving the same probability amplification?

Imagine a random walk on the  $N = 2^n$  random bits

There is a set B of size  $\beta N$  that we try to escape from (or avoid)

We want that the escape probability close to  $\beta^t$ 

Q: Can we use a sparse expander instead of a complete graph for the random walk?

#### Hitting property of expander walks

Let G be a d-regular graph with n vertices,  $\alpha = \epsilon d$  be its spectral radius and B be a set of size at most  $\beta n$ .

Then, starting from a uniformly random vertex, the probability that a t-step random walk has never escaped from B, denoted by P(B,t), is at most  $(\beta + \epsilon)^t$ .

$$Pr[X_0 \in B, X_1 \in B, X_2 \in B, ..., X_t \in B]$$

#### Remarks before a proof:

- Compare this to a sequence of independent samples.
- Expander mixing lemma is like t=2: Note that  $\varphi(S)=\Pr(X_2\notin S\mid X_1\sim\pi_S)$
- Bound can be strengthened → see Chapter 4 of *Pseudorandomness*, by Vadhan
- Applications to error reduction for randomized algorithms
  - Instead of using kt bits of randomness, only need  $k + O(t \log d)$
  - for one-sided error, escaping the bad set of "random bits"
  - for two-sided error, a Chernoff type bound can also be shown → then take the majority of the answers

$$\Pi_B = \frac{B}{V \setminus B} \begin{bmatrix} I_B & 0 \\ 0 & 0 \end{bmatrix}$$

#### Hitting property of expander walks

$$\Pi_B\Pi_B=\Pi_B$$

Proof. Observe that 
$$P(B,t) = \|(\Pi_B W)^t \Pi_B u\|_1$$
  $u = \frac{1}{n}\vec{1}$  To see this, notice that  $\Pr[X_0 \in B] = \|\Pi_B u\|_1$   $\Pr[X_0 \in B, X_1 \in B] = \|\Pi_B W \Pi_B u\|_1$ 

And so on and so forth.

Suppose that we can show  $\forall f : f$  is a probability distribution, we have  $\|\Pi_B W \Pi_B f\|_2 \le (\beta + \epsilon) \|f\|_2$ 

Then, 
$$\|(\Pi_B W)^t \Pi_B u\|_1 \leq \sqrt{n} \|(\Pi_B W)^t \Pi_B u\|_2$$

$$= \sqrt{n} \|(\Pi_B W \Pi_B)^t u\|_2$$

$$\leq \sqrt{n} (\beta + \epsilon)^t \|u\|_2$$

$$= (\beta + \epsilon)^t$$

Cauchy-Schwarz inequality:  $\langle u, v \rangle \leq \sqrt{\langle u, u \rangle} \cdot \sqrt{\langle v, v \rangle}$ 

# $\Pi_B = \frac{B}{V \backslash B} \begin{bmatrix} I_B & 0 \\ 0 & 0 \end{bmatrix}$

#### Hitting property of expander walks

$$W = \frac{1}{d}A$$
 has  $\lambda_2(W^\mathsf{T}W) = \epsilon^2$ 

Proof (cont'd):It remains to show  $\forall f : f$  is a probability distribution,  $\|\Pi_B W \Pi_B f\|_2 \leq (\beta + \epsilon) \|f\|_2$ 

Without loss of generality, we can assume f is supported only on B.  $\|\Pi_B W \Pi_B f\|_2 = \|\Pi_B W f\|_2 = \|\Pi_B W (u + v)\|_2 \le \|\Pi_B u\|_2 + \|\Pi_B W v\|_2$ 

$$u = \frac{1}{n} \vec{1}$$
, so  $\frac{\langle f, u \rangle}{\langle u, u \rangle} u = u$ , then  $v \perp \vec{1}$ 

Next,  $\|\Pi_B W v\|_2 \le \|W v\|_2 \le \epsilon \|v\|_2 \le \epsilon \|f\|_2$ .

On the other hand, 
$$\|\Pi_B u\|_2 = \sqrt{\frac{\beta}{n}} \le \beta \|f\|_2$$
,

where last inequality follows from Cauchy-Schwarz:

$$1 = ||f||_1 = \langle 1_B, f \rangle \le \sqrt{\beta n} ||f||_2$$

Combined together, we have  $\|\Pi_B W \Pi_B f\|_2 \le (\beta + \epsilon) \|f\|_2$  as desired.

Cauchy-Schwarz inequality:

$$\langle u, v \rangle \le \sqrt{\langle u, u \rangle} \cdot \sqrt{\langle v, v \rangle}$$

# Hitting property of expander $P(S,t) = \|\Pi_{Z_t} W \Pi_{Z_{t-1}} W \dots \Pi_{Z_1} u\|_1$

where  $S = (Z_t, Z_{t-1}, ..., Z_1)$ indicates whether  $Z_i \in \{B, \overline{B}\}$ 

Proof. Observe that  $P(B,t) = \|(\Pi_B W)^t \Pi_B u\|_1$ 

Suppose that we can show  $\forall \underline{f}$ : f is a probability distribution, we have  $\|\Pi_B W \Pi_B f\|_2 \leq (\beta + \epsilon) \|f\|_2$ . Then,  $\|(\Pi_B W)^t \Pi_B u\|_1 \le \sqrt{n} \|(\Pi_B W)^t \Pi_B u\|_2 = \sqrt{n} \|(\Pi_B W \Pi_B)^t u\|_2 \le \sqrt{n} (\beta + \epsilon)^t \|u\|_2 = (\beta + \epsilon)^t$ 

It remains to show  $\forall f : f$  is a probability distribution,

$$\|\Pi_B W \Pi_B f\|_2 \le (\beta + \epsilon) \|f\|_2$$

Without loss of generality, we can assume f is supported only on B.

$$\|\Pi_B W \Pi_B f\|_2 = \|\Pi_B W f\|_2 = \|\Pi_B W (u + v)\|_2 \le \|\Pi_B u\|_2 + \|\Pi_B W v\|_2$$

Next,  $\|\Pi_R W v\|_2 \le \|W v\|_2 \le \epsilon \|v\|_2 \le \epsilon \|f\|_2$ .

On the other hand, 
$$\|\Pi_B u\|_2 = \sqrt{\frac{\beta}{n}} \le \beta \|f\|_2$$
,

The last inequality follows from Cauchy-Schwarz:

$$1 = ||f||_1 = \langle 1_B, f \rangle \le \sqrt{\beta n} ||f||_2$$

Combined together, we have  $\|\Pi_B W \Pi_B f\|_2 \le (\beta + \epsilon) \|f\|_2$  as desired.