尹⼀通、刘明谋 Nanjing University, 2024 Fall

Foundations of Data Science Limit Theorems

Limit Theorems

And let
$$
\overline{X}_n = \frac{1}{n} \sum_{i=1}^n
$$

- Law of large numbers (LLN): sample mean \rightarrow expectation $X_n \longrightarrow \mu$ as $n \rightarrow \infty$
- Central limit theorem (CLT): standardized sample mean \rightarrow standard normal

$$
\frac{\overline{X}_n - \mu}{\sigma / \sqrt{n}} \longrightarrow N
$$

- Let X_1, X_2, \ldots be *i.i.d.* random variables with $\mu = \mathbb{E}[X_1]$ and $\mathbf{Var}[X_1] = \sigma^2$. X_1, X_2, \ldots be *i.i.d.* random variables with $\mu = \mathbb{E}[X_1]$ and $\mathbf{Var}[X_1] = \sigma^2$
	- And let $X_n = -\sum X_i$ be the sample mean.

 $\longrightarrow N(0,1)$ as $n \to \infty$

Convergence

- if for all $\epsilon > 0$, there is N such that $|a_n a| < \epsilon$ for all $\epsilon > 0$, there is N such that $|a_n - a| < \epsilon$ for all $n > N$
- if and only if $\lim f_n(x) = f(x)$ for all $x \in \Omega$ *n*→∞
- For random variables $X_1, X_2, ...$ and X on probability space (Ω, Σ, \Pr) :
	- $\;$ random variables $X_1, X_2, \ldots : \Omega \to \mathbb{R}$ and $X: \Omega \to \mathbb{R}$ are functions
	- CDFs $F_{X_1},F_{X_2},\ldots:\mathbb{R}\to[0,1]$ and $F_X:\mathbb{R}\to[0,1]$ are functions
- Should $X_n \to X$ be: $X_n \to X$ pointwise or $F_{X_n} \to F_X$ pointwise?

• A real sequence $\{a_n\}$ converges to $a \in \mathbb{R}$, denoted $\lim_{n \to \infty} a_n = a$ or $a_n \to a$, *n*→∞

• A sequence $f_1, f_2, \ldots : \Omega \to \mathbb{R}$ is said to <u>converge pointwise</u> to $f: \Omega \to \mathbb{R}$,

Convergence of Random Variables

Modes of Convergence

- Let $X, X_1, X_2, \ldots : \Omega \to \mathbb{R}$ be random variables on prob. space (Ω, Σ, \Pr) .
- $\{X_n\}$ converges in distribution (依分布收敛) to X , denoted $X_n \to X$, if

for all $x\in\mathbb{R}$ at which $F_X\!(x)$ is continuous

- $\{X_n\}$ converges in probability (依概率收敛) to X, denoted $X_n \to X$, if
- *n*→∞

 $\frac{D}{\rightarrow} X$ $F_{X_n}(x) = \Pr(X_n \le x) \to F_X(x) = \Pr(X \le x)$ as $n \to \infty$

 $\rightarrow X$ $Pr(|X_n - X| > \epsilon) = 0$ as $n \to \infty$ for all $\epsilon > 0$

• $\{X_n\}$ converges almost surely to X, denoted $X_n \stackrel{a.s.}{\rightarrow} X$, if $\exists A \in \Sigma$ such that $\lim_{n \to \infty} X_n(\omega) = X(\omega)$ for all $\omega \in A$, and $\Pr(A) = 1$ *a*.*s*. X , if $\exists A \in \Sigma$

Modes of Convergence

- Let $X_1, X_2, ...$ and X be random variables on probability space (Ω, Σ, \Pr) .
- $X_n \to X$ (convergence in distribution / in law / weak convergence of measure) if $\frac{D}{\rightarrow} X$ lim *n*→∞ $F_{X_n}(x) = F_X(x)$ $F_{X_n} \rightarrow F_X$ pointwise on continuous set $F_{X_n} \to F_X$
	- for all $x\in\mathbb{R}$ at which $F_X\!(x)$ is continuous
- $X_n \to X$ (convergence in probability / in measure) if $\lim_{n \to \infty} \Pr(|X_n - X| > \epsilon) = 0$ for all $\epsilon > 0$ $\rightarrow X$ *n*→∞ in measure $X_n \to X$
- $X_n \stackrel{a.s.}{\longrightarrow} X$ (convergence almost surely / almost everywhere / w.p. 1) if *a*.*s*. *X* Pr (lim *n*→∞ $X_n = X \Big) = 1$ $X_n \to X$ pointwise on a set of measure 1

Convergence in Distribution

- Let $X_1, X_2, ...$ and X be random variables on probability space (Ω, Σ, \Pr) .
- $X_n \to X$ (convergence in distribution / in law / weak convergence of measure) if $\frac{D}{\rightarrow} X$ lim *n*→∞ $F_{X_n}(x) = F_X(x)$ $F_{X_n} \rightarrow F_X$ pointwise on continuous set $F_{X_n} \to F_X$

for all $x\in\mathbb{R}$ at which $F_X\!(x)$ is continuous

• The restriction on continuity set is necessary, consider:

uniform X_n on $(0,1/n)$, which satisfies $X_n \to X$, where

• $X_n \stackrel{D}{\rightarrow} X$ and $F_X = F_Y \Longrightarrow X_n \stackrel{D}{\rightarrow} Y$ (convergence in distribution depends only on distribution)

• $X_n \overset{\nu}{\rightarrow} X$ is a <u>weak convergence of measures</u> $\frac{D}{\rightarrow} X$

 \rightarrow *X*, where $Pr(X = 0) = 1$

Convergence in Probability

- Let $X_1, X_2, ...$ and X be random variables on probability space (Ω, Σ, \Pr) .
- $X_n \to X$ (convergence in probability) if $\lim_{n \to \infty} \Pr(|X_n - X| > \epsilon) = 0$ for all $\epsilon > 0$ $\rightarrow X$ *n*→∞ in measure $X_n \to X$
- Functions $X_n : \Omega \to \mathbb{R}$ converges to $X : \Omega \to \mathbb{R}$ in measure \Pr
- $X_n \xrightarrow{P} X \longrightarrow X_n \xrightarrow{D} X$
	- *D* c , where $c \in \mathbb{R}$ is a constant, then X_n *P* \mathcal{C} *D c*
- Counterexample for converse: X is uniform on $[0,1]$ and $X_n = 1 X$ • If $X_n \stackrel{\nu}{\rightarrow} c$, where $c \in \mathbb{R}$ is a constant, then
- **Proof**: $Pr(|X_n c| > \epsilon) = Pr(X_n < c \epsilon) + Pr(X_n > \epsilon + c) \to 0$ if X_n

Almost Sure Convergence

- Let $X_1, X_2, ...$ and X be random variables on probability space (Ω, Σ, \Pr) .
- $X_n \stackrel{a.s.}{\longrightarrow} X$ (convergence almost surely / almost everywhere / w.p. 1) if *a*.*s*. *X* Pr (lim *n*→∞ $X_n = X \Big) = 1$ pointwise on a set of measure 1 $X_n \to X$
- \bullet $X_n:\Omega\to\mathbb{R}$ converges to $X:\Omega\to\mathbb{R}$ almost everywhere except a null set
- $X_n \xrightarrow{a.s.} X$ *a*.*s*. $X \implies X_n$ $\rightarrow X$
	- **Counterexample for converse:** $\{X_n\}$ are independent Bernoulli($1/n$). We have $X_n \to 0$, but we do not have $X_n = 0$ almost everywhere as $n \to \infty$. $\{X_n\}$ are independent Bernoulli(1/*n*) $X_n \stackrel{P}{\rightarrow} 0$, but we do not have X_n $= 0$ almost everywhere as $n \to \infty$

Therefore,

Strength of Convergence • $(X_n \xrightarrow{a.s.} X)$ **Proof*** $(X_n \xrightarrow{a.s.} c \implies X_n \xrightarrow{f} c)$: Let event $C \triangleq \{X_n \to c\}$, then $Pr(C) = 1$. For any $\epsilon > 0$, let event $A_k \triangleq \{ \forall n \geq k, |X_n - c| < \epsilon \}.$ Assume $X_n \stackrel{a.s.}{\to} X$, then $\exists k$, such that $\forall n\geq k, C\subseteq A_n.$ Therefore $C\subseteq \bigcup A_k.$ Since $A_1 \subseteq A_2 \subseteq \ldots$, and $A_k \subseteq \{ |X_n - c| < \epsilon \},$ *a*.*s*. $X) \implies (X_n \xrightarrow{P} X) \implies (X_n \xrightarrow{D} X)$ *a*.*s*. $c \implies X_n$ *P a*.*s*. *X*, then ∃*k*, such that $\forall n \geq k, C \subseteq A_n$. Therefore $C \subseteq$ *n*→∞ *n*→∞

> $\lim_{n \to \infty} \Pr(|X_n - c| \geq \epsilon) = 0$, i.e. X_n *n*→∞

c): Let event $C \triangleq \{X_n \to c\}$, then $Pr(C) = 1$

$$
\geq \epsilon
$$
) = 0, i.e. $X_n \stackrel{P}{\rightarrow} X$.

$$
\geq k, C \subseteq A_n. \text{ Therefore } C \subseteq \bigcup_{k=1}^{\infty} A_k.
$$

-
- lim Pr(|*X_n* − *c* | < *∈*) ≥ lim Pr(*A_k*) = Pr(∪_{k=1}*A_k*) ≥ Pr(*C*) = 1.

Other Convergence Modes*

r $\rfloor = 0$

$$
\lim_{n \to \infty} \mathbb{E}\left[|X_n - X| \right] = 0
$$

- $X_n \to X$ (convergence <u>in mean</u>) if $\frac{1}{2} X$
	- *n*→∞
- $X_n \to X$ (convergence in rth mean / in the L^r -norm) if $\stackrel{r}{\rightarrow} X$ (convergence <u>in *r*th mean</u> / <u>in the L^r </u> $\lim_{n \to \infty}$ $\mathbb{E}[|X_n - X|]$ *n*→∞
- $(X_n \xrightarrow{S} X) \longrightarrow (X_n \xrightarrow{r} X) \longrightarrow (X_n \xrightarrow{1} X)$ (*Xn a*.*s*. $X) \longrightarrow (X_n)$ (for $s \ge r \ge 1$) ⇑

^P ^X) [⟹] (*Xn ^D X*)

$$
\rightarrow X)^{-}
$$

LLN and CLT

JACOBI BERNOULLI,
Profeil: Bafil. & utriufque Societ. Reg. Scientiar.
Gall. & Prufl. Sodal.
MATHEMATICI CELEBERRIMI,

ARS CONJECTANDI, OPUS POSTHUMUM.

Accedit

TRACTATUS DE SERIEBUS INFINITIS,

> Et EPISTOLA Gallice fcripta DE LUDO PILE
RETIGULARIS

BASILEE, Impenfis THURNISIORUM, Fratrum. clo locc x111.

The state of the state of the

THE CTRINE DOCTRINE CHANCES: A Method of Calculating the Probability
of Events in Play. $\langle \mathcal{D}_i \rangle \langle \mathcal{O}_i \rangle$ By A. De Moivre. F. R. S.

 L 0 N D 0 N:

OF

 $O R$

(This is of course not the original proof of Bernoulli.)

Bernoulli's Law of Large Number In *Ars Conjectandi* **(1713)**

- Let $X_1, X_2, ...$ be *i.i.d.* Bernoulli trials with $\mathbb{E}[X_1] = p \in [0,1]$. Then $\Pr\left(\left|\frac{1}{n} - \frac{2}{n}\right| > \epsilon\right) > 0$ as $n \to \infty$ for all i.e. $X_n \to p$, where X_n is the sample mean **Proof:** By Chebyshev's inequality, $Pr(|\overline{X}_n - p| > \epsilon) \leq \frac{P(1 - P)}{2} \to 0$ as $X_1 + X_2 + \cdots + X_n$ $\left| \frac{n}{n} - p \right| > \epsilon$ $\left| \frac{\partial}{\partial r} \right| \to 0$ as $n \to \infty$ for all $\epsilon > 0$ *P* p , where X_n is the sample mean $X_n =$ $X_1 + X_2 + \cdots + X_n$ *n* $Pr(|\overline{X}_n - p| > \epsilon) \leq \frac{p(1-p)}{p\epsilon^2}$ $n\epsilon^2$ \rightarrow 0 as $n \rightarrow \infty$
-

Law of Large Numbers (LLN)

And let
$$
\overline{X}_n = \frac{1}{n} \sum_{i=1}^n
$$

- Weak law (Khinchin's law) of large number:
	- $X_n \to \mu$ as *P* μ as $n \to \infty$

a.*s*.

• **Strong law** (Kolmogorov's law) of large number:

- Let $X_1, X_2, ...$ be *i.i.d.* random variables with finite mean $\mathbb{E}[X_1] = \mu$.
	- And let $X_n = -\sum X_i$ be the sample mean.

- $X_n \stackrel{a.s.}{\longrightarrow} \mu$ as μ as $n \to \infty$
- (The deviation $|X_n \mu|$ is always small for all sufficiently large n)

Weak LLN Assuming Bounded Variance

• Let $X_1, X_2, ...$ be independent random variables with finite mean $\mathbb{E}[X_i] = \mu$ and finitely bounded variance $\mathbf{Var}[X_i] \leq \sigma^2$. Then the sample mean $\overline{X}_n = \frac{1}{n} \sum_{i=1}^{n} X_i$ has $X_n \to \mu$ as $\leq \sigma^2$ 1 *n n* ∑ *i*=1 *Xi P* μ as $n \to \infty$

Proof: By Chebysev's inequality, Pro

$$
\Pr(|\overline{X}_n - \mu| > \epsilon) \le \frac{\sigma^2}{n\epsilon^2} \to 0 \text{ as } n \to \infty
$$

De Moivre—Laplace Theorem (棣莫弗-拉普拉斯定理)

- Let $p \in (0,1)$ and $X_n \sim B(n,p)$. Then its standardization as *Xn* − *np np*(1 − *p*) $\rightarrow N(0,1)$ as $n \rightarrow \infty$
- For any $p \in (0,1)$ and any $\epsilon > 0$, there is an n_0 such that for all $n > n_0$ and all k ,

By Stirling's formula $n! \simeq n^n e^{-n} \sqrt{2\pi n}$ and Maclaurin series $\ln{(1+x)} \simeq x - \frac{x^2}{2}$ 2 +

$$
\binom{n}{k} p^k (1-p)^{n-k} \in (1 \pm \epsilon)
$$

$$
\frac{1}{\pm \epsilon} \bigg) \frac{1}{\sqrt{2\pi np(1-p)}} e^{-\frac{(k-np)^2}{2np(1-p)}}
$$

Central Limit Theorem (CLT)

• Let $X_1, X_2, ...$ be *i.i.d.* random variables with $\mathbb{E}[X_1] = \mu$ and $\mathbf{Var}[X_1] = \sigma^2$. X_1, X_2, \ldots be *i.i.d.* random variables with $\mathbb{E}[X_1] = \mu$ and $\mathbf{Var}[X_1] = \sigma^2$

> as $\rightarrow N(0,1)$ as $n \rightarrow \infty$

And let
$$
\overline{X}_n = \frac{1}{n} \sum_{i=1}^n
$$

Classical (Lindeberg–Lévy) central limit theorem:

$$
\frac{\overline{X}_n - \mu}{\sigma / \sqrt{n}} \xrightarrow{D} N
$$

And let $X_n = -\sum X_i$ be the sample mean.

Assume:

CLT for Non-Identically Distributed RVs* *n*

• Let $X_1, X_2, ...$ be independent random variables with $\mathbb{E}[X_i] = \mu_i$ and $S_n^2 = \sum \mathbf{Var}[X_i]$. = ∑

Then

 $\sum_{i=1}^n$ *Sn* *i*=1

$$
-\lim_{n\to\infty}\frac{1}{s_n^{2+\delta}}\sum_{i=1}^n E\left[\left|X_i - \mu_i\right|^{2+\delta}\right] = 0 \text{ for some } \delta > 0 \text{ (Lyapunov's condition)}
$$

-or,
$$
\lim_{n\to\infty}\frac{1}{s_n^2}\sum_{i=1}^n E\left[\left(|X_i - \mu_i|^2 \cdot \mathbf{1}_{\{|X_i - \mu_i| > \varepsilon_{S_n}\}}\right]\right] = 0 \text{ for every } \varepsilon > 0 \text{ (Lindeberg's condition)}
$$

$$
\frac{1}{i=1} \frac{(X_i - \mu_i)}{C} \xrightarrow{D} N(0,1)
$$

Convergence Rate of CLT (Berry–Esseen theorem)

• Berry–Esseen theorem: Let X_1, X_2, \ldots be *i.i.d.* random variables with , $Var[X_1] = \sigma^2$, and $\rho = \mathbb{E}[|X_1 - \mu|^3]$. And let $X_n = -\sum_i X_i$. $[X_1] = \mu$, $\text{Var}[X_1] = \sigma^2$, and $\rho = \mathbb{E}[\|X_1 - \mu\|^3]$. And let \overline{X}_n = 1 *n n* ∑ *i*=1 *Xi*

There is an absolute constant C , such that for any z

$$
\Pr\left(\frac{\overline{X}_n - \mu}{\sigma/\sqrt{n}} \le z\right) - \Phi(z) \le \frac{C\rho}{\sigma^3\sqrt{n}}
$$

where Φ stands for the CDF for standard normal distribution $N(0,1)$