#### **Foundations of Data Science Limit Theorems**

尹一通、刘明谋 Nanjing University, 2024 Fall



#### **Limit Theorems**

And let 
$$\overline{X}_n = \frac{1}{n} \sum_{i=1}^n \sum_{i=1}^n$$

- Law of large numbers (LLN): sample mean  $\rightarrow$  expectation  $\overline{X}_n \longrightarrow \mu$  as  $n \to \infty$
- <u>Central limit theorem (CLT)</u>: standardized sample mean  $\rightarrow$  standard normal

$$\frac{\overline{X}_n - \mu}{\sigma/\sqrt{n}} \longrightarrow N$$

- Let  $X_1, X_2, \ldots$  be *i.i.d.* random variables with  $\mu = \mathbb{E}[X_1]$  and  $\mathbf{Var}[X_1] = \sigma^2$ .
  - $X_i$  be the <u>sample mean</u>.

V(0,1) as  $n \to \infty$ 

#### Convergence

- if for all  $\epsilon > 0$ , there is N such that  $|a_n a| < \epsilon$  for all n > N
- if and only if  $\lim f_n(x) = f(x)$  for all  $x \in \Omega$  $n \rightarrow \infty$
- For random variables  $X_1, X_2, \ldots$  and X on probability space  $(\Omega, \Sigma, Pr)$ :

  - CDFs  $F_{X_1}, F_{X_2}, \ldots : \mathbb{R} \to [0,1]$  and  $F_X : \mathbb{R} \to [0,1]$  are functions
- Should  $X_n \to X$  be:  $X_n \to X$  pointwise or  $F_{X_n} \to F_X$  pointwise?

• A real sequence  $\{a_n\}$  converges to  $a \in \mathbb{R}$ , denoted  $\lim a_n = a$  or  $a_n \to a$ ,

• A sequence  $f_1, f_2, \ldots : \Omega \to \mathbb{R}$  is said to <u>converge pointwise</u> to  $f : \Omega \to \mathbb{R}$ ,

- random variables  $X_1, X_2, \ldots : \Omega \to \mathbb{R}$  and  $X : \Omega \to \mathbb{R}$  are functions

我全都要



# Convergence of **Random Variables**





#### **Modes of Convergence**

- $\{X_n\}$  <u>converges in distribution</u> (依分布收敛) to X, denoted  $X_n \xrightarrow{D} X$ , if
  - for all  $x \in \mathbb{R}$  at which  $F_X(x)$  is continuous
- $\{X_n\}$  <u>converges in probability</u> (依概率收敛) to X, denoted  $X_n \xrightarrow{P} X$ , if
- $n \rightarrow \infty$

• Let  $X, X_1, X_2, \ldots : \Omega \to \mathbb{R}$  be random variables on prob. space  $(\Omega, \Sigma, Pr)$ .

 $F_{X_n}(x) = \Pr(X_n \le x) \to F_X(x) = \Pr(X \le x) \text{ as } n \to \infty$ 

 $\Pr(|X_n - X| > \epsilon) = 0 \quad \text{as} \quad n \to \infty \quad \text{for all } \epsilon > 0$ 

•  $\{X_n\}$  converges almost surely to X, denoted  $X_n \xrightarrow{a.s.} X$ , if  $\exists A \in \Sigma$  such that  $\lim X_n(\omega) = X(\omega) \quad \text{for all } \omega \in A, \quad \text{and} \quad \Pr(A) = 1$ 

#### Modes of Convergence

- Let  $X_1, X_2, \ldots$  and X be random variables on probability space  $(\Omega, \Sigma, \Pr)$ .
- $X_n \xrightarrow{D} X$  (convergence in distribution / in law / weak convergence of measure) if  $\lim_{n \to \infty} F_{X_n}(x) = F_X(x) \qquad \begin{array}{c} F_{X_n} \to F_X \text{ pointwise} \\ \text{on continuous set} \end{array}$ 
  - for all  $x \in \mathbb{R}$  at which  $F_X(x)$  is continuous
- $X_n \xrightarrow{P} X$  (convergence in probability / in measure) if  $\lim_{n \to \infty} \Pr(|X_n - X| > \epsilon) = 0 \quad \text{for all } \epsilon > 0 \qquad \begin{array}{c} X_n \to X \\ \text{in measure} \end{array}$
- $X_n \xrightarrow{a.s.} X$  (convergence <u>almost surely</u> / <u>almost everywhere</u> / <u>w.p. 1</u>) if  $\Pr\left(\lim_{n \to \infty} X_n = X\right) = 1$   $X_n \to X$  pointwise on a set of measure 1

### **Convergence in Distribution**

- Let  $X_1, X_2, \ldots$  and X be random variables on probability space  $(\Omega, \Sigma, Pr)$ .
- $X_n \xrightarrow{D} X$  (convergence in distribution / in law / weak convergence of measure) if  $\lim_{n \to \infty} F_{X_n}(x) = F_X(x) \qquad \begin{array}{l} F_{X_n} \to F_X \text{ pointwise} \\ \text{on continuous set} \end{array}$

for all  $x \in \mathbb{R}$  at which  $F_X(x)$  is continuous

• The restriction on continuity set is necessary, consider:

•  $X_n \xrightarrow{D} X$  and  $F_X = F_Y \implies X_n \xrightarrow{D} Y$  (convergence in distribution depends only on distribution)

•  $X_n \xrightarrow{D} X$  is a <u>weak convergence of measures</u>

uniform  $X_n$  on (0, 1/n), which satisfies  $X_n \xrightarrow{D} X$ , where Pr(X = 0) = 1

### **Convergence in Probability**

- Let  $X_1, X_2, \ldots$  and X be random variables on probability space  $(\Omega, \Sigma, Pr)$ .
- $X_n \xrightarrow{P} X$  (convergence in probability) if  $X_n \to X$  $\lim \Pr(|X_n - X| > \epsilon) = 0 \quad \text{for all } \epsilon > 0$ in measure  $n \rightarrow \infty$
- Functions  $X_n : \Omega \to \mathbb{R}$  converges to  $X : \Omega \to \mathbb{R}$  in measure  $\Pr$
- $X_n \xrightarrow{P} X \Longrightarrow X_n \xrightarrow{D} X$
- Counterexample for converse: X is uniform on [0,1] and  $X_n = 1 X$ • If  $X_n \xrightarrow{D} c$ , where  $c \in \mathbb{R}$  is a constant, then  $X_n \xrightarrow{P} c$ • **Proof:**  $\Pr(|X_n - c| > \epsilon) = \Pr(X_n < c - \epsilon) + \Pr(X_n > \epsilon + c) \rightarrow 0 \text{ if } X_n \xrightarrow{D} c$

#### Almost Sure Convergence

- Let  $X_1, X_2, \ldots$  and X be random variables on probability space  $(\Omega, \Sigma, \Pr)$ .
- $X_n \xrightarrow{a.s.} X$  (convergence <u>almost surely</u> / <u>almost everywhere</u> / w.p. 1) if  $\Pr\left(\lim_{n \to \infty} X_n = X\right) = 1$   $X_n \to X$  pointwise on a set of measure 1
- $X_n : \Omega \to \mathbb{R}$  converges to  $X : \Omega \to \mathbb{R}$  almost everywhere except a null set
- $X_n \xrightarrow{a.s.} X \Longrightarrow X_n \xrightarrow{P} X$ 
  - Counterexample for converse:  $\{X_n\}$  are independent Bernoulli(1/n). We have  $X_n \xrightarrow{P} 0$ , but we do not have  $X_n = 0$  almost everywhere as  $n \to \infty$ .

Strength of Convergence •  $(X_n \xrightarrow{a.s.} X) \implies (X_n \xrightarrow{P} X) \implies (X_n \xrightarrow{D} X)$ **Proof\***  $(X_n \xrightarrow{a.s.} c \implies X_n \xrightarrow{P} c)$ : Let event  $C \triangleq \{X_n \to c\}$ , then Pr(C) = 1. For any  $\epsilon > 0$ , let event  $A_k \triangleq \{ \forall n \ge k, |X_n - c| < \epsilon \}$ . Assume  $X_n \xrightarrow{a.s.} X$ , then  $\exists k$ , such that  $\forall n \geq 0$ Since  $A_1 \subseteq A_2 \subseteq \ldots$ , and  $A_k \subseteq \{ |X_n - c| < \epsilon \}$ ,  $n \rightarrow \infty$  $n \rightarrow \infty$ 

Therefore,

 $\lim \Pr(|X_n - c|)$  $n \rightarrow \infty$ 

$$k \in k, C \subseteq A_n$$
. Therefore  $C \subseteq \bigcup_{k=1}^{\infty} A_k$ .

- $\lim \Pr(|X_n c| < \epsilon) \ge \lim \Pr(A_k) = \Pr(\bigcup_{k=1}^{\infty} A_k) \ge \Pr(C) = 1.$

$$| \geq \epsilon) = 0$$
, i.e.  $X_n \xrightarrow{P} X$ .

#### **Other Convergence Modes\***

- $X_n \xrightarrow{1} X$  (convergence in mean) if
  - lim E []  $n \rightarrow \infty$
- $X_n \xrightarrow{r} X$  (convergence in *r*th mean / in the  $L^r$ -norm) if  $n \rightarrow \infty$
- $(X_n \xrightarrow{a.s.} X) \Longrightarrow (X_n \xrightarrow{P}$  $(X_n \xrightarrow{s} X) \implies (X_n \xrightarrow{r} X) \implies (X_n \xrightarrow{1} X)$ (for  $s \ge r \ge 1$ )

$$X_n - X| ] = 0$$

 $\lim \mathbb{E}\left[ \left| X_n - X \right|^r \right] = 0$ 

$$(X_n \xrightarrow{D} X) \implies (X_n \xrightarrow{D} X)$$

$$(\rightarrow X)$$

# LLN and CLT

JACOBI BERNOULLI, Profeff. Bafil. & utriulque Societ. Reg. Scientiar. Gall. & Pruff. Sodal. MATHEMATICI CELEBERRIMI,

ARS CONJECTANDI, OPUS POSTHUMUM.

Accedit

TRACTATUS DE SERIEBUS INFINITIS,

> Et Epistol A Gallice scripta DE LUDO PILÆ RETICULARIS.



BASILEÆ, Impenfis THURNISIORUM, Fratrum. cIo Iocc XIII.

at style .



LONDON: Printed by W. Pearfon, for the Author. MDCCXVIII.



#### **Bernoulli's Law of Large Number** In Ars Conjectandi (1713)

- Let  $X_1, X_2, \ldots$  be *i.i.d.* Bernoulli trials with  $\mathbb{E}[X_1] = p \in [0,1]$ . Then  $\Pr\left(\left|\frac{X_1 + X_2 + \dots + X_n}{n} - p\right| > \epsilon\right) \to 0 \quad \text{as } n \to \infty \quad \text{for all } \epsilon > 0$ i.e.  $\overline{X}_n \xrightarrow{P} p$ , where  $\overline{X}_n$  is the sample mean  $\overline{X}_n = \frac{X_1 + X_2 + \dots + X_n}{P}$ **Proof:** By Chebyshev's inequality,  $\Pr(|\overline{X}_n - p| > \epsilon) \le \frac{p(1-p)}{n\epsilon^2} \to 0$  as  $n \to \infty$



(This is of course not the original proof of Bernoulli.)



### Law of Large Numbers (LLN)

And let 
$$\overline{X}_n = \frac{1}{n} \sum_{i=1}^n \sum_{i=1}^n$$

Weak law (Khinchin's law) of large number:

$$\overline{X}_n \xrightarrow{P} \mu$$

Strong law (Kolmogorov's law) of large number: 

- Let  $X_1, X_2, \ldots$  be *i.i.d.* random variables with finite mean  $\mathbb{E}[X_1] = \mu$ .
  - $X_i$  be the sample mean.

as  $n \to \infty$ 

- $\overline{X}_n \xrightarrow{a.s.} \mu \text{ as } n \to \infty$
- (The deviation  $|X_n \mu|$  is always small for all sufficiently large *n*)

#### Weak LLN Assuming Bounded Variance

• Let  $X_1, X_2, \ldots$  be independent random variables with finite mean  $\mathbb{E}[X_i] = \mu$ and finitely bounded variance  $\operatorname{Var}[X_i] \leq \sigma^2$ . Then the sample mean  $\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$  has  $\overline{X}_n \xrightarrow{P} \mu \text{ as } n \to \infty$ 

**Proof:** By Chebysev's inequality, Pr

$$(|\overline{X}_n - \mu| > \epsilon) \le \frac{\sigma^2}{n\epsilon^2} \to 0 \text{ as } n \to \infty$$

#### De Moivre – Laplace Theorem (棣莫弗-拉普拉斯定理)

- Let  $p \in (0,1)$  and  $X_n \sim B(n,p)$ . Then its standardization  $\frac{X_n - np}{\sqrt{np(1-p)}} \xrightarrow{D} N(0,1) \text{ as } n \to \infty$
- For any  $p \in (0,1)$  and any  $\epsilon > 0$ , there is an  $n_0$  such that for all  $n > n_0$  and all k,

$$\binom{n}{k} p^k (1-p)^{n-k} \in (1$$



$$\pm \epsilon) \frac{1}{\sqrt{2\pi np(1-p)}} e^{-\frac{(k-np)^2}{2np(1-p)}}$$

By Stirling's formula  $n! \simeq n^n e^{-n} \sqrt{2\pi n}$  and Maclaurin series  $\ln(1+x) \simeq x - \frac{x^2}{2} + \frac{x^3}{3} - \cdots$ 



• Let  $X_1, X_2, \dots$  be *i.i.d.* random variables with  $\mathbb{E}[X_1] = \mu$  and  $\mathbf{Var}[X_1] = \sigma^2$ .

And let 
$$\overline{X}_n = \frac{1}{n} \sum_{i=1}^n \sum_{i=1}^n$$

<u>Classical</u> (Lindeberg–Lévy) <u>central limit theorem</u>:

$$\frac{\overline{X}_n - \mu}{\sigma/\sqrt{n}} \xrightarrow{D} N$$

,  $X_i$  be the sample mean.

V(0,1) as  $n \to \infty$ 

 $Z_n = \frac{\sum_i (X_i - \mu)}{\sigma \sqrt{n}} \xrightarrow{\mathbf{D}} N(0, 1) \quad \text{as } n \to \infty$ 

• Let  $X_1, X_2, \ldots$  be *i.i.d.* random variables with  $\mathbb{E}[X_1] = \mu$  and  $\mathbf{Var}[X_1] = \sigma^2$ .



 $Z_n = \frac{\sum_i (X_i - \mu)}{\sigma \sqrt{n}}$ 

#### **Proof**:

 $M_{X_{1}-\mu}(t) = 1 + t^{2}\sigma^{2}/2 + o(t^{2})$  $M_{Z_{n}}(t) = \left(M_{X_{1}-\mu}\left(\frac{t}{\sigma\sqrt{n}}\right)\right)^{n}$ 

 $\lim M_{Z_n}(t) = \lim \left( \frac{1 + t^2}{2n} + o(t^2/n) \right)^n$  $n \rightarrow \infty$  $n \rightarrow \infty$ 

• Let  $X_1, X_2, \ldots$  be *i.i.d.* random variables with  $\mathbb{E}[X_1] = \mu$  and  $\mathbf{Var}[X_1] = \sigma^2$ .

$$\xrightarrow{D} N(0,1) \quad \text{as} \ n \to \infty$$

$$M_{Z_n}(t) = \left(1 + \left(\frac{t}{\sigma\sqrt{n}}\right)^2 \sigma^2/2 + o\left(\left(\frac{t}{\sigma\sqrt{n}}\right)^2\right)^2\right)$$
$$= \left(1 + t^2/(2n) + o(t^2/n)\right)^n$$
$$t' = e^{t^2/2}$$



#### **MGF of Normal Distribution**

• The moment generating function of standard normal  $X \sim N(0,1)$  is

$$M_X(t) =$$

$$\text{Proof: } M_X(t) = \mathbb{E}[e^{tX}] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{t^2/2} \int_{-\infty}^{\infty} e^{(x-t)^2/2} \, \mathrm{d}x =$$



• Let  $X_1, X_2, \dots$  be *i.i.d.* random variables with  $\mathbb{E}[X_1] = \mu$  and  $\mathbf{Var}[X_1] = \sigma^2$ .



 $M_{X_{1}-\mu}(t) = 1 + t^{2}\sigma^{2}/2 + o(t^{2})$  $M_{Z_{n}}(t) = \left(M_{X_{1}-\mu}\left(\frac{t}{\sigma\sqrt{n}}\right)\right)^{n}$ 

 $\lim_{n \to \infty} M_{Z_n}(t) = \lim_{n \to \infty} \left( 1 + t^2 / (2n) + o(t^2/n) \right)^n$ 

$$\stackrel{D}{\to} N(0,1) \text{ as } n \to \infty$$
$$: \mathbb{E}[e^{tX}] = e^{t^{2}/2}$$

$$M_{Z_n}(t) = \left(1 + \left(\frac{t}{\sigma\sqrt{n}}\right)^2 \sigma^2/2 + o\left(\left(\frac{t}{\sigma\sqrt{n}}\right)^2\right)^2\right)$$
$$= \left(1 + t^2/(2n) + o(t^2/n)\right)^n$$
$$= e^{t^2/2}$$
$$M_X(t) = \mathbb{E}[e^{tX}] = e^{t^2/2}, \text{ for } X \sim N(0, 1)$$





# **CLT for Non-Identically Distributed RVs**\*

#### Assume:

$$-\lim_{n \to \infty} \frac{1}{s_n^{2+\delta}} \sum_{i=1}^n \mathbb{E}\left[ \left| X_i - \mu_i \right|^{2+\delta} \right] = 0 \text{ for some } \delta > 0 \text{ (Lyapunov's condition)}$$
  
-or, 
$$\lim_{n \to \infty} \frac{1}{s_n^2} \sum_{i=1}^n \mathbb{E}\left[ (X_i - \mu_i)^2 \cdot \mathbf{1}_{\left\{ \left| X_i - \mu_i \right| > \varepsilon s_n \right\}} \right] = 0 \text{ for every } \varepsilon > 0 \text{ (Lindeberg's condition)}$$

Then

 $\sum_{i=1}^{n} (X$ 

• Let  $X_1, X_2, \ldots$  be independent random variables with  $\mathbb{E}[X_i] = \mu_i$  and  $S_n^2 = \sum_{i=1}^n \mathbf{Var}[X_i]$ . i=1

$$\frac{X_i - \mu_i}{\sum} \xrightarrow{D} N(0, 1)$$





#### **Convergence Rate of CLT** (Berry–Esseen theorem)

• Berry-Esseen theorem: Let  $X_1, X_2, \ldots$  be *i.i.d.* random variables with  $\mathbb{E}[X_1] = \mu$ ,  $\mathbf{Var}[X_1] = \sigma^2$ , and  $\rho = \mathbb{E}[|X_1 - \mu|^3]$ . And let  $\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$ .

There is an absolute constant C, such that for any z

$$\Pr\left(\frac{\overline{X}_n - \mu}{\sigma/\sqrt{n}} \le z\right) - \Phi(z) \le \frac{C\rho}{\sigma^3\sqrt{n}}$$

where  $\Phi$  stands for the CDF for standard normal distribution N(0,1)