# Advanced Algorithms

Spectral methods and algorithms

#### 尹一通 栗师 刘景铖



We saw a spectral partitioning algorithm on day 1:

To find a sparse cut with small **conductance** in a *d*-regular graph, we

1. Compute the second largest eigenvector  $x \in \mathbb{R}^n$  of the adjacency matrix.

2. Sort the vertices so that 
$$x_1 \ge x_2 \ge \dots \ge x_n$$
.  
3. Let  $S_i \coloneqq \begin{cases} \{1, \dots, i\} & \text{if } i \le \frac{n}{2} \\ \{i+1, \dots, n\} & \text{otherwise} \end{cases}$ , and output  $S_i = \underset{1 \le i \le n}{\operatorname{argmin}} \varphi(S_i)$ .

**Theorem:**  $\exists i, \varphi(S_i) \leq 2\sqrt{\varphi(G)}$ 

Why eigenvectors?

#### Overview

#### Analysis of the spectral partitioning algorithm

- Introduction to spectral graph theory
  - Connectedness
  - Bipartiteness (2-coloring)
- Cheeger's inequality on d-regular graphs
  - Easy direction: a sparse cut implies  $\lambda_2$  is small
  - Hard direction: a small  $\lambda_2$  means we can find a sparse cut from  $v_2$
  - Improvements of Cheeger's
  - Generalizations of Cheeger's

## Spectral graph theory



#### **Spectral theory**

eigenvalues + eigenvectors + related linear algebra

#### Graph structures

- Connectedness
- Coloring / Clustering
- Mixing of random walks
- Expander graphs

#### In Theoretical CS

- Pagerank
- Sparsification
- Solving linear systems
- Counting / Sampling
- Expander codes
- Hardness of approximation
- Derandomization
- Max flow and more

#### And Beyond

- Image segmentation
- Electrical networks
- Reliable / Efficient networks
- Epidemic modelling
- <u>Economic networks</u>

#### Graphs as matrices

**Eigenvalues and eigenvectors** 

$$Av = \lambda v$$

- $\lambda$  : eigenvalue
- v : eigenvector
- characteristic polynomial of A: det(A xI)
- det(A xI) = 0 gives all the eigenvalues
- **multiplicity** of  $\lambda$ :
  - Geometric: **dimension** of the eigenspace corresponding to  $\lambda$
  - Algebraic: how many times  $\lambda$  appears as a **root**
  - For *diagonalizable matrices*, they are the same

Undirected graph G = (V, E) has adjacency matrix  $A_{u,v} = 1$  iff  $uv \in E$ 

A is an  $n \times n$  real symmetric matrix:

- It has real eigenvalues  $\alpha_1 \ge \alpha_2 \ge \cdots \ge \alpha_n$
- there is an orthonormal basis of eigenvectors
   v<sub>1</sub>, v<sub>2</sub>, ..., v<sub>n</sub> such that

$$Av_i = \alpha_i v_i, \forall i$$

 $v_i^{\mathsf{T}} v_j = \begin{cases} 1, & \text{if } i = j, \\ 0, & \text{otherwise} \end{cases}$ 

Adjacency matrix is NOT only a data structure Its algebraic properties as a matrix are useful too: rank, determinant, eigenspaces, ...

## Complexity of Linear algebra

All the following can be solved in  $\tilde{O}(n^{\omega})$  arithmetic operations:

- Matrix multiplication
- Matrix inverse
- Determinant
- Characteristic polynomial
- Solving linear equations Ax = b
- Singular value decomposition
- Eigen-decomposition of symmetric matrices

In fact, almost linear time (in theory) for matrices that we will care about..

### Spectrum of the adjacency matrix

Let G = (V, E) be an undirected graph,  $\alpha_1$  be the largest

 $\alpha_1$  be the largest eigenvalue of the adjacency matrix A(G)

<u>Claim</u>:  $d_{avg} \le \alpha_1 \le d_{max}$ 

Proof of the upperbound:

Let v be the eigenvector corresponding to  $\alpha_1$ , so that  $Av = \alpha_1 v$ Without loss of generality we can assume that  $\max_i v_i > 0$ Choose an index j so that  $v_j = \max_i v_i$ 

Then  $Av = \alpha_1 v$  in the *j*-th row means that

$$\alpha_1 v_j = \sum_i A_{ji} v_i \le d_{\max} \cdot v_j$$

Here the inequality follows from  $v_j = \max_i v_i$ , and there are at most  $d_{\max}$  neighbors of j

Since  $v_j > 0$ ,  $\alpha_1 v_j \le d_{\max} \cdot v_j \Rightarrow \alpha_1 \le d_{\max}$ 

<u>Remark</u>. This argument can be adapted to prove: for a connected G,  $\alpha_1 = d_{\max}$  iff G is regular

### Spectrum of Bipartite graphs

Spectrum also tells us something about graph coloring We start with 2-colorability (Bipartiteness) Let G = (V, E) be an undirected graph, and  $\alpha_1 \ge \alpha_2 \ge \cdots \ge \alpha_n$  be its eigenvalues

<u>Claim</u>: The spectrum of A(G) is symmetric about 0 (i.e.,  $\alpha_i = -\alpha_{n-i+1}$ ) iff G is bipartite

## Spectrum of Bipartite graphs

 $A(G) = \begin{array}{cc} U & V \\ U \begin{bmatrix} 0 & B \\ B^T & 0 \end{bmatrix}$ 

Lemma: Let G be bipartite, and  $\alpha$  be an eigenvalue of A(G) with multiplicity k, then  $-\alpha$  is also an eigenvalue of A(G) with multiplicity k

Proof: If  $\alpha = 0$ , the lemma is vacuously true. So we assume  $\alpha \neq 0$ .

Let 
$$\begin{pmatrix} x \\ y \end{pmatrix}$$
 be an eigenvector of  $A$  corresponding to  $\alpha$ :  $\begin{pmatrix} By \\ B^T x \end{pmatrix} = \begin{bmatrix} 0 & B \\ B^T & 0 \end{bmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \alpha \begin{pmatrix} x \\ y \end{pmatrix}$ 

So 
$$B^T x = \alpha y$$
,  $By = \alpha x$ . On the other hand,  $A \begin{pmatrix} x \\ -y \end{pmatrix} = \begin{bmatrix} 0 & B \\ B^T & 0 \end{bmatrix} \begin{pmatrix} x \\ -y \end{pmatrix} = \begin{pmatrix} -By \\ B^T x \end{pmatrix} = \begin{pmatrix} -\alpha x \\ \alpha y \end{pmatrix} = -\alpha \begin{pmatrix} x \\ -y \end{pmatrix}$ 

This means  $-\alpha$  is also an eigenvalue of A

Finally, notice that the multiplicity of  $\alpha$  being  $k \Leftrightarrow$  there exists k linearly independent eigenvectors corresponding to  $\alpha$ 

Apply the above argument to every one of those, we get that the multiplicity of  $-\alpha$  is also k

### Spectrum of Bipartite graphs

 $A(G) = \begin{array}{cc} U & V \\ U \begin{bmatrix} 0 & B \\ B^T & 0 \end{bmatrix}$ 

**Lemma**: If the spectrum of A(G) is symmetric about 0 (i.e.,  $\alpha_i = -\alpha_{n-i+1}$ ), then G is bipartite

Proof: Note that for every odd integer k,  $\sum_i \alpha_i^k = 0$ 

Since the eigenvalues of  $A^k$  is  $\alpha_1^k, \alpha_2^k, \dots, \alpha_n^k$ , thus for every odd integer k,

$$\operatorname{trace}(A^k) = \sum_i \alpha_i^k = 0$$

On the other hand,  $trace(A^k)$  has a combinatorial meaning:

$$(A^k)_{i,j}$$
 = the number of k—walks going from *i* to *j*

Since trace
$$(A^k) = \sum_i (A^k)_{i,i} = 0$$
, and  $(A^k)_{i,i} \ge 0$ , so we must have  $(A^k)_{i,i} = 0$ 

This means: for every odd integer k, there is no cycle of length k. Thus, all cycles are of even length.

## Side note: Graph Coloring

For k-coloring, we do not expect a spectral characterization (why?)

For an approximation, the chromatic number  $\chi(G)$  satisfies  $\left[\frac{\alpha_1}{-\alpha_n}\right] + 1 \le \chi(G) \le \lfloor \alpha_1 \rfloor + 1$ 

The upperbound is known as Wilf's Theorem, and the lowerbound as Hoffman's bound

See Dan Spielman's <u>Spectral Graph Theory book</u> for a proof

#### Many matrices associated with a graph

• Adjacency matrix A(G)

 $A_{u,v} = 1$  iff  $uv \in E$ 

• Laplacian matrix: let D(G) be the diagonal degree matrix

 $L(G) \coloneqq D(G) - A(G)$ 

Later in class:

- Normalized Laplacian matrix:  $\mathcal{L}(G) := D^{-\frac{1}{2}} L(G) D^{-\frac{1}{2}} = I D^{-\frac{1}{2}} A D^{-\frac{1}{2}}$
- Random walk matrix
  - Consider  $\overrightarrow{p_{t+1}} = \overrightarrow{p_t}(D^{-1}A)$
  - The transition matrix  $P := D^{-1}A$

## Laplacian matrix $L(G) \coloneqq D(G) - A(G)$

For regular graphs, L(G) = dI - A(G), eigenspace is roughly the same as A(G)This is not true for irregular graphs, and the difference is important

$$L_{ij} = \begin{cases} \deg(i), & \text{if } i = j \\ -1, & \text{if } ij \in E \\ 0, & \text{otherwise} \end{cases}$$

Consider the Laplacian on a single edge  $e = (u, v), L_e = b_e b_e^{\top}$ 

$$L_{e} = \begin{pmatrix} u & v \\ \vdots & \vdots \\ \cdots & 1 & \cdots & -1 & \cdots \\ \vdots & \vdots & \vdots \\ \cdots & -1 & \cdots & 1 & \cdots \\ \vdots & \vdots & \vdots \end{pmatrix} v$$

## Decomposition of Laplacian



$$L(G) \coloneqq D(G) - A(G) = \sum_{e \in E(G)} L_e = \sum_{e \in E(G)} b_e b_e^{\mathsf{T}}$$

**<u>Theorem</u>**:  $\vec{1}$  is an eigenvector of *L* with eigenvalue 0 Proof: Notice that each row of *L* sum up to 0, so  $L\vec{1} = 0$ 

**Theorem**: The smallest eigenvalue of L is 0Proof: Note that for every x,

$$x^{\top}L x = \sum_{e} x^{\top}b_{e}b_{e}^{\top}x = \sum_{e} (x_{u} - x_{v})^{2} \ge 0$$

Thus *L* is a positive semi-definite (PSD) matrix, with all eigenvalues non-negative. We also saw that 0 is an eigenvalue, this concludes the proof.

$$L(G) \coloneqq D(G) - A(G) = \sum_{e \in E(G)} b_e b_e^{\top}$$

## $\lambda_2$ of the Laplacian

**Theorem**: The second smallest eigenvalue of L(G) is 0 iff G is disconnected Proof: Suppose that is G disconnected, with components  $G = G_1 \uplus G_2$  $V_1 \quad V_2$  $L(G) = \frac{V_1}{V_2} \begin{bmatrix} L(G_1) & 0\\ 0 & L(G_2) \end{bmatrix}$ 

 $\vec{1}_{G_1}$ ,  $\vec{1}_{G_2}$  are eigenvectors with eigenvalue 0, and are linearly independent

Conversely, if G is connected, and let  $x \neq 0$  be any vector such that L x = 0

$$x^{\mathsf{T}}L x = \sum_{e} (x_u - x_v)^2 = 0 \implies \forall uv \in E, x_u = x_v$$

Since G is connected,  $\forall uv \in E, x_u = x_v \Rightarrow \forall u \in V, v \in V, x_u = x_v \Rightarrow x = c\vec{1}$ 

This argument can be adapted to prove:  $\lambda_k(L) = 0$  iff *G* has k connected components

## Spectrum of the Laplacian

$$L(G) \coloneqq D(G) - A(G) = \sum_{e \in E(G)} b_e b_e^{\top}$$

Denote eigenvalues of the Laplacian by  $0 = \lambda_1 \le \lambda_2 \le \dots \le \lambda_n$ <u>Corollary</u>:  $\lambda_2(L) > 0$  iff *G* is connected

Robust generalizations:

 $\lambda_2(L)$  is small  $\Leftrightarrow$  G is "almost disconnected"

 $\lambda_k(L)$  is small  $\Leftrightarrow$  G is "close to having k disconnected components"

 $\alpha_1 \approx -\alpha_n \iff G$  has an "almost bipartite component"

Intuition behind spectral algorithms for finding

- sparse cuts
- *k*-way cuts
- Maximum cuts

#### Recap: Graph conductance

We first define what it means to be "almost disconnected"

The <u>conductance</u> of a set  $S \subseteq V$  is defined as  $\varphi(S) \coloneqq \frac{|E(S,\bar{S})|}{\operatorname{vol}(S)}$ , where  $\operatorname{vol}(S) \coloneqq \sum_{v \in S} \operatorname{deg}(v)$ When the graph is *d*-regular,  $\varphi(S) \coloneqq \frac{|E(S,\bar{S})|}{d|S|}$ Note: the <u>expansion</u> of a set *S* is defined as  $\frac{|E(S,\bar{S})|}{|S|}$ For *d*-regular graphs, they're basically the same.

The conductance of a graph G is defined as  $\varphi(G) \coloneqq \min_{S: \operatorname{vol}(S) \leq m} \varphi(S)$ 

Note that  $0 \le \varphi(G) \le 1$ 

### Recap: Expander graphs and sparse cuts

A graph G with constant  $\phi(G)$  (e.g.  $\phi(G) = 0.1$ ) is called an <u>expander graph</u>

A set S with small  $\phi(S)$  is called a <u>sparse cut</u>

Both concepts are very useful

Finding a sparse cut is useful in designing divide-and-conquer algorithms, and have applications in

- image segmentation
- data clustering
- community detection
- VLSI-design

## Recap: Spectral partitioning



To find a sparse cut with small conductance in a general graph, we

- 1. Compute the second smallest eigenvector  $x \in \mathbb{R}^n$  of the normalized Laplacian  $\mathcal{L}(G) \coloneqq D^{-\frac{1}{2}} \mathcal{L}(G) D^{-\frac{1}{2}} = I - D^{-\frac{1}{2}} A D^{-\frac{1}{2}}$
- 2. Sort the vertices so that  $x_1 \ge x_2 \ge \cdots \ge x_n$ .

3. Let 
$$S_i \coloneqq \begin{cases} \{1, \dots, i\} & \text{if } i \leq \frac{n}{2} \\ \{i+1, \dots, n\} & \text{otherwise} \end{cases}$$
, and output  $S_i = \underset{1 \leq i \leq n}{\operatorname{argmin}} \varphi(S_i)$ .

Intuition:  $\varphi(G) \approx \lambda_2(\mathcal{L})$ 

### Recap: Spectral partitioning



To find a sparse cut with small **conductance** in a *d*-regular graph, we

- 1. Compute the second smallest eigenvector  $x \in \mathbb{R}^n$  of the normalized Laplacian  $\frac{L}{d}$
- 2. Sort the vertices so that  $x_1 \ge x_2 \ge \dots \ge x_n$ . 3. Let  $S_i \coloneqq \begin{cases} \{1, \dots, i\} & \text{if } i \le \frac{n}{2} \\ \{i+1, \dots, n\} & \text{otherwise} \end{cases}$ , and output  $S_i = \underset{1 \le i \le n}{\operatorname{argmin}} \varphi(S_i)$ .

Intuition: 
$$\varphi(G) \approx \lambda_2(\mathcal{L}) = \lambda_2(L/d)$$

#### **Courant-Fischer Theorem**

**Theorem:** For a real symmetric matrix A, the maximum eigenvalue  $\lambda_n(A) = \max_{x \neq 0} \frac{x^\top A x}{x^\top x} \xrightarrow{\qquad} Rayleigh quotient R_A(x) = \frac{x^\top A x}{x^\top x}$  **Proof:** Since equality can be attained. It suffices to show  $\frac{x^\top A x}{x^\top x} \leq \lambda_n(A)$ **Rayleigh quotient** Let  $v_1, v_2, \ldots, v_n$  be an orthonormal basis of A  $x^{\mathsf{T}}Ax = (a_1v_1 + \dots + a_nv_n)^{\mathsf{T}}A(a_1v_1 + \dots + a_nv_n)$  $= \lambda_1 a_1^2 + \dots + \lambda_n a_n^2 \leq \lambda_n (a_1^2 + \dots + a_n^2)$  $x^{\mathsf{T}}x = (a_1v_1 + \dots + a_nv_n)^{\mathsf{T}}(a_1v_1 + \dots + a_nv_n) = a_1^2 + \dots + a_n^2$ Thus, we have  $\frac{x^{\top}Ax}{x^{\top}x} \leq \lambda_n$ 

#### Courant-Fischer Theorem

For a real symmetric matrix A, the maximum eigenvalue:  $\lambda_n(A) = \max_{x \neq 0} \frac{x^\top A x}{x^\top x}$ 

The smallest eigenvalue:

$$\lambda_1(A) = \min_{x \neq 0} \frac{x^{\top} A x}{x^{\top} x}$$

More generally,

$$\lambda_k(A) = \min_{x \neq 0, x^\top v_i = 0, \forall i \in \{1, \dots, k-1\}} \frac{x^\top A x}{x^\top x}$$
$$\lambda_k(A) = \max_{x \neq 0, x^\top v_i = 0, \forall i \in \{k+1, \dots, n\}} \frac{x^\top A x}{x^\top x}$$

In a *d*-regular graph, the normalized Laplacian  $\mathcal{L} = \frac{L}{d}$ 

## Cheeger's inequality

 $\frac{\text{Cheeger's Inequality} [\text{Cheeger 70, Alon-Milman 85}]}{\frac{\lambda_2(\mathcal{L})}{2} \le \varphi(G) \le \sqrt{2\lambda_2(\mathcal{L})}}$ 

The first inequality is called the easy direction, and the second is called the hard direction We start with some **intuition** in the case when G is a d-regular graph.

For the easy direction: think of  $\lambda_2$  as a "relaxation" of the graph conductance problem.

$$\varphi(G) = \min_{x \in \{0,1\}^n, |x| \le \frac{n}{2}} \frac{\sum_{ij \in E} (x_i - x_j)^2}{d\sum_{i \in V} x_i^2} \quad \text{and} \quad \lambda_2(\mathcal{L}) = \min_{x \perp 1} \frac{\sum_{ij \in E} (x_i - x_j)^2}{d\sum_{i \in V} x_i^2}.$$

**<u>Question</u>**: What does the second eigenvector x look like when the graph G is disconnected, i.e.,  $G = G_1 \uplus G_2$ ?

#### Easy direction

Think of  $\lambda_2$  as a "relaxation" of the graph conductance problem.

$$\varphi(G) \approx \min_{x \perp 1 : x \text{ is binary}} \frac{\sum_{ij \in E} (x_i - x_j)^2}{d \sum_{i \in V} x_i^2} \quad \text{and} \quad \lambda_2(\mathcal{L}) = \min_{x \perp 1} \frac{\sum_{ij \in E} (x_i - x_j)^2}{d \sum_{i \in V} x_i^2}.$$

Proof: Given a set S with  $\varphi(S) = \varphi(G)$ , we try to find  $x \perp 1$  with  $R_{\mathcal{L}}(x) \leq 2\varphi(S)$ 

• Consider  $x_i = \begin{cases} \frac{1}{|S|}, & \text{if } i \in S \\ -\frac{1}{n-|S|}, & \text{otherwise} \end{cases}$ • Then  $\lambda_2(\mathcal{L}) \le R_{\mathcal{L}}(x) = \frac{\sum_{ij \in E} (x_i - x_j)^2}{d \sum_{i \in V} x_i^2} = \frac{E(S,\overline{S})}{d} \left(\frac{1}{|S|} + \frac{1}{n-|S|}\right) \le 2\varphi(S)$ 

In the hard direction, we are given the second eigenvector x, which has small Rayleigh quotient, and we need to find a binary vector x'

$$\varphi(G) \approx \min_{x \perp 1: x \text{ is binary}} \frac{\sum_{ij \in E} (x_i - x_j)^2}{d\sum_{i \in V} x_i^2} \quad \text{and} \quad \lambda_2 = \min_{x \perp 1} \frac{\sum_{ij \in E} (x_i - x_j)^2}{d\sum_{i \in V} x_i^2}$$

To gain some intuition, consider sorting x



WLOG, assume the number of positive entries in x is at most the number of negative entries.

Zero out the negative entries of x to obtain y.

Working with y, we ensure that the output set S satisfies  $|S| \le n/2$ .

Lemma.  $R(y) \le R(x) = \lambda_2$ Proof: Consider a row *i* with  $y_i > 0$ . We have  $(Ly)_i = \deg(i) - \sum_{j \sim i} y_j \le \deg(i) - \sum_{j \sim i} x_j = (Lx)_i = \lambda_2 x_i$ Then  $y^T L y = \sum_i y_i (Ly)_i \le \sum_{i:x_i > 0} \lambda_2 x_i^2 = \lambda_2 \sum_i y_i^2$ 

 $\operatorname{supp}(y) \coloneqq \{i \mid y(i) \neq 0\}.$ 

Claim. Given any y, there exists a subset  $S \subseteq \text{supp}(y)$  such that  $\varphi(S) \le \sqrt{2R(y)} \le \sqrt{2\lambda_2}$ 

**<u>Proof plan</u>**. By scaling, assume that  $\max_{i} y(i) = 1$ .

For  $0 < t \le 1$ , we consider a "threshold set"  $S_t := \{i \mid y(i)^2 \ge t\}$ .

We want to prove that there exists a t such that  $\varphi(S_t) \leq \sqrt{2R(y)}$ .

The **idea** is to choose t uniformly randomly from (0,1)!

We will show that 
$$\frac{\mathbb{E}_t[|E(S_t,\bar{S}_t)|]}{\mathbb{E}_t[d|S_t|]} \leq \sqrt{2R(y)}.$$

This would imply that there exists t such that  $\frac{|E(S_t, \bar{S}_t)|}{d|S_t|} \leq \sqrt{2R(y)}$ , as desired.

 $\operatorname{supp}(y) \coloneqq \{i \mid y(i) \neq 0\}.$ 

Claim. Given any y, there exists a subset  $S \subseteq \text{supp}(y)$  such that  $\varphi(S) \leq \sqrt{2R(y)} \leq \sqrt{2\lambda_2}$ 

**<u>Proof</u>**. Choose a random "threshold set"  $S_t \coloneqq \{i \mid y(i)^2 \ge t\}$ 

We will show that 
$$\frac{\mathbb{E}_t[|E(S_t,\bar{S}_t)|]}{\mathbb{E}_t[d|S_t|]} \leq \sqrt{2R(y)}$$

Let's first calculate

$$\mathbb{E}_t[d|S_t|] = d\sum_i \Pr[i \in S_t] = d\sum_i \Pr[t \le y(i)^2] = d\sum_i y(i)^2$$

**Cauchy-Schwarz inequality**:  $\langle u, v \rangle \leq \sqrt{\langle u, u \rangle} \cdot \sqrt{\langle v, v \rangle}$ 

**<u>Proof</u>** (cont.) Choose a random "threshold set"  $S_t \coloneqq \{i \mid y(i)^2 \ge t\}$ .

It remains to show that  $\mathbb{E}_t[|E(S_t, \bar{S}_t)|] \leq \sqrt{2R(y)} \cdot (d\sum_{i \in V} y_i^2)$ , or equivalently, we want to show  $\mathbb{E}_t[|E(S_t, \bar{S}_t)|] \leq \sqrt{2\sum_{ij \in E} (y_i - y_j)^2} \cdot d\sum_{i \in V} y_i^2$  $\mathbb{E}_t[|E(S_t, \bar{S}_t)|] = \sum_{ij \in E} \Pr[i \in S_t, j \notin S_t] + \Pr[i \notin S_t, j \in S_t] = \sum_{ij \in E} |y_i^2 - y_j^2| = \sum_{ij \in E} |y_i - y_j| \cdot (y_i + y_j)$ 

Apply Cauchy-Schwarz inequality:

This

$$\sum_{ij\in E} |y_i - y_j| \cdot (y_i + y_j) \le \sqrt{\sum_{ij\in E} |y_i - y_j|^2} \cdot \sqrt{\sum_{ij\in E} (y_i + y_j)^2} \le \sqrt{\sum_{ij\in E} |y_i - y_j|^2} \sqrt{2\sum_{ij\in E} y_i^2 + y_j^2} = \sqrt{\sum_{ij\in E} |y_i - y_j|^2} \sqrt{2d\sum_{i\in V} y_i^2}$$

Combined, this concludes the proof of  $\frac{\mathbb{E}_t[|E(S_t,\bar{S}_t)|]}{\mathbb{E}_t[d|S_t|]} \leq \sqrt{2R(y)}$ . Then we notice that this implies

$$\mathbb{E}_t \left[ |E(S_t, \bar{S}_t)| - \sqrt{2R(y)}d|S_t| \right] \le 0$$
  
means that there must be a choice of  $t$ ,  $|E(S_t, \bar{S}_t)| - \sqrt{2R(y)}d|S_t| \le 0 \Rightarrow \varphi(S_t) \le \sqrt{2R(y)}$ 

#### Hard direction summary

Easy direction is to show that  $\lambda_2 = \min_{x \in \mathbb{R}^n} \frac{\sum_{i j \in E} (x_i - x_j)^2}{d \sum_{i \in V} x_i^2}$  is a "relaxation" of  $\varphi(G) \approx \min_{x:x \text{ "binary"}} \frac{\sum_{i j \in E} (x_i - x_j)^2}{d \sum_{i \in V} x_i^2}$ .

For the hard direction, given an optimizer x for  $\lambda_2$ , we want to produce a set S with  $\varphi(S) \leq \sqrt{2\lambda_2}$ .

The idea is simply to try all "threshold" sets of x.

We truncate the vector x to obtain y to ensure that the output set is of size at most n/2.

In the analysis, we choose a <u>random</u> threshold for y and prove that  $\frac{\mathbb{E}_t[||E(S_t,\bar{S}_t)||]}{\mathbb{E}_t[d|S_t|]} \leq \sqrt{2R(y)}$ .

In general, this is called a "rounding" algorithm, where we turn a "fractional" solution to an integral solution.

This is the most common way to design approximation algorithms for NP-hard optimization problems.

Today we see an example of "randomized rounding", a useful technique in rounding algorithms.

## Summary: Spectral partitioning



To find a sparse cut with small **conductance** in a **general graph**, we

- 1. Compute the second smallest eigenvector  $x \in \mathbb{R}^n$  of the normalized Laplacian  $\mathcal{L}(G) \coloneqq D^{-\frac{1}{2}} L(G) D^{-\frac{1}{2}} = I D^{-\frac{1}{2}} A D^{-\frac{1}{2}}$
- 2. Sort the vertices so that  $x_1 \ge x_2 \ge \dots \ge x_n$ . 3. Let  $S_i \coloneqq \begin{cases} \{1, \dots, i\} & \text{if } i \le \frac{n}{2} \\ \{i+1, \dots, n\} & \text{otherwise} \end{cases}$ , and output  $S_i = \underset{1 \le i \le n}{\operatorname{argmin}} \varphi(S_i)$ .

**<u>Theorem</u>**:  $\exists i, \varphi(S_i) \leq 2\sqrt{\varphi(G)}$ 

#### Aside: Spectral Partitioning in Planar Graphs

**Planar graph separator theorem**: The removal of  $O(\sqrt{n})$  vertices partitions the planar graph into disjoint subgraphs, each of which has at most 2n/3 vertices

<u>Theorem</u> (Spielman-Teng'07). For bounded degree planar graphs, a recursive spectral partitioning finds a separator of size  $O(\sqrt{n})$ 

#### **Recent Generalizations**

Previously, spectral graph theory is mostly about the second eigenvalue.

In the past decade, there are a few interesting generalizations of Cheeger's inequality using other eigenvalues!

We will discuss some of them.

#### Last Eigenvalue

$$\mathcal{A} = D^{-\frac{1}{2}}AD^{-\frac{1}{2}}$$
 is the normalized adjacency matrix

**Exercise**.  $\alpha_1(A) = -\alpha_n(A)$  iff G is bipartite, and  $\alpha_n(A) = -1$  iff G is bipartite.

Let  $\alpha_n$  be the smallest eigenvalue of I + A. Then homework implies that  $\alpha_n = 0$  iff G is bipartite.

**Exercise**. 
$$\alpha_n = \min_{x \in \mathbb{R}^n} \frac{\sum_{ij \in E} (x_i + x_j)^2}{d \sum_{i \in V} x_i^2}$$
 for *d*-regular graphs.  
Define  $\beta(G) = \min_{x \in \{-1,0,+1\}^n} \frac{\sum_{ij \in E} |x_i + x_j|}{d \sum_{i \in V} |x_i|}$ . (By the way, we can also think of  $\varphi(G)$  this way.)

This is called the bipartiteness ratio of G.

<u>**Theorem</u>**. [Trevisan 09]  $\frac{1}{2}\alpha_n \le \beta(G) \le \sqrt{2\alpha_n}$ .</u>

<u>Proof idea</u>. Pick a random  $t \in [0,1]$ .

A vertex *i* gets -1 if  $x_i^2 \ge t$  and  $x_i \le 0$ , gets +1 if  $x_i^2 \ge t$  and  $x_i \ge 0$ , and gets 0 otherwise.

This result is used to design a spectral algorithm for approximating maximum cut of a graph.

#### *k*-th Eigenvalue

**Exercise**.  $\lambda_k(\mathcal{L}) = 0$  if and only if *G* has at least *k* components.

There are two interesting ways to generalize this statement.

- If  $\lambda_k$  is small, then there is a sparse cut *S* with  $|S| \leq \frac{n}{k}$ .
- If  $\lambda_k$  is small, then there are k disjoint sparse cuts.

The second result is more general, but the first result is quantitatively stronger.

[Arora, Barak, Steurer, 10] proved that when k is large enough, there is a set S with  $\varphi(S) \leq \sqrt{\lambda_k}$  and  $|S| \approx \frac{n}{k}$ .

The proof uses ideas about random walks.

The algorithm is used for solving "unique games".

### Small set expansion, local graph partitioning

Note that the Cheeger rounding works with any vector with small Rayleigh quotient

One could try to run a random walk to find such vectors, this will be efficient in both time and space

Further, if we only care about finding a small sparse cut (e.g., a small community), the algorithm has a running time that only depends on the output size

The question of finding small set expansion is closely related to the Unique Games problem

#### Higher Order Cheeger's Inequality

Theorem. [Lee, Oveis-Gharan, Trevisan 12] [Louis, Raghavendra, Tetali, Vempala 12]

$$\frac{\lambda_k}{2} \le \varphi_k(G) \le O(k^2 \cdot \operatorname{polylog}(k)) \sqrt{\lambda_k}, \quad \text{where } \varphi_k(G) \coloneqq \min_{\operatorname{disjoint} S_1, \dots, S_k} \max_{1 \le i \le k} \phi(S_i).$$
  
Furthermore,  $\varphi_k(G) \le O(\sqrt{\ln k}) \cdot \sqrt{\lambda_{1.01k}}.$ 

The proof is by a spectral embedding, where each vertex is mapped to a point in  $\mathbb{R}^k$  using the k eigenvectors.

The vectors are orthonormal, so the points are "well spread out".

The algorithm by [LRTV] is very simple:

(1) Generate k random directions. (2) Put each point to its closest direction. (3) Run Cheeger on each direction.

The algorithm by [LOT] is similar to a clustering heuristic that was proposed in machine learning.

#### Improved Cheeger's Inequality

**Theorem**. [Kwok, Lau, Lee, Oveis-Gharan, Trevisan 13] For any  $k \ge 2$ ,

$$\frac{\lambda_2}{2} \le \varphi(G) \le O\left(\frac{k\lambda_2}{\sqrt{\lambda_k}}\right).$$

Cheeger's inequality is when k = 2.

Performance achieved by the same spectral partitioning algorithm.

Constant factor approximation when  $\lambda_k$  is large for a small k,

which happens in image segmentation when there are only few outstanding objects in an image. Tight up to a constant factor for any k.

The proof is by showing that if  $\lambda_k$  is large, then the second eigenvector looks like a k-step function. See Chapter 5.4 of Lap Chi Lau's book for more discussions.

#### What next

#### Random walks on undirected graphs

- Fundamental theorem of Markov chains
- Spectral analysis
- Mixing time
- Random sampling