
Advanced Algorithms
Spectral methods and algorithms

尹一通 栗师 刘景铖



Recap

We saw a spectral partitioning algorithm on day 1:

To find a sparse cut with small conductance in a 𝑑-regular graph, we

1. Compute the second largest eigenvector 𝒙 ∈ ℝ𝑛 of the adjacency matrix.

2. Sort the vertices so that 𝑥1 ≥ 𝑥2 ≥ ⋯ ≥ 𝑥𝑛.

3. Let 𝑆𝑖 ≔ ቐ
1, … , 𝑖 if 𝑖 ≤

𝑛

2

𝑖 + 1, … , 𝑛 otherwise
, and output 𝑆𝑖 = argmin

1≤𝑖≤𝑛
𝜑 𝑆𝑖 .

Theorem:  ∃𝑖, 𝜑 𝑆𝑖 ≤ 2 𝜑 𝐺 Why eigenvectors?



Overview

Analysis of the spectral partitioning algorithm

• Introduction to spectral graph theory
• Connectedness
• Bipartiteness (2-coloring)

• Cheeger’s inequality on d-regular graphs
• Easy direction: a sparse cut implies 𝜆2 is small
• Hard direction: a small 𝜆2 means we can find a sparse cut from 𝑣2

• Improvements of Cheeger’s
• Generalizations of Cheeger’s



Spectral graph theory

Spectral theory
eigenvalues + eigenvectors + related linear algebra

Graph structures
• Connectedness
• Coloring / Clustering
• Mixing of random walks
• Expander graphs

In Theoretical CS
• Pagerank
• Sparsification
• Solving linear systems
• Counting / Sampling
• Expander codes
• Hardness of approximation
• Derandomization
• Max flow and more

And Beyond
• Image segmentation
• Electrical networks
• Reliable / Efficient networks
• Epidemic modelling
• Economic networks

https://networks.quantecon.org/


Graphs as matrices

Eigenvalues and eigenvectors

𝐴𝑣 = 𝜆𝑣

• 𝜆 : eigenvalue

• 𝑣 : eigenvector

• characteristic polynomial of 𝐴: det 𝐴 − 𝑥𝐼

• det 𝐴 − 𝑥𝐼 = 0 gives all the eigenvalues

• multiplicity of 𝜆: 
• Geometric: dimension of the eigenspace 

corresponding to 𝜆
• Algebraic: how many times 𝜆 appears as a root
• For diagonalizable matrices, they are the 

same

Undirected graph 𝐺 = (𝑉, 𝐸) has adjacency matrix
𝐴𝑢,𝑣 = 1 iff 𝑢𝑣 ∈ 𝐸

𝐴 is an 𝑛 × 𝑛 real symmetric matrix:

• It has real eigenvalues 𝛼1 ≥ 𝛼2 ≥ ⋯ ≥ 𝛼𝑛

• there is an orthonormal basis of eigenvectors 

𝑣1, 𝑣2, … , 𝑣𝑛 such that

𝐴𝑣𝑖 = 𝛼𝑖𝑣𝑖, ∀𝑖

𝑣𝑖
⊤𝑣𝑗 = ቊ

1, if 𝑖 = 𝑗,
0, otherwise

Adjacency matrix is NOT only a data structure
Its algebraic properties as a matrix are useful too: 

rank, determinant, eigenspaces, …



Complexity of Linear algebra

All the following can be solved in ෨𝑂 𝑛𝜔  arithmetic operations:
• Matrix multiplication
• Matrix inverse
• Determinant
• Characteristic polynomial
• Solving linear equations 𝐴𝑥 = 𝑏
• Singular value decomposition
• Eigen-decomposition of symmetric matrices

In fact, almost linear time (in theory) for matrices that we will care about..



Spectrum of the adjacency matrix

Let 𝐺 = (𝑉, 𝐸) be an undirected graph,       𝛼1 be the largest eigenvalue of the adjacency matrix 𝐴(𝐺)

Claim:  𝑑avg ≤ 𝛼1 ≤ 𝑑max 

Proof of the upperbound:

Let 𝑣 be the eigenvector corresponding to 𝛼1, so that 𝐴𝑣 = 𝛼1𝑣

Without loss of generality we can assume that max
𝑖

𝑣𝑖 > 0

Choose an index 𝑗 so that 𝑣𝑗 = max
𝑖

𝑣𝑖

Then 𝐴𝑣 = 𝛼1𝑣 in the 𝑗-th row means that

𝛼1𝑣𝑗 = ෍

𝑖

𝐴𝑗𝑖  𝑣𝑖 ≤ 𝑑max ⋅ 𝑣𝑗

Here the inequality follows from 𝑣𝑗 = max
𝑖

𝑣𝑖, and there are at most 𝑑max neighbors of 𝑗

Since 𝑣𝑗 > 0, 𝛼1𝑣𝑗 ≤ 𝑑max ⋅ 𝑣𝑗 ⇒  𝛼1 ≤ 𝑑max
Remark. This argument can be adapted to prove:

for a connected 𝐺, 𝛼1 = 𝑑max iff 𝐺 is regular



Spectrum of Bipartite graphs

Spectrum also tells us something about graph coloring

We start with 2-colorability (Bipartiteness)

Let 𝐺 = (𝑉, 𝐸) be an undirected graph, and 𝛼1 ≥ 𝛼2 ≥ ⋯ ≥ 𝛼𝑛 be its 
eigenvalues

Claim: The spectrum of 𝐴(𝐺) is symmetric about 0 (i.e., 𝛼𝑖 = −𝛼𝑛−𝑖+1) 
iff 𝐺 is bipartite



Spectrum of Bipartite graphs

Lemma: Let 𝐺 be bipartite, and 𝛼 be an eigenvalue of 𝐴(𝐺) with multiplicity 𝑘, then −𝛼 is also an 
eigenvalue of 𝐴(𝐺) with multiplicity 𝑘

Proof: If 𝛼 = 0, the lemma is vacuously true. So we assume 𝛼 ≠ 0.

Let 𝑥
𝑦

 be an eigenvector of 𝐴 corresponding to 𝛼：
𝐵𝑦

𝐵𝑇𝑥
=

0 𝐵
𝐵𝑇 0

𝑥
𝑦

= 𝛼 𝑥

𝑦

So 𝐵𝑇𝑥 = 𝛼𝑦, 𝐵𝑦 = 𝛼𝑥. On the other hand, 𝐴 𝑥
−𝑦

=
0 𝐵

𝐵𝑇 0
𝑥

−𝑦
=

−𝐵𝑦

𝐵𝑇𝑥
= −𝛼𝑥

𝛼𝑦
= −𝛼 𝑥

−𝑦

This means −𝛼 is also an eigenvalue of 𝐴

Finally, notice that the multiplicity of 𝛼 being 𝑘 ⇔ there exists 𝑘 linearly independent eigenvectors 

corresponding to 𝛼

Apply the above argument to every one of those, we get that the multiplicity of −𝛼 is also 𝑘

𝐴 𝐺  =  
𝑈 𝑉

𝑈
𝑉

0 𝐵
𝐵𝑇 0



Spectrum of Bipartite graphs

Lemma: If the spectrum of 𝐴(𝐺) is symmetric about 0 (i.e., 𝛼𝑖 = −𝛼𝑛−𝑖+1), then 𝐺 is bipartite

Proof: Note that for every odd integer 𝑘, σ𝑖 𝛼𝑖
𝑘 = 0

Since the eigenvalues of 𝐴𝑘 is 𝛼1
𝑘, 𝛼2

𝑘, … , 𝛼𝑛
𝑘, thus for every odd integer 𝑘，

trace 𝐴𝑘 = ෍

𝑖

𝛼𝑖
𝑘 = 0

On the other hand, trace 𝐴𝑘  has a combinatorial meaning:

𝐴𝑘
𝑖,𝑗

= the number of 𝑘−walks going from 𝑖 to 𝑗

Since trace 𝐴𝑘 = σ𝑖 𝐴𝑘
𝑖,𝑖

= 0, and 𝐴𝑘
𝑖,𝑖

≥ 0, so we must have 𝐴𝑘
𝑖,𝑖

= 0

This means: for every odd integer 𝑘, there is no cycle of length 𝑘. Thus, all cycles are of even length.

𝐴 𝐺  =  
𝑈 𝑉

𝑈
𝑉

0 𝐵
𝐵𝑇 0



Side note: Graph Coloring

Spectral Graph Theory book 

For 𝑘-coloring, we do not expect a spectral characterization (why?)

For an approximation, the chromatic number 𝜒(𝐺) satisfies
𝛼1

−𝛼𝑛
+ 1 ≤ 𝜒 𝐺 ≤ 𝛼1 + 1

The upperbound is known as Wilf’s Theorem, and the lowerbound as 
Hoffman’s bound

See Dan Spielman’s Spectral Graph Theory book for a proof

http://cs-www.cs.yale.edu/homes/spielman/sagt/sagt.pdf


Many matrices associated with a graph

• Adjacency matrix 𝐴(𝐺)
𝐴𝑢,𝑣 = 1 iff 𝑢𝑣 ∈ 𝐸

• Laplacian matrix: let 𝐷(𝐺) be the diagonal degree matrix

𝐿 𝐺 ≔ 𝐷 𝐺 − 𝐴(𝐺)

 

Later in class:

• Normalized Laplacian matrix: ℒ 𝐺 ≔ 𝐷−
1

2 𝐿 𝐺  𝐷−
1

2 = 𝐼 − 𝐷−
1

2𝐴𝐷−
1

2

• Random walk matrix
• Consider 𝑝𝑡+1 = 𝑝𝑡(𝐷−1𝐴)
• The transition matrix 𝑃 ≔ 𝐷−1𝐴



Laplacian matrix 𝐿 𝐺 ≔ 𝐷 𝐺 − 𝐴(𝐺)

For regular graphs, 𝐿 𝐺 = 𝑑𝐼 − 𝐴 𝐺 , eigenspace is roughly the same as 𝐴 𝐺

This is not true for irregular graphs, and the difference is important

𝐿𝑖𝑗 = ቐ
deg 𝑖 , if 𝑖 = 𝑗
−1, if 𝑖𝑗 ∈ 𝐸
0, otherwise

Consider the Laplacian on a single edge 𝑒 = (𝑢, 𝑣), 𝐿𝑒 = 𝑏𝑒𝑏𝑒
⊤



Decomposition of Laplacian

𝐿 𝐺 ≔ 𝐷 𝐺 − 𝐴 𝐺 = ෍

𝑒∈𝐸(𝐺)

𝐿𝑒 = ෍

𝑒∈𝐸(𝐺)

𝑏𝑒𝑏𝑒
⊤

Theorem: 1 is an eigenvector of 𝐿 with eigenvalue 0

Proof: Notice that each row of 𝐿 sum up to 0, so 𝐿1 = 0

Theorem: The smallest eigenvalue of 𝐿 is 0

Proof: Note that for every 𝑥, 

𝑥⊤𝐿 𝑥 = ෍

𝑒

𝑥⊤𝑏𝑒𝑏𝑒
⊤ 𝑥 = ෍

𝑒

𝑥𝑢 − 𝑥𝑣
2 ≥ 0

Thus 𝐿 is a positive semi-definite (PSD) matrix, with all eigenvalues non-negative. 
We also saw that 0 is an eigenvalue, this concludes the proof.

PSD often simply written as 𝐿 ≽ 0



𝜆2 of the Laplacian

Theorem: The second smallest eigenvalue of 𝐿 𝐺  is 0 iff 𝐺 is disconnected

Proof: Suppose that is 𝐺 disconnected, with components 𝐺 = 𝐺1 ⊎ 𝐺2
𝑉1 𝑉2

𝐿 𝐺 =
𝑉1

𝑉2

𝐿 𝐺1 0

0 𝐿 𝐺2

1𝐺1
, 1𝐺2

 are eigenvectors with eigenvalue 0, and are linearly independent

Conversely, if 𝐺 is connected, and let 𝑥 ≠ 0 be any vector such that 𝐿 𝑥 = 0

𝑥⊤𝐿 𝑥 = ෍

𝑒

𝑥𝑢 − 𝑥𝑣
2 = 0 ⇒  ∀𝑢𝑣 ∈ 𝐸, 𝑥𝑢 = 𝑥𝑣

Since 𝐺 is connected, ∀𝑢𝑣 ∈ 𝐸, 𝑥𝑢 = 𝑥𝑣 ⇒  ∀𝑢 ∈ 𝑉, 𝑣 ∈ 𝑉, 𝑥𝑢 = 𝑥𝑣 ⇒  𝑥 = 𝑐1

This argument can be adapted to prove:
𝜆𝑘(𝐿) = 0 iff 𝐺 has k connected components

𝐿 𝐺 ≔ 𝐷 𝐺 − 𝐴 𝐺 = ෍

𝑒∈𝐸(𝐺)

𝑏𝑒𝑏𝑒
⊤



Spectrum of the Laplacian

Denote eigenvalues of the Laplacian by 0 = 𝜆1 ≤ 𝜆2 ≤ ⋯ ≤ 𝜆𝑛

Corollary: 𝜆2 𝐿 > 0 iff 𝐺 is connected

Robust generalizations:

𝜆2 𝐿  is small  ⟺  𝐺 is “almost disconnected”

𝜆𝑘 𝐿  is small  ⟺  𝐺 is “close to having k disconnected components”

𝛼1 ≈ −𝛼𝑛        ⟺  𝐺 has an “almost bipartite component”

 

𝐿 𝐺 ≔ 𝐷 𝐺 − 𝐴 𝐺 = ෍

𝑒∈𝐸(𝐺)

𝑏𝑒𝑏𝑒
⊤

Intuition behind spectral algorithms for finding
• sparse cuts
• 𝑘-way cuts
• Maximum cuts



Recap: Graph conductance

We first define what it means to be “almost disconnected”

The conductance of a set 𝑆 ⊆ 𝑉 is defined as 𝜑 𝑆 ≔
𝐸(𝑆, ҧ𝑆)

vol 𝑆
,  where vol 𝑆 ≔ σ𝑣∈𝑆 deg 𝑣

When the graph is 𝑑-regular, 𝜑 𝑆 ≔
𝐸(𝑆, ҧ𝑆)

𝑑 𝑆

Note: the expansion of a set 𝑆 is defined as 
𝐸(𝑆, ҧ𝑆)

|𝑆|

For 𝑑-regular graphs, they’re basically the same.

The conductance of a graph 𝐺 is defined as 𝜑 𝐺 ≔ min
𝑆:vol 𝑆 ≤𝑚

𝜑 𝑆

Note that 0 ≤ 𝜑 𝐺 ≤ 1



Recap: Expander graphs and sparse cuts

A graph 𝐺 with constant 𝜙 𝐺  (e.g. 𝜙 𝐺 = 0.1) is called an expander graph

A set 𝑆 with small 𝜙(𝑆) is called a sparse cut

Both concepts are very useful

Finding a sparse cut is useful in designing divide-and-conquer algorithms, and have applications in

• image segmentation

• data clustering

• community detection

• VLSI-design

• ….



Recap: Spectral partitioning

To find a sparse cut with small conductance in a general graph, we

1. Compute the second smallest eigenvector 𝒙 ∈ ℝ𝑛 of the normalized Laplacian 

ℒ 𝐺 ≔ 𝐷−
1

2 𝐿 𝐺  𝐷−
1

2 = 𝐼 − 𝐷−
1

2𝐴𝐷−
1

2

2. Sort the vertices so that 𝑥1 ≥ 𝑥2 ≥ ⋯ ≥ 𝑥𝑛.

3. Let 𝑆𝑖 ≔ ቐ
1, … , 𝑖 if 𝑖 ≤

𝑛

2

𝑖 + 1, … , 𝑛 otherwise
, and output 𝑆𝑖 = argmin

1≤𝑖≤𝑛
𝜑 𝑆𝑖 .

  Intuition: 𝜑 𝐺 ≈ 𝜆2(ℒ)



Recap: Spectral partitioning

To find a sparse cut with small conductance in a 𝑑-regular graph, we

1. Compute the second smallest eigenvector 𝒙 ∈ ℝ𝑛 of the normalized Laplacian
𝐿

𝑑

2. Sort the vertices so that 𝑥1 ≥ 𝑥2 ≥ ⋯ ≥ 𝑥𝑛.

3. Let 𝑆𝑖 ≔ ቐ
1, … , 𝑖 if 𝑖 ≤

𝑛

2

𝑖 + 1, … , 𝑛 otherwise
, and output 𝑆𝑖 = argmin

1≤𝑖≤𝑛
𝜑 𝑆𝑖 .

  Intuition: 𝜑 𝐺 ≈ 𝜆2 ℒ = 𝜆2 𝐿/𝑑



Courant-Fischer Theorem

Theorem: For a real symmetric matrix 𝐴, the maximum eigenvalue

𝜆𝑛 𝐴 = max𝑥≠0

𝑥⊤𝐴 𝑥

𝑥⊤𝑥
Proof: Since equality can be attained. It suffices to show 

𝑥⊤𝐴 𝑥

𝑥⊤𝑥
≤ 𝜆𝑛 𝐴

Let 𝑣1, 𝑣2, . . , 𝑣𝑛 be an orthonormal basis of 𝐴

𝑥⊤𝐴𝑥 = 𝑎1𝑣1 + ⋯ + 𝑎𝑛𝑣𝑛
⊤𝐴 𝑎1𝑣1 + ⋯ + 𝑎𝑛𝑣𝑛

= 𝜆1𝑎1
2 + ⋯ + 𝜆𝑛𝑎𝑛

2 ≤ 𝜆𝑛 𝑎1
2 + ⋯ + 𝑎𝑛

2

𝑥⊤𝑥 = 𝑎1𝑣1 + ⋯ + 𝑎𝑛𝑣𝑛
⊤ 𝑎1𝑣1 + ⋯ + 𝑎𝑛𝑣𝑛 = 𝑎1

2 + ⋯ + 𝑎𝑛
2

Thus, we have 
𝑥⊤𝐴 𝑥

𝑥⊤𝑥
≤ 𝜆𝑛

Rayleigh quotient 

𝑅𝐴 𝑥 =
𝑥⊤𝐴 𝑥

𝑥⊤𝑥



Courant-Fischer Theorem

For a real symmetric matrix 𝐴, the maximum eigenvalue:

𝜆𝑛 𝐴 = max𝑥≠0

𝑥⊤𝐴 𝑥

𝑥⊤𝑥
The smallest eigenvalue:

𝜆1 𝐴 = min𝑥≠0

𝑥⊤𝐴 𝑥

𝑥⊤𝑥
More generally,

𝜆𝑘 𝐴 = min𝑥≠0,𝑥⊤𝑣𝑖=0,∀𝑖∈{1,…,𝑘−1}

𝑥⊤𝐴 𝑥

𝑥⊤𝑥

𝜆𝑘 𝐴 = max𝑥≠0,𝑥⊤𝑣𝑖=0,∀𝑖∈{𝑘+1,…,𝑛}

𝑥⊤𝐴 𝑥

𝑥⊤𝑥



Cheeger’s inequality

The first inequality is called the easy direction, and the second is called the hard direction

We start with some intuition in the case when 𝐺 is a 𝑑-regular graph.

For the easy direction: think of 𝜆2 as a “relaxation” of the graph conductance problem.

𝜑 𝐺 = min
𝑥∈ 0,1 𝑛, 𝑥 ≤

𝑛
2

σ𝑖𝑗∈𝐸 𝑥𝑖 − 𝑥𝑗

2

𝑑 σ𝑖∈𝑉 𝑥𝑖
2 and 𝜆2(ℒ) = min

𝑥⊥1

σ𝑖𝑗∈𝐸 𝑥𝑖 − 𝑥𝑗

2

𝑑 σ𝑖∈𝑉 𝑥𝑖
2 .

Cheeger’s Inequality [Cheeger 70, Alon-Milman 85]

𝜆2(ℒ)

2
≤ 𝜑 𝐺 ≤ 2𝜆2(ℒ)

In a 𝑑-regular graph, the 

normalized Laplacian ℒ =
𝐿

𝑑

Question: What does the second eigenvector 𝒙 look like 
when the graph 𝐺 is disconnected, i.e.,  𝐺 = 𝐺1 ⊎ 𝐺2 ?



Easy direction

Think of 𝜆2 as a “relaxation” of the graph conductance problem.

𝜑 𝐺 ≈ min
𝑥⊥1 ∶ 𝑥 is binary

σ𝑖𝑗∈𝐸 𝑥𝑖 − 𝑥𝑗
2

𝑑 σ𝑖∈𝑉 𝑥𝑖
2  and 𝜆2(ℒ) = min

𝑥⊥1

σ𝑖𝑗∈𝐸 𝑥𝑖 − 𝑥𝑗
2

𝑑 σ𝑖∈𝑉 𝑥𝑖
2 .

Proof: Given a set 𝑆 with 𝜑 𝑆 = 𝜑 𝐺 , we try to find 𝑥 ⊥ 1 with 𝑅ℒ 𝑥 ≤ 2𝜑 𝑆

• Consider 𝑥𝑖 = ൞

1

𝑆
, if 𝑖 ∈ 𝑆

−
1

𝑛− 𝑆
, otherwise

• Then  𝜆2 ℒ ≤ 𝑅ℒ 𝑥 =
σ𝑖𝑗∈𝐸 𝑥𝑖−𝑥𝑗

2

𝑑 σ𝑖∈𝑉 𝑥𝑖
2 =

𝐸 𝑆, ҧ𝑆

𝑑

1

𝑆
+

1

𝑛− 𝑆
≤ 2𝜑 𝑆



Hard direction

In the hard direction, we are given the second eigenvector 𝑥, which has 
small Rayleigh quotient, and we need to find a binary vector 𝑥′

To gain some intuition, consider sorting 𝑥

𝜑 𝐺 ≈ min
𝑥⊥1 ∶ 𝑥 is binary

σ𝑖𝑗∈𝐸 𝑥𝑖 − 𝑥𝑗
2

𝑑 σ𝑖∈𝑉 𝑥𝑖
2 and 𝜆2 = min

𝑥⊥1

σ𝑖𝑗∈𝐸 𝑥𝑖 − 𝑥𝑗
2

𝑑 σ𝑖∈𝑉 𝑥𝑖
2



Hard direction

WLOG, assume the number of positive entries in 𝑥 is at most the number of 
negative entries.
Zero out the negative entries of 𝑥 to obtain 𝑦.
Working with 𝑦, we ensure that the output set 𝑆 satisfies 𝑆 ≤ 𝑛/2.

Lemma.  𝑅 𝑦 ≤ 𝑅 𝑥 = 𝜆2

Proof: Consider a row 𝑖 with 𝑦𝑖 > 0. We have 

𝐿𝑦 𝑖 = deg 𝑖 − ෍

𝑗~𝑖

𝑦𝑗 ≤ deg 𝑖 − ෍

𝑗~𝑖

𝑥𝑗 = 𝐿𝑥 𝑖 = 𝜆2𝑥𝑖

Then 𝑦⊤𝐿 𝑦 =  σ𝑖 𝑦𝑖 𝐿𝑦 𝑖 ≤ σ𝑖:𝑥𝑖>0 𝜆2𝑥𝑖
2 = 𝜆2 σ𝑖 𝑦𝑖

2



Hard direction

Claim.  Given any 𝑦, there exists a subset 𝑆 ⊆ supp(𝑦) such that 

𝜑 𝑆 ≤ 2𝑅 𝑦 ≤ 2𝜆2

Proof plan.  By scaling, assume that max
𝑖

 𝑦 𝑖 = 1.

For 0 < 𝑡 ≤ 1, we consider a “threshold set” 𝑆𝑡 ≔ 𝑖 𝑦 𝑖 2 ≥ 𝑡}.

We want to prove that there exists a 𝑡 such that 𝜑 𝑆𝑡 ≤ 2𝑅 𝑦 .

The idea is to choose 𝑡 uniformly randomly from 0,1 !

We will show that 
𝔼𝑡 𝐸(𝑆𝑡, ҧ𝑆𝑡)

𝔼𝑡 𝑑 𝑆𝑡
≤ 2𝑅 𝑦 .

This would imply that there exists 𝑡 such that 
𝐸(𝑆𝑡, ҧ𝑆𝑡)

𝑑 𝑆𝑡
≤ 2𝑅 𝑦 , as desired.

supp 𝑦 ≔ 𝑖 𝑦 𝑖 ≠ 0}.



Hard direction

Claim.  Given any 𝑦, there exists a subset 𝑆 ⊆ supp(𝑦) such that 

𝜑 𝑆 ≤ 2𝑅 𝑦 ≤ 2𝜆2

Proof.   Choose a random “threshold set” 𝑆𝑡 ≔ 𝑖 𝑦 𝑖 2 ≥ 𝑡}

We will show that 
𝔼𝑡 𝐸(𝑆𝑡, ҧ𝑆𝑡)

𝔼𝑡 𝑑 𝑆𝑡
≤ 2𝑅 𝑦

Let’s first calculate 

𝔼𝑡 𝑑 𝑆𝑡 = 𝑑 ෍

𝑖

Pr[𝑖 ∈ 𝑆𝑡] = 𝑑 ෍

𝑖

Pr[𝑡 ≤ 𝑦 𝑖 2] = 𝑑 ෍

𝑖

𝑦 𝑖 2

supp 𝑦 ≔ 𝑖 𝑦 𝑖 ≠ 0}.



Hard direction

Proof (cont.)   Choose a random “threshold set” 𝑆𝑡 ≔ 𝑖 𝑦 𝑖 2 ≥ 𝑡}.

It remains to show that 𝔼𝑡 𝐸(𝑆𝑡 , ҧ𝑆𝑡) ≤ 2𝑅 𝑦 ⋅ 𝑑 σ𝑖∈𝑉 𝑦𝑖
2 , or equivalently, we want to show

𝔼𝑡 𝐸(𝑆𝑡 , ҧ𝑆𝑡) ≤ 2 ෍

𝑖𝑗∈𝐸

𝑦𝑖 − 𝑦𝑗
2

 ⋅ 𝑑 ෍

𝑖∈𝑉

𝑦𝑖
2

𝔼𝑡 𝐸(𝑆𝑡 , ҧ𝑆𝑡) = ෍

𝑖𝑗∈𝐸

Pr 𝑖 ∈ 𝑆𝑡 , 𝑗 ∉ 𝑆𝑡 + Pr[𝑖 ∉ 𝑆𝑡 , 𝑗 ∈ 𝑆𝑡] = ෍

𝑖𝑗∈𝐸

𝑦𝑖
2 − 𝑦𝑗

2 = ෍

𝑖𝑗∈𝐸

𝑦𝑖 − 𝑦𝑗 ⋅ (𝑦𝑖 + 𝑦𝑗)

Apply Cauchy-Schwarz inequality:

෍

𝑖𝑗∈𝐸

𝑦𝑖 − 𝑦𝑗 ⋅ (𝑦𝑖 + 𝑦𝑗) ≤ ෍

𝑖𝑗∈𝐸

𝑦𝑖 − 𝑦𝑗
2

⋅ ෍

𝑖𝑗∈𝐸

𝑦𝑖 + 𝑦𝑗
2

≤ ෍

𝑖𝑗∈𝐸

𝑦𝑖 − 𝑦𝑗
2

2 ෍

𝑖𝑗∈𝐸

𝑦𝑖
2 + 𝑦𝑗

2 = ෍

𝑖𝑗∈𝐸

𝑦𝑖 − 𝑦𝑗
2

2𝑑 ෍

𝑖∈𝑉

𝑦𝑖
2

Combined, this concludes the proof of 
𝔼𝑡 𝐸(𝑆𝑡, ҧ𝑆𝑡)

𝔼𝑡 𝑑 𝑆𝑡
≤ 2𝑅 𝑦 . Then we notice that this implies

𝔼𝑡 𝐸(𝑆𝑡 , ҧ𝑆𝑡)  − 2𝑅 𝑦 𝑑 𝑆𝑡 ≤ 0

This means that there must be a choice of 𝑡, 𝐸(𝑆𝑡 , ҧ𝑆𝑡)  − 2𝑅 𝑦 𝑑 𝑆𝑡 ≤ 0 ⇒ 𝜑 𝑆𝑡 ≤ 2𝑅 𝑦

Cauchy-Schwarz inequality:

𝑢, 𝑣 ≤ 𝑢, 𝑢 ⋅ 𝑣, 𝑣



Hard direction summary

Easy direction is to show that 𝜆2 = min
𝑥∈ℝ𝑛

σ𝑖𝑗∈𝐸 𝑥𝑖−𝑥𝑗
2

𝑑 σ𝑖∈𝑉 𝑥𝑖
2  is a “relaxation” of 𝜑 𝐺 ≈ min

𝑥:𝑥 "binary"

σ𝑖𝑗∈𝐸 𝑥𝑖−𝑥𝑗
2

𝑑 σ𝑖∈𝑉 𝑥𝑖
2 .

For the hard direction, given an optimizer 𝑥 for 𝜆2, we want to produce a set 𝑆 with 𝜑 𝑆 ≤ 2𝜆2.

The idea is simply to try all “threshold” sets of 𝑥.

We truncate the vector 𝑥 to obtain 𝑦 to ensure that the output set is of size at most 𝑛/2.

In the analysis, we choose a random threshold for 𝑦 and prove that 
𝔼𝑡 𝐸(𝑆𝑡, ҧ𝑆𝑡)

𝔼𝑡 𝑑 𝑆𝑡
≤ 2𝑅 𝑦 .

In general, this is called a “rounding” algorithm, where we turn a “fractional” solution to an integral solution.

This is the most common way to design approximation algorithms for NP-hard optimization problems.

Today we see an example of “randomized rounding”, a useful technique in rounding algorithms.



Summary: Spectral partitioning

To find a sparse cut with small conductance in a general graph, we

1. Compute the second smallest eigenvector 𝒙 ∈ ℝ𝑛 of the normalized Laplacian ℒ 𝐺 ≔

𝐷−
1

2 𝐿 𝐺  𝐷−
1

2 = 𝐼 − 𝐷−
1

2𝐴𝐷−
1

2

2. Sort the vertices so that 𝑥1 ≥ 𝑥2 ≥ ⋯ ≥ 𝑥𝑛.

3. Let 𝑆𝑖 ≔ ቐ
1, … , 𝑖 if 𝑖 ≤

𝑛

2

𝑖 + 1, … , 𝑛 otherwise
, and output 𝑆𝑖 = argmin

1≤𝑖≤𝑛
𝜑 𝑆𝑖 .

Theorem:  ∃𝑖, 𝜑 𝑆𝑖 ≤ 2 𝜑 𝐺



Aside: Spectral Partitioning in Planar Graphs

Planar graph separator theorem: The removal of 𝑂 𝑛  vertices 
partitions the planar graph into disjoint subgraphs, each of which has 
at most 2𝑛/3 vertices

Theorem (Spielman-Teng’07). For bounded degree planar graphs, a 
recursive spectral partitioning finds a separator of size 𝑂 𝑛



Recent Generalizations

Previously, spectral graph theory is mostly about the second eigenvalue.

In the past decade, there are a few interesting generalizations of Cheeger’s 
inequality using other eigenvalues!

We will discuss some of them.  



Last Eigenvalue

Exercise.  𝛼1 𝐴 = −𝛼𝑛(𝐴) iff 𝐺 is bipartite,  and 𝛼𝑛 𝒜 = −1 iff 𝐺 is bipartite.

Let 𝛼𝑛 be the smallest eigenvalue of 𝐼 + 𝒜.  Then homework implies that 𝛼𝑛 = 0 iff 𝐺 is bipartite.

Exercise.  𝛼𝑛 = min
𝑥∈ℝ𝑛

σ𝑖𝑗∈𝐸 𝑥𝑖+𝑥𝑗
2

𝑑 σ𝑖∈𝑉 𝑥𝑖
2  for 𝑑-regular graphs.

Define 𝛽 𝐺 = min
𝑥∈{−1,0,+1}𝑛

σ𝑖𝑗∈𝐸 𝑥𝑖+𝑥𝑗

𝑑 σ𝑖∈𝑉 𝑥𝑖
.  (By the way, we can also think of 𝜑(𝐺) this way.)

This is called the bipartiteness ratio of 𝐺.

Theorem. [Trevisan 09]  
1

2
𝛼𝑛 ≤ 𝛽 𝐺 ≤ 2𝛼𝑛.

Proof idea.  Pick a random 𝑡 ∈ [0,1].  

A vertex 𝑖 gets −1 if 𝑥𝑖
2 ≥ 𝑡 and 𝑥𝑖 ≤ 0, gets +1 if 𝑥𝑖

2 ≥ 𝑡 and 𝑥𝑖 ≥ 0, and gets 0 otherwise.

This result is used to design a spectral algorithm for approximating maximum cut of a graph.

𝒜 = 𝐷−
1

2𝐴𝐷−
1

2  is the normalized adjacency matrix



𝑘-th Eigenvalue
Exercise.  𝜆𝑘 ℒ = 0 if and only if 𝐺 has at least 𝑘 components.

There are two interesting ways to generalize this statement.

• If 𝜆𝑘 is small, then there is a sparse cut 𝑆 with 𝑆 ≲
𝑛

𝑘
.

• If 𝜆𝑘 is small, then there are 𝑘 disjoint sparse cuts.

The second result is more general, but the first result is quantitatively stronger.

[Arora,Barak,Steurer,10] proved that when 𝑘 is large enough, there is a set 𝑆 with 𝜑 𝑆 ≲ 𝜆𝑘 and 𝑆 ≈
𝑛

𝑘
.

The proof uses ideas about random walks.

The algorithm is used for solving “unique games”.



Small set expansion, local graph partitioning

Note that the Cheeger rounding works with any vector with small Rayleigh 
quotient

One could try to run a random walk to find such vectors, this will be efficient 
in both time and space

Further, if we only care about finding a small sparse cut (e.g., a small 
community), the algorithm has a running time that only depends on the 
output size

The question of finding small set expansion is closely related to the Unique 
Games problem



Higher Order Cheeger’s Inequality
Theorem. [Lee, Oveis-Gharan, Trevisan 12] [Louis, Raghavendra, Tetali, Vempala 12]

𝜆𝑘

2
≤ 𝜑𝑘 𝐺 ≤ 𝑂(𝑘2 ⋅ polylog(𝑘)) 𝜆𝑘, where 𝜑𝑘 𝐺 ≔ min

disjoint 𝑆1,…,𝑆𝑘

max
1≤𝑖≤𝑘

𝜙 𝑆𝑖 .

Furthermore, 𝜑𝑘 𝐺 ≤ 𝑂 ln 𝑘 ⋅ 𝜆1.01𝑘.

The proof is by a spectral embedding, where each vertex is mapped to a point in ℝ𝑘 using the 𝑘 eigenvectors.

The vectors are orthonormal, so the points are “well spread out”.

The algorithm by [LRTV] is very simple:  

(1) Generate 𝑘 random directions. (2) Put each point to its closest direction. (3) Run Cheeger on each direction.

The algorithm by [LOT] is similar to a clustering heuristic that was proposed in machine learning.



Improved Cheeger’s Inequality
Theorem. [Kwok, Lau, Lee, Oveis-Gharan, Trevisan 13] For any 𝑘 ≥ 2,

𝜆2

2
≤ 𝜑 𝐺 ≤ 𝑂

𝑘𝜆2

𝜆𝑘

.

Cheeger’s inequality is when 𝑘 = 2.  

Performance achieved by the same spectral partitioning algorithm.

Constant factor approximation when 𝜆𝑘 is large for a small 𝑘, 

            which happens in image segmentation when there are only few outstanding objects in an image.

Tight up to a constant factor for any 𝑘.

The proof is by showing that if 𝜆𝑘 is large, then the second eigenvector looks like a 𝑘-step function.

See Chapter 5.4 of Lap Chi Lau’s book for more discussions.



What next

40

Random walks on undirected graphs

• Fundamental theorem of Markov chains

• Spectral analysis

• Mixing time

• Random sampling
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