
Advanced Algorithms
Spectral methods and algorithms

尹一通 栗师 刘景铖

Recap

What next?
Random walks on undirected graphs

• Speeding up bipartite matching

• Return time

• Fundamental theorem of Markov chains

• Pagerank

Previous lecture:
Cheeger’s inequality on d-regular graphs

• Easy direction: a sparse cut implies 𝜆2 is small

• Hard direction: a small 𝜆2 means we can find

a sparse cut from 𝑥2

• Spectral partitioning

• Improvements of Cheeger’s

• Generalizations of Cheeger’s

Random Walks on Graphs

A random walk is a simple random process.

• Start from some vertex

• Move to a uniformly random neighbor of the current vertex

• Repeat many steps

We are interested in the long term behavior of this random process

For example, what is the probability of being in a vertex at a time 𝑡?

Vector Formulation of random walk

Example: Consider an undirected 3-cycle

If we start at vertex 1

 with probability ½ we go to vertex 2

 with probability ½ we go to vertex 3

In vector terms

 our starting distribution is 𝑝0 =
1
0
0

 after one-step of the random walk, the distribution becomes 𝑝1 =

0
1/2

1/2

2

1 3

Common Questions

Basic questions in applying random walks in designing algorithms:

1. Is there a limiting distribution of the random walk? What does it look like? (Stationary distribution)

2. How long does it take for the random walk to converge to the limiting distribution? (Mixing time)

3. Starting from a vertex 𝑠, what is the expected number of steps to first reach vertex 𝑡? (Hitting time)

4. How long does it take to reach every vertex of the graph at least once? (Cover time)

There are two main approaches to answer the first two questions.

• One approach is probabilistic, using the technique of “coupling” of two random processes

• Another approach is linear algebraic, using the eigenvalues of the transition matrix

• We first introduce the spectral approach to answer the first two questions

• Then the probabilistic approach when we introduce the Markov chain Monte Carlo method

• The last two questions are best answered by viewing the graph as an “electrical network”

A random walk for finding bipartite matching

Matching : A subset of edges that do not overlap at any vertex

Bipartite Matching problem: Find the largest matching in a bipartite
graph

We consider an O(n log n) algorithm for regular bipartite graphs (Goel,
Kapralov, Khanna 2010), which is based on random walk

• Traditional: find augmenting paths by e.g. BFS/DFS

Augmenting path

Augmenting path for a matching 𝑴: A path in the graph that
alternates between edges in 𝑀 and outside of 𝑀, and starts and ends
with edges outside of 𝑀

A matching 𝑀 An augmenting path
for matching 𝑀

Augmenting path

Augmenting path for a matching 𝑴: A path in the graph that alternates between
edges in 𝑀 and outside of 𝑀, and starts and ends with edges outside of 𝑀

Berge’s Theorem A matching 𝑀 is maximum iff there is no augmenting path for it

Proof (sketch): If there is an augmenting path, clearly it enlarges the matching.
Conversely, if there is a larger matching 𝑀′, one can find an augmenting path for 𝑀
using the edges of 𝑀 ∪ 𝑀′.

Remark: Given this theorem, we can find a maximum bipartite matching by repeatedly
finding augmenting paths using e.g. DFS/BFS.

This takes 𝑂 𝑛 iterations of DFS/BFS.

One can speed this up by finding many augmenting paths at once (Hopcroft-Karp)

A random walk for finding bipartite matching

Idea: replace BFS/DFS by a random walk (on a different Eulerian directed graph, i.e. indegree=outdegree for every
vertex)

• Each edge in the matching points to the right

• Each edge not in the matching points to the left

• There is a source node 𝑠 that connects to every unmatched vertex on the right

• A sink node 𝑡 that is connected from every unmatched vertex on the left

Then 𝐺1 has an augmenting path iff 𝐺2 has an 𝑠-𝑡 path

st

A random walk for finding bipartite matching

Idea: replace BFS/DFS by a random walk (on a different Eulerian directed graph, i.e.
indegree=outdegree for every vertex)

• From 𝐺2 we contract edges in the matching

• Increase parallel edges from 𝑠 to every unmatched vertex 𝑣 on the right to degout(𝑣)

• Increase parallel edges from every unmatched vertex 𝑢 on the left to the sink 𝑡 to degin(𝑣)

• Connect degin(𝑡) parallel edges from 𝑡 to 𝑠

Then 𝐺1 has an augmenting path iff 𝐺2 has an 𝑠-𝑡 path iff 𝐺3 has a cycle from 𝑠 to 𝑠

st st

A random walk for finding bipartite matching

Idea: replace BFS/DFS by a random walk (on a different Eulerian directed graph, i.e.
indegree=outdegree for every vertex)

Then 𝐺1 has an augmenting path iff 𝐺2 has an 𝑠-𝑡 path iff 𝐺3 has a cycle from 𝑠 to 𝑠

Further, 𝐺3 is Eulerian if 𝐺1 is a regular graph

Question: Expected time to find a cycle from 𝑠 to 𝑠, using random walk? (Return time)

st st

Matrix Formulation of random walk

In each step, we move to a uniform random neighbor, and repeat.

Let 𝑝𝑡 ∈ ℝ𝑛 be the probability distribution at time 𝑡.

Then, for all 𝑣 ∈ 𝑉,

𝑝𝑡+1 𝑣 =

𝑢:𝑢𝑣∈𝐸

𝑝𝑡 𝑢 ⋅
1

deg 𝑢
.

Let 𝐴 be the adjacency matrix and 𝐷 be the diagonal degree matrix.

Then 𝑝𝑡+1 = 𝑝𝑡(𝐷−1𝐴) and thus 𝑝𝑡 = 𝑝0 𝐷−1𝐴 𝑡, if 𝑝𝑡 is a row vector.

For the spectral analysis, it will be more convenient to have 𝑝𝑡 as a column vector.

So we write 𝑝𝑡+1 = 𝐴𝐷−1 𝑝𝑡 and 𝑝𝑡 = 𝐴𝐷−1 𝑡𝑝0.

This is called a Markov chain, because it forgets about the past (given the current state)

Matrix Formulation of random walk

𝑝𝑡+1 = 𝐴𝐷−1 𝑝𝑡 and 𝑝𝑡 = 𝐴𝐷−1 𝑡𝑝0

Transition matrix 𝑊 ≔ 𝐴𝐷−1

To understand 𝑊𝑡 , it suffices to study the powers of 𝒜 = 𝐷−
1

2𝐴𝐷−
1

2 , because:

𝒜 = 𝐷−
1
2 𝑊 𝐷

1
2 ⇒ 𝑊𝑡 = 𝐷

1
2 𝒜𝑡𝐷

−
1
2

Further, as a real symmetric matrix 𝒜 = 𝑉Σ𝑉⊤ we have:

𝒜𝑘 = 𝑉Σ𝑘𝑉⊤ =

1≤𝑖≤𝑛

𝜆𝑖
𝑘𝑣𝑖𝑣𝑖

⊤

We study the convergence of the random walk, by utilizing the spectral knowledge of 𝒜

Notice that 𝒜𝑘 share the same set of eigenvectors as 𝒜, and the eigenvalues 𝜆𝑖 → 𝜆𝑖
𝑘

Irreducible Markov Chains

We assume all Markov chains are finite in this course.

A Markov chain is called irreducible if the underlying directed
graph is strongly connected.

Aperiodic Markov Chains

The period of a state 𝑖 is defined as 𝑝𝑒𝑟𝑖𝑜𝑑 𝑖 ≔ gcd 𝑡 𝑃𝑖,𝑖
𝑡 > 0}.

A state is a aperiodic if 𝑝𝑒𝑟𝑖𝑜𝑑 𝑖 = 1.

A Markov chain is aperiodic if all states are aperiodic; otherwise it is called periodic.

Example: What is the period of a directed 3-cyle? What about an undirected 3-cycle?
Example: What if we add a self-loop to the directed 3-cyle?

By irreducibility and aperiodicity, we have the following property.

Lemma. For any finite, irreducible, aperiodic Markov chain, there exists a 𝑇 < ∞ such that

 𝑃𝑡
𝑖,𝑗 > 0 for all 𝑖, 𝑗 and for all 𝑡 ≥ 𝑇.

Stationary Distribution

A probability distribution 𝜋 is a stationary distribution if 𝜋 = 𝜋 ⋅ 𝑃

A stationary distribution is a “steady/equilibrium/fixed point” distribution, and

𝜋 = 𝜋 ⋅ 𝑃𝑡 for any 𝑡.

A limiting distribution is a stationary distribution.

Distance and Convergence

Given two probability distributions Ԧ𝑝 and Ԧ𝑞, the total variation distance is defined as

𝑑𝑇𝑉 Ԧ𝑝, Ԧ𝑞 =
1

2
𝑝 − 𝑞 1 =

1

2

𝑖=1

𝑛

𝑝𝑖 − 𝑞𝑖 = max
𝑆⊆ 𝑛

𝑝 𝑆 − 𝑞(𝑆) .

We say 𝑝𝑡 converges to Ԧ𝑞 if

lim
𝑡→∞

𝑑𝑇𝑉 𝑝𝑡, Ԧ𝑞 = 0.

Side note: we can also measure progress in the 2-norm given by

𝑝

𝜋
− 1

2,𝜋

2

≔

𝑖=1

𝑛

𝜋𝑖

𝑝𝑖

𝜋𝑖
− 1

2

By Cauchy-Schwarz,

𝑖=1

𝑛

𝑝𝑖 − 𝜋𝑖 =

𝑖=1

𝑛

𝜋𝑖

𝑝𝑖

𝜋𝑖
− 1 ≤

𝑖=1

𝑛

𝜋𝑖

𝑝𝑖

𝜋𝑖
− 1

2

=
𝑝

𝜋
− 1

2,𝜋

This means that if 2-norm is small, so is the 1-norm (but not vice versa).

Similar to a “variance”

Return Time

The return time from 𝑖 to 𝑖 is defined as
𝐻𝑖 ≔ min 𝑡 ≥ 1 | 𝑋𝑡 = 𝑖, 𝑋0 = 𝑖 .

The expected return time is defined as ℎ𝑖 ≔ 𝔼[𝐻𝑖].

Note that the expected return time can be seen as a special case of
(expected) hitting time, where the start/end vertices are the same

Fundamental Theorem of Markov Chains

Theorem. For any finite, irreducible, aperiodic Markov chain, it holds that

1. There exists a stationary distribution 𝜋.

2. The distribution 𝑝𝑡 will converge to 𝜋 as 𝑡 → ∞, regardless of the

distribution 𝑝0.

3. There is a unique stationary distribution.

4. 𝜋 𝑖 =
1

ℎ𝑖
.

Intuition

Imagine you are playing a game of guessing where a random walk might have started, and the only information that you
know is the “current location of a random walk”

Then, two random walks become indistinguishable after they meet at the same vertex, because the “current location of a
random walk” can no longer be used to distinguish them

By the lemma from irreducibility and aperiodicity, after some time 𝑇, there is a non-zero probability

 for two random walks to meet at the same vertex, no matter what their current vertices are.

So, eventually, two random walks will meet at the same vertex with probability one,

 and they would converge to the same stationary distribution.

This argument can be made precise by the “coupling” technique we introduce later.

Return time for finding augmenting path

An 𝑂(𝑛 log 𝑛) algorithm for regular bipartite graphs (Goel, Kapralov, Khanna 2010)

Then 𝐺1 has an augmenting path iff 𝐺2 has an 𝑠-𝑡 path iff 𝐺3 has a cycle from 𝑠 to 𝑠

Further, 𝐺3 is Eulerian if 𝐺1 is a regular graph

Expected time to find an augmenting path => expected return time => stationary value in Eulerian directed graph

Claim: 𝜋 𝑣 =
degout 𝑣

𝐸
 is the unique stationary distribution for an Eulerian directed graph

st st

Open problem: Extension to non-regular bipartite graphs?

Return time for finding augmenting path

An 𝑂(𝑛 log 𝑛) algorithm for regular bipartite graphs (Goel, Kapralov, Khanna 2010)

Then 𝐺1 has an augmenting path iff 𝐺2 has an 𝑠-𝑡 path iff 𝐺3 has a cycle from 𝑠 to 𝑠

Claim: 𝜋 𝑣 =
degout 𝑣

𝐸
 is the unique stationary distribution for an Eulerian directed graph

Then, by the fundamental theorem, if we are given a matching of size 𝑖

ℎ𝑠 =
1

𝜋 𝑠
≤ 𝑂

𝑛𝑑

𝑑 𝑛 − 𝑖
= 𝑂

𝑛

𝑛 − 𝑖

We have to find at most 𝑛 augmenting paths, so the total running time sums up to σ𝑖=1
𝑛 𝑂

𝑛

𝑛−𝑖
≤ 𝑂(𝑛 log 𝑛)

st st

Open problem: Extension to non-regular bipartite graphs?

Aperiodicity: Add self-loop at 𝑡

Another application: Pagerank

Webpages: vertices

Hyperlinks: edges

This gives a directed graph. A search engine wants to rank pages based on their
“importance” or “reputation”

• A page that is being cited by many other people, it is probably more
important
• Metric: in-degree of a vertex

• A page that is being cited by other important pages, it is probably more
important
• Metric: ???

Pagerank

Consider the following iterative algorithm:

• Each page is initialized with a pagerank of 1/n

• Then repeat the following until convergence:
• Each page will distribute its pagerank equally to its outgoing neighbors
• Each page updates its pagerank by the total sum of pagerank

Pagerank𝑡+1 𝑗 =

𝑖:𝑖𝑗∈𝐸

Pagerank𝑡 𝑖 / deg𝑜𝑢𝑡(𝑖)

Let 𝑃𝑖,𝑗 = ቐ

1

deg𝑜𝑢𝑡 𝑖
, if 𝑖𝑗 ∈ 𝐸

0, otherwise
，Then, Pagerank𝑡+1 = Pagerank𝑡 ⋅ 𝑃

Pagerank

• Can be interpreted as a random walk on directed graphs

• When the graph is finite, irreducible, aperiodic, the pagerank values are unique
by the fundamental thm.

• This shows that the pagerank values is a function of the graph structure, not

based on initial values.

• Also, we have some intuition about pagerank values, which are the reciprocal of

the expected return time.

• Practical modification makes the graph irreducible and aperiodic, without

changing the relative importance of the webpages

Application in 2-SAT

Say you are given an assignment, some clauses are violated

A random walk algorithm is to repeat until all clauses are satisfied:

• Pick an arbitrary violated clause, choose a literal uniformly at random, then flip its assignment

To analyze this algorithm, take any satisfying assignment 𝜏, consider the evolution of 𝜏 − 𝜎𝑡 1

We would like to know the first time 𝜏 − 𝜎𝑡 1 = 0, in expectation

This is dominated by the same hitting time of a simple symmetric random walk on 0, 𝑛 ∩ ℤ

See Chapter 7.1.1 of Probability and Computing for a coupling + recursion analysis

See also Gambler’s ruin and optional stopping theorem for an analysis of such hitting time

Open: Can the random walk idea give constant factor approximation to MAX-2SAT

Examples of algorithms from random walk

cat and mouse game

Feige’s theorem

Finding certain objects faster
• Hitting time / return time

• Ex: Finding bipartite matching, algorithmic Lovász local lemma, 2-SAT, random 3-SAT…

Exploring graphs in space bounded computations
• Cover time

• Ex: checking undirected s-t connectivity, cat and mouse game

• Time-space trade-off (see e.g., Feige’s theorem)

Rapid mixing of random walks: Markov chain Monte Carlo method
• “Local mixing” : local graph partitioning/clustering

• Mixing time

• Ex: Card shuffling, sampling random combinatorial objects, approximate counting

• Exponentially large graph, yet mixes in polynomial time ≈ 𝑂(log 𝑁) where 𝑁 is the size of the graph

https://www2.eecs.berkeley.edu/Pubs/TechRpts/1979/ERL-m-79-54.pdf
https://www.sciencedirect.com/science/article/pii/S0022000097914719

	Slide 1: Advanced Algorithms
	Slide 2: Recap
	Slide 3: Random Walks on Graphs
	Slide 4: Vector Formulation of random walk
	Slide 5: Common Questions
	Slide 6: A random walk for finding bipartite matching
	Slide 7: Augmenting path
	Slide 8: Augmenting path
	Slide 9: A random walk for finding bipartite matching
	Slide 10: A random walk for finding bipartite matching
	Slide 11: A random walk for finding bipartite matching
	Slide 12: Matrix Formulation of random walk
	Slide 13: Matrix Formulation of random walk
	Slide 14: Irreducible Markov Chains
	Slide 15: Aperiodic Markov Chains
	Slide 16: Stationary Distribution
	Slide 17: Distance and Convergence
	Slide 18: Return Time
	Slide 19: Fundamental Theorem of Markov Chains
	Slide 20: Intuition
	Slide 21: Return time for finding augmenting path
	Slide 22: Return time for finding augmenting path
	Slide 23: Another application: Pagerank
	Slide 24: Pagerank
	Slide 25: Pagerank
	Slide 26: Application in 2-SAT
	Slide 27: Examples of algorithms from random walk

