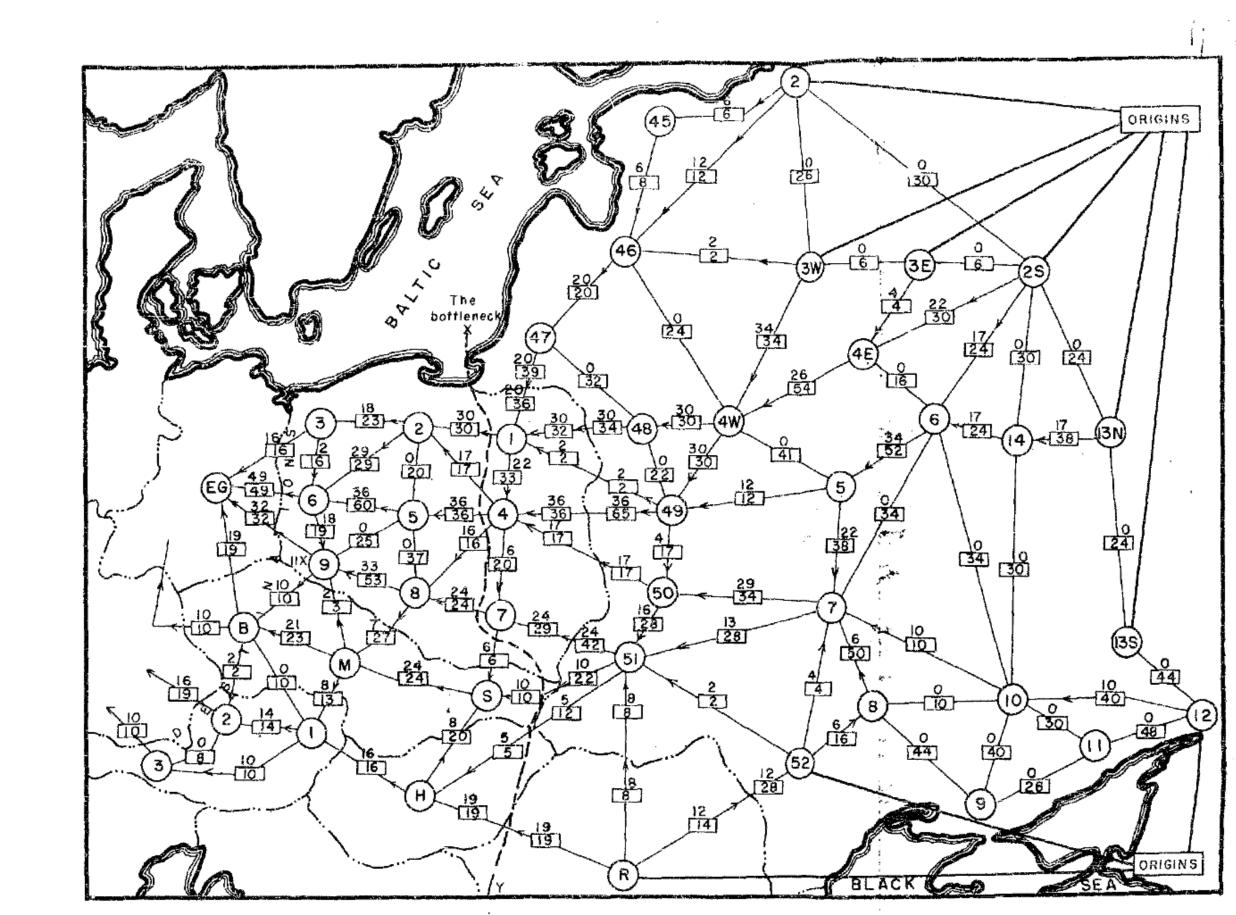
Advanced Algorithms

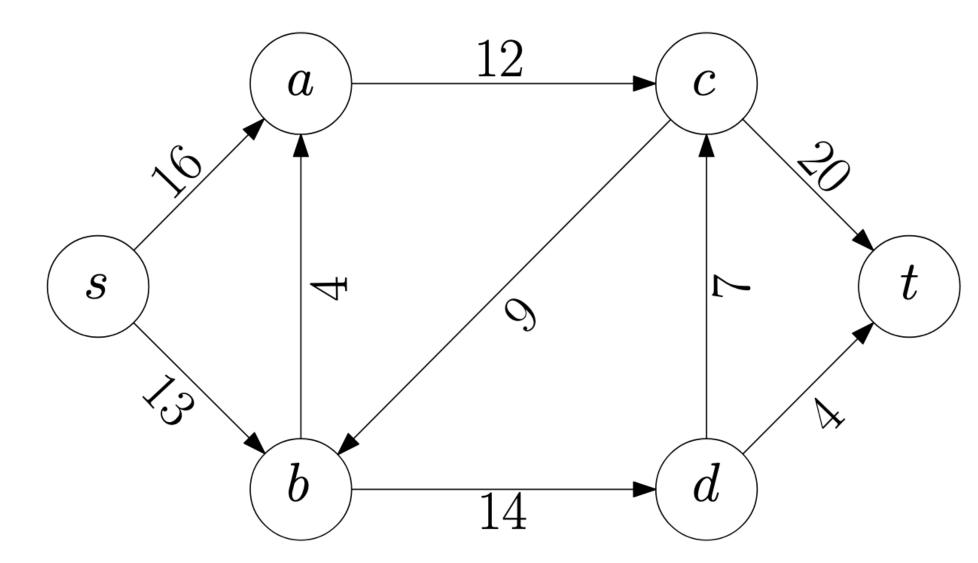
Network Flow & Linear Programming

Network Flow



Graph With Capacity

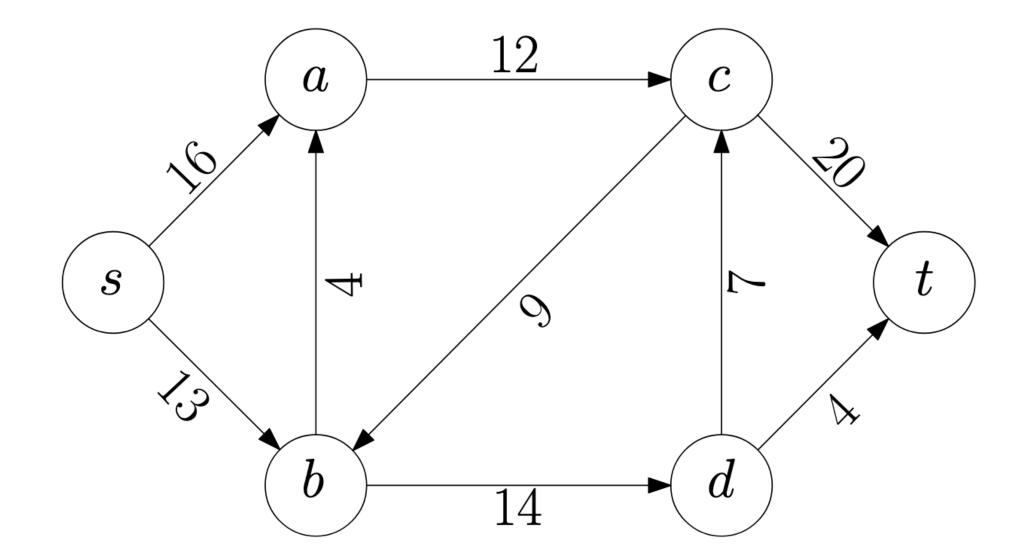
Flow



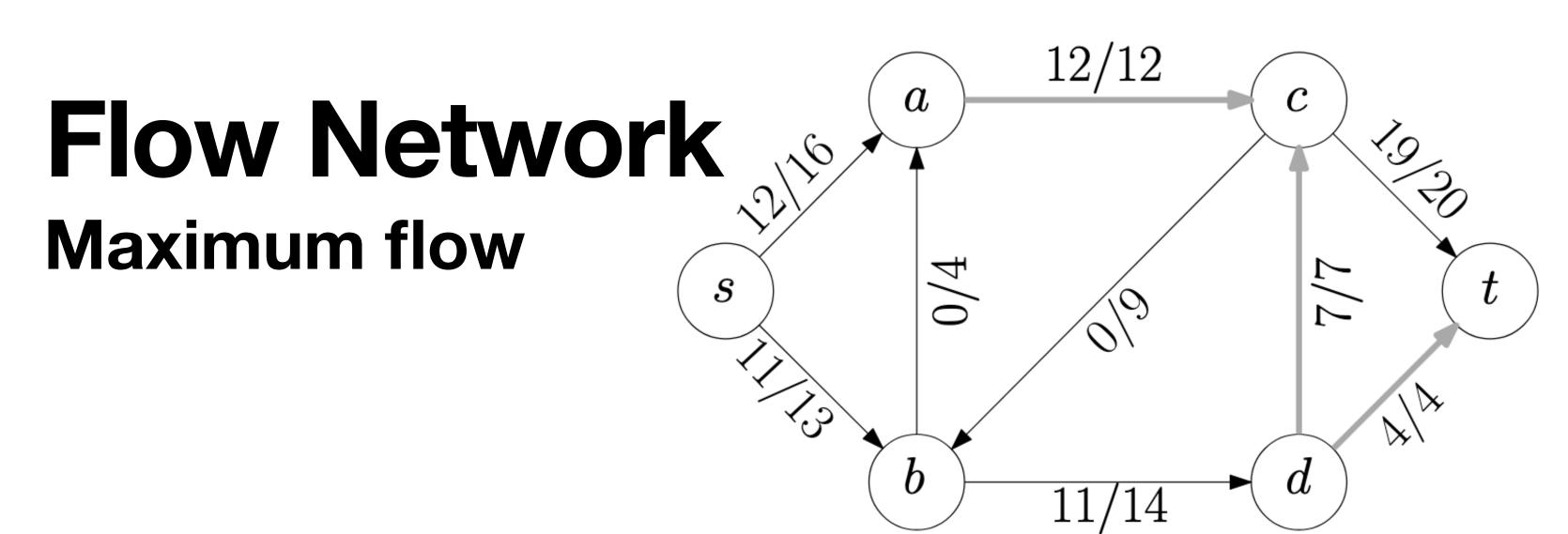
- Digraph G = (V, E): a set of vertices V and a set of directed edges E
- Edge capacity $c_e \in \mathbb{R}^+$ for edge $e \in E$
- Flow function $f: E \to \mathbb{R}^+$
 - Valid flow: $\forall e \in E, \ 0 \le f(e) \le c_e \& \ \forall v \in V, \ \sum_{e \in \delta_{in}(v)} f(e) = \sum_{e \in \delta_{out}(v)} f(e)$

Flow Network

s-t flow

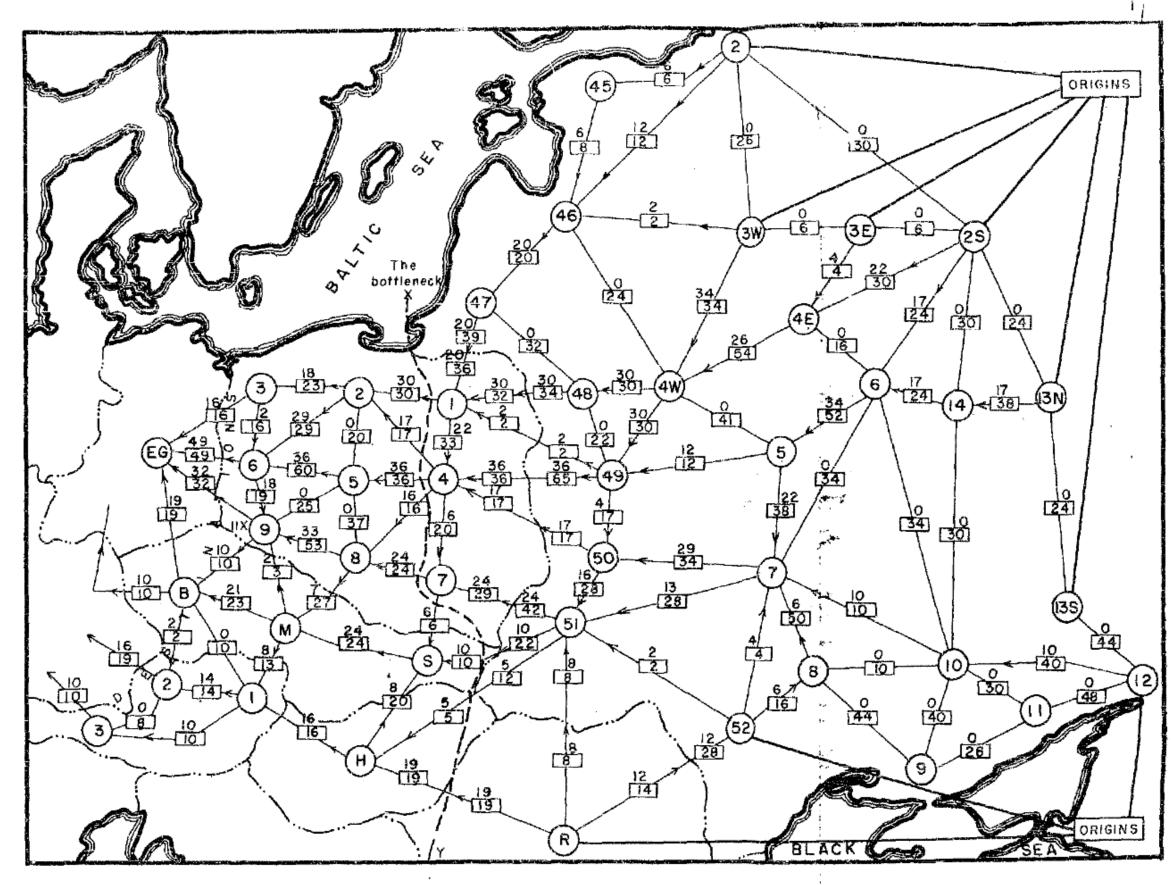


- Digraph G = (V, E): a set of vertices V and a set of directed edges E
- Edge capacity $c_e \in \mathbb{R}^+$ for edge $e \in E$
- Flow function $f: E \to \mathbb{R}^+$, source $s \in V$, sink $t \in V$
 - Valid flow: $\forall e \in E, \ 0 \le f(e) \le c_e \& \ \forall v \in V \setminus \{s,t\}, \ \sum_{e \in \delta_{in}(v)} f(e) = \sum_{e \in \delta_{out}(v)} f(e)$



- Digraph G = (V, E): a set of vertices V and a set of directed edges E
- Edge capacity $c_e \in \mathbb{R}^+$ for edge $e \in E$
- Flow function $f: E \to \mathbb{R}^+$, source $s \in V$, sink $t \in V$
 - Valid flow: $\forall e \in E, \ 0 \le f(e) \le c_e \& \ \forall v \in V \setminus \{s,t\}, \ \sum_{e \in \delta_{in}(v)} f(e) = \sum_{e \in \delta_{out}(v)} f(e)$
- Maximum flow problem: find a flow f maximizes $\sum_{e \in \delta_{out}(s)} f(e)$

Army Transportation



SECRET -53-

Fig. 7 — Traffic pattern: entire network available

Legend:

---- International boundary

(B) Railway operating division

Capacity: 12 each way per day.

Required flow of 9 per day toward destinations (in direction of arrow) with equivalent number of returning trains in opposite direction

All capacities in violog's of tons each way per day

Origins: Divisions 2, 3W, 3E, 29, 13N, 13S, 12, 52 (USSR), and Roumania

Destinctions: Divisions 3, 6, 9 (Poland);
B (Czechoslovovakia); and 2, 3 (Austria)

Alternative destinations: Germany or East

Note IIX at Division 9, Poland

Assumption:

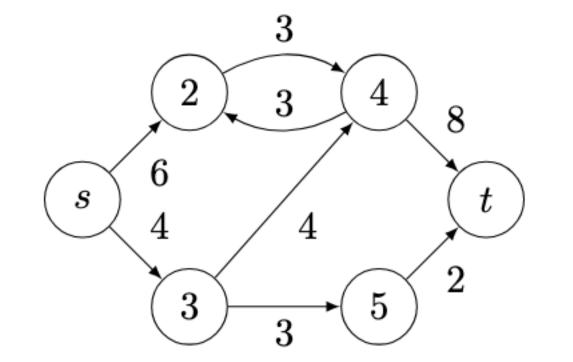
Entire network available for east—west traffic (no allowance for civilian or economic traffic)

Results:

- (a) 163, 000 tons per day can be delivered from points of origin to destinations.
- (b) 147, 000 tons per day can be delivered without using Austrian lines.
- (c) 152,000 tons per day can be delivered into Germany by all lines.
- (d) 126,000 tons per day can be delivered into East Germany without using Austrian lines.

Flow Decomposition

Maximum flow consists of paths



- Theorem: Any *s-t* flow can be decomposed into cycles and s-t paths.
- Constructive proof:
 - While s has out flow: exists valid s-t path since $\sum_{e \in \delta_{out}(s)} f(e) = \sum_{e \in \delta_{in}(t)} f(e)$
 - , find s-t path $P\subseteq E$; let $\delta(P)\triangleq \min_{e\in P}f_e$; update $\forall e\in P, f_e\leftarrow f_e-\delta(P)$
 - While exists flow: exists flow cycles since $\sum_{e \in \delta_{in}(v)} f(e) = \sum_{e \in \delta_{out}(v)} f(e), \forall v$
 - find flow cycle $P \subseteq E$, remove it as well

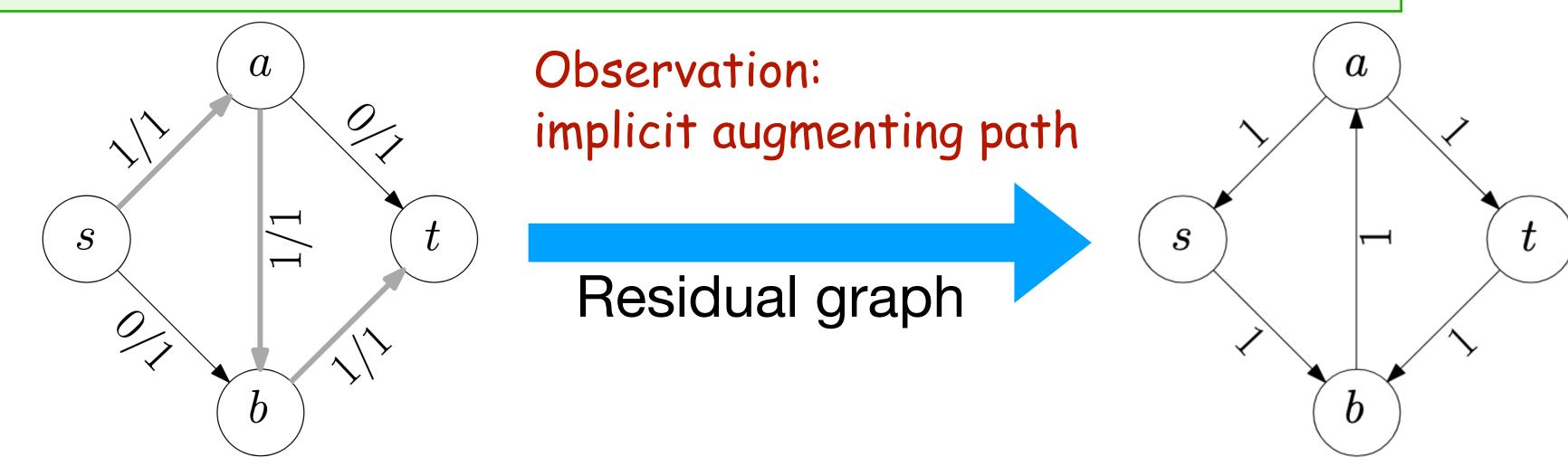
Maximum flow consists of paths

• Theorem: Any *s-t* flow can be decomposed into cycles and s-t paths.

Greedy: let $\delta(P) \triangleq \min_{e \in p} c_e - f_e$ be residual capacity

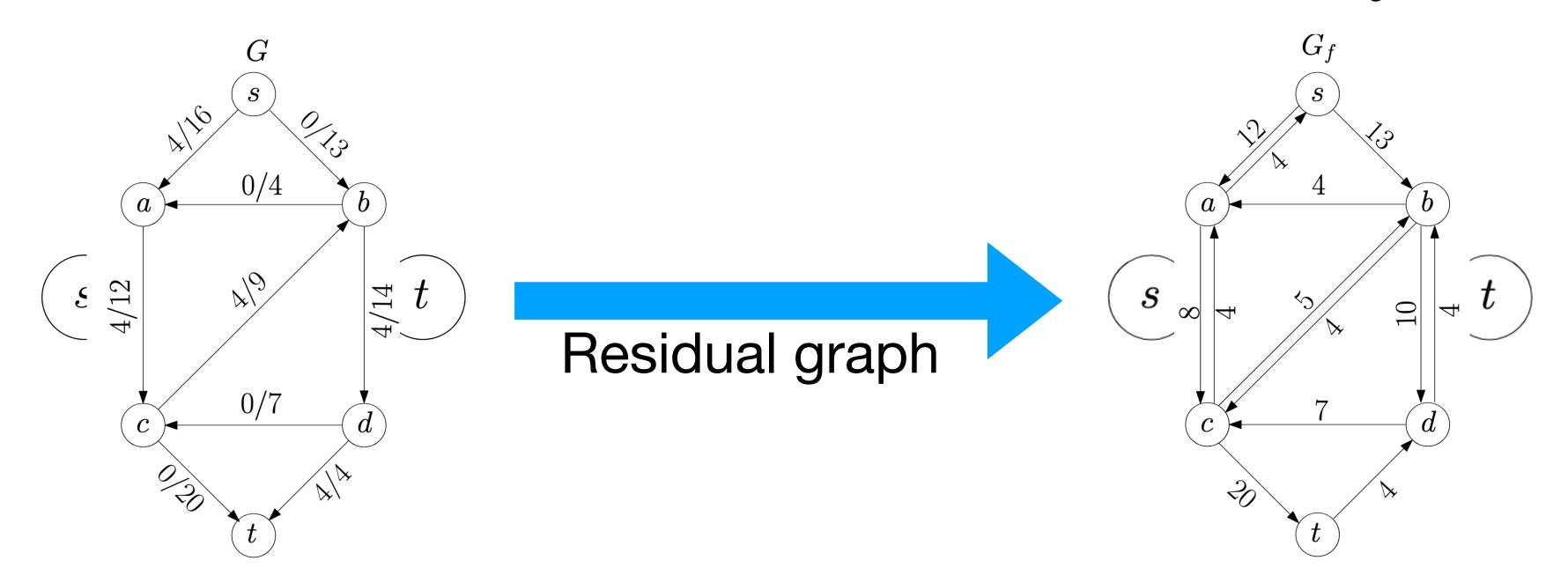
While exists s-t path P with $\delta(P) > 0$: increase the flow in P by $\delta(P)$

Any issue?



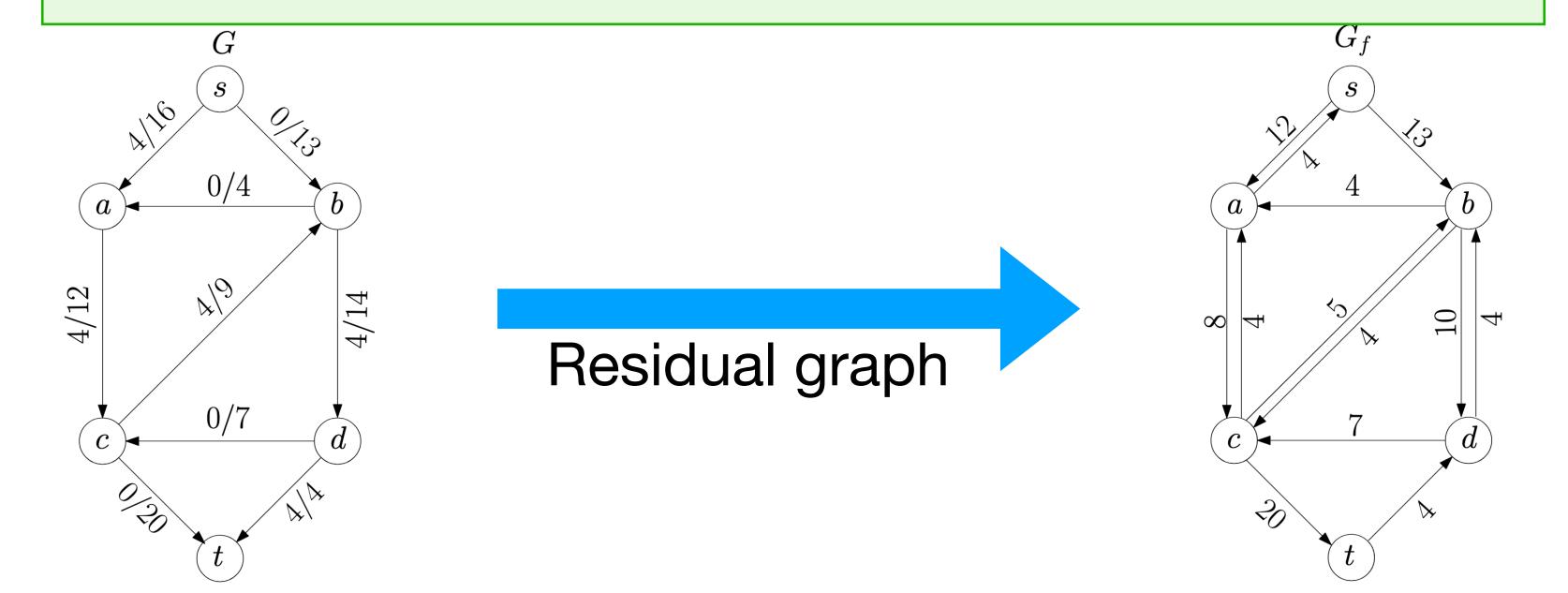
Fixing with residual graph

- Theorem: Any *s-t* flow can be decomposed into cycles and s-t paths.
- Residual graph $G_f = (V, E')$ of G = (V, E) with capacity c and flow f:
 - for each $e=(u,v)\in E$ with $c_e>f_e$, add e to E' with $c'_e=c_e-f_e$
 - for each $e=(u,v)\in E$ with $f_e>0$, add (v,u) to E' with $c'_{e'}=f_e$



Fixing with residual graph

• Theorem: Any s-t flow can be decomposed into cycles and s-t paths.



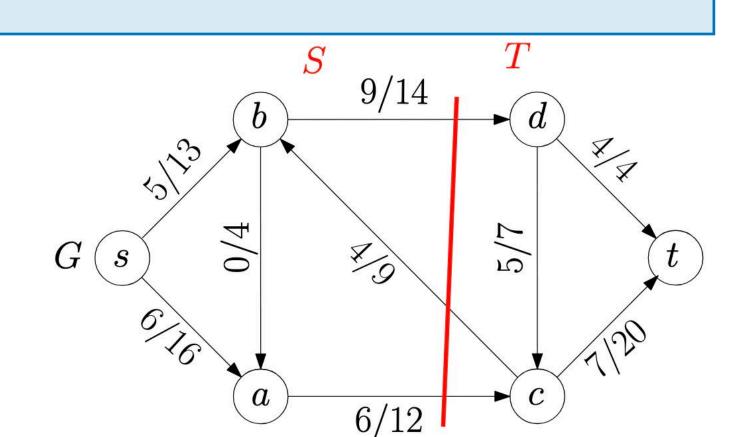
Ford-Fulkerson: let $\delta(P)$ be residual capacity for path P While exists s-t path $P \in G^f$ with $\delta(P) > 0$: increase the flow f in P by $\delta(P)$

The following statements are equivalent:

- (1) f is a maximum flow
- (2) There is no s-t path P in G^f with $\delta(P)>0$
- (3) There is $S, \neg S \subseteq V$ such that cut(S) = |f|

Proof strategy:

- $(1)\Longrightarrow(2)$: proven by $\neg(2)\Longrightarrow\neg(1)$
- $(2) \Longrightarrow (3)$: every edge is stuck
- $(3) \rightarrow (1)$: every flow is at most any cut



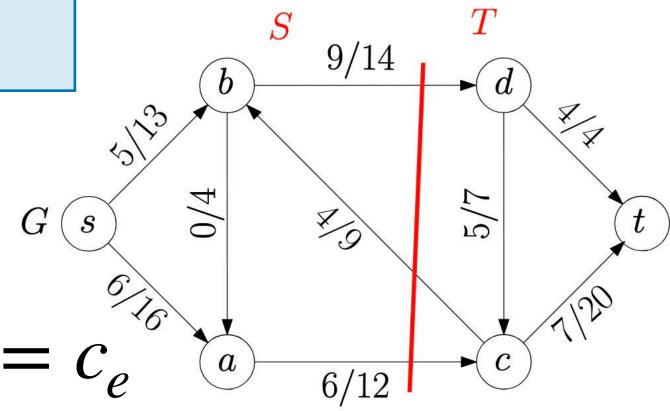
The following statements are equivalent:

- (1) f is a maximum flow
- (2) There is no s-t path P in G^f with $\delta(P)>0$
- (3) There is $S, \neg S \subseteq V$ such that Cut(S) = |f|

(2) \Longrightarrow (3): Let S be set of vertices reachable in G^f from S

- Observation:
 - Every edge $e=(a,b)\in E$ with $a\in S,b\in \neg S$, then $f_e=c_e$
 - Every edge $e=(b,a)\in E$ with $a\in S,b\in \neg S$, then $f_e=0$
- Otherwise b is reachable in G^f as well.
- By flow conservation:

$$|f| = \sum_{a \in S, b \notin S} f_{a,b} - \sum_{a \in S, b \notin S} f_{b,a} = \sum_{\substack{(a,b) \in E \\ a \in S, b \notin S}} c_{a,b} = \operatorname{Cut}(S)$$



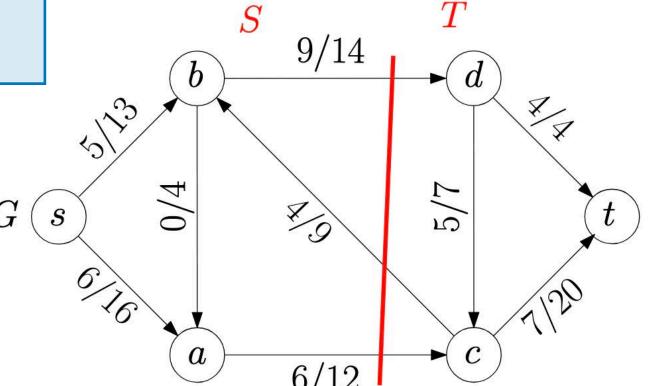
The following statements are equivalent:

- (1) f is a maximum flow
- (2) There is no s-t path P in G^f with $\delta(P)>0$
- (3) There is $S, \neg S \subseteq V$ such that Cut(S) = |f|

$$(3) \Longrightarrow (1)$$
: $|f| \le \text{Cut}(S)$ for any f, S

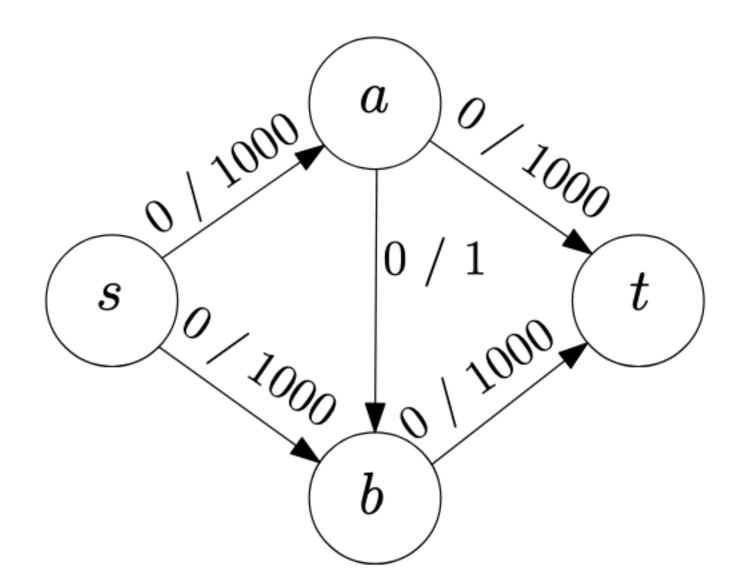
- Proof by decomposition: decompose f, keep only s-t paths.
- Consider a path P with p flow.
 - Pass from S to $\neg S$
 - Uses $\geq p$ capacity of Cut(S) (backward is allowed)

•
$$|f| = \sum_{P} p \le \text{Cut}(S)$$



Ford-Fulkerson: let $\delta(P)$ be residual capacity for path P While exists s-t path $P \in G^f$ with $\delta(P) > 0$: increase the flow f in P by $\delta(P)$

Time cost? Worst case.



• Naive Ford-Fulkerson algorithms takes $O(|f^*| \cdot m)$ time

Greed

- Theorem: Any *s-t* flow can be decomposed into cycles and s-t paths.
- Greedy idea: adopt the "fattest" augmenting path
- Max flow $|f^*| = |f| + |f'|$, where f' is the max flow in G^f
- By decomposition, exists a path P with flow $\geq |f'|/m$, since $\leq m$ paths
- Convergence: $|f'| \le |f^*| (1 1/m)^t$ after t iterations.
 - #iterations = $O(m \log |f^*|)$. Might not converge for real capacity.

Greed

Observation: augmenting fattest path results in **thinner** path

- Greedy idea: adopt the "fattest" augmenting path
- Max flow $|f^*| = |f| + |f'|$, where f' is the max flow in G^f
- By decomposition, exists a path P with flow $\geq |f'|/m$, since $\leq m$ paths
- Convergence: $|f'| \le |f^*| (1 1/m)^t$ after t iterations.
 - #iterations = $O(m \log |f^*|)$. Might not converge for real capacity.
- Finding "fat" paths: binary search + BFS in $O(m \log |f^*|)$ time

Greed + Scaling

Observation: augmenting shortest path results in longer path

- Greedy idea: for $i = \lceil \log_2 C \rceil, ..., 0$: while exists flow $|f| \ge 2^i$: augment
- Imagine residual graph $G_i^f = (V, E'', f)$ with $E'' \triangleq \{e \in E' : c_e \geq 2^i\}$
 - Any edge e is of capacity $c_e \in [2^i, 2^{i-1})$
 - All augmenting paths contribute $\geq 2^i$
 - #flows in G_i^f is $\leq m$ by decomposition
- Inner loop repeats O(m) times. Time cost $O(\log_2 C \cdot m \cdot m)$

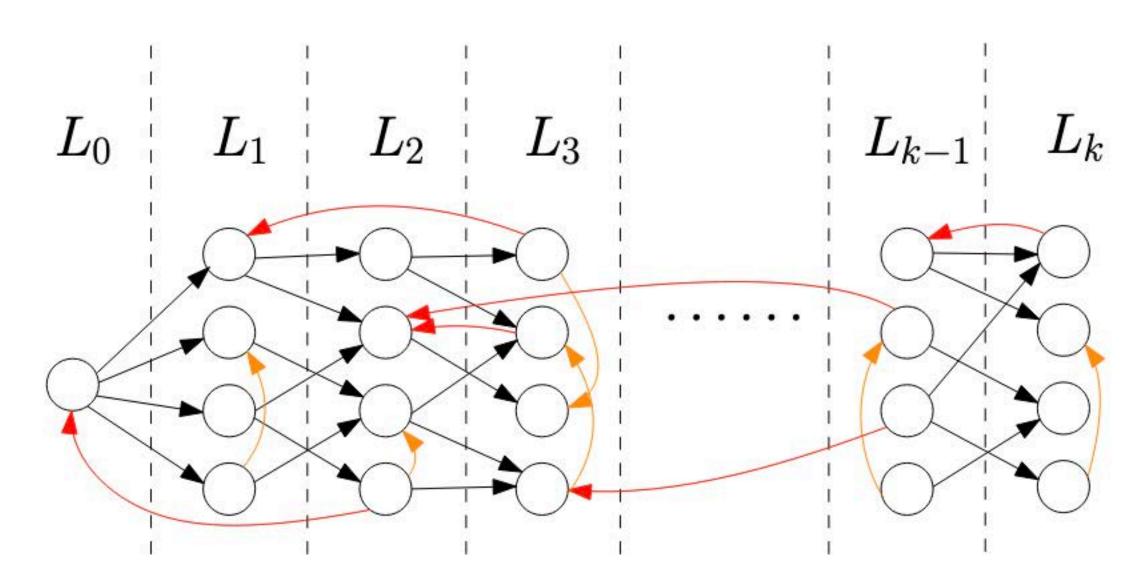
Shortest augmenting [Dinitz, Edmonds-Karp]

Observation: augmenting shortest path results in longer path

- Algorithm: keep finding shortest path, then augment
- Time cost?
 - Path finding: O(m) time.
 - Path lengths: $1, \ldots, n$.
 - #paths for each length: $\leq m$
- $O(m^2n)$ time in total

Shortest augmenting [Dinitz, Edmonds-Karp]

Observation: augmenting shortest path results in longer path



• Imagine the shortest s-t paths in G^f by layers

- Forth edges: edges between adjacent layers

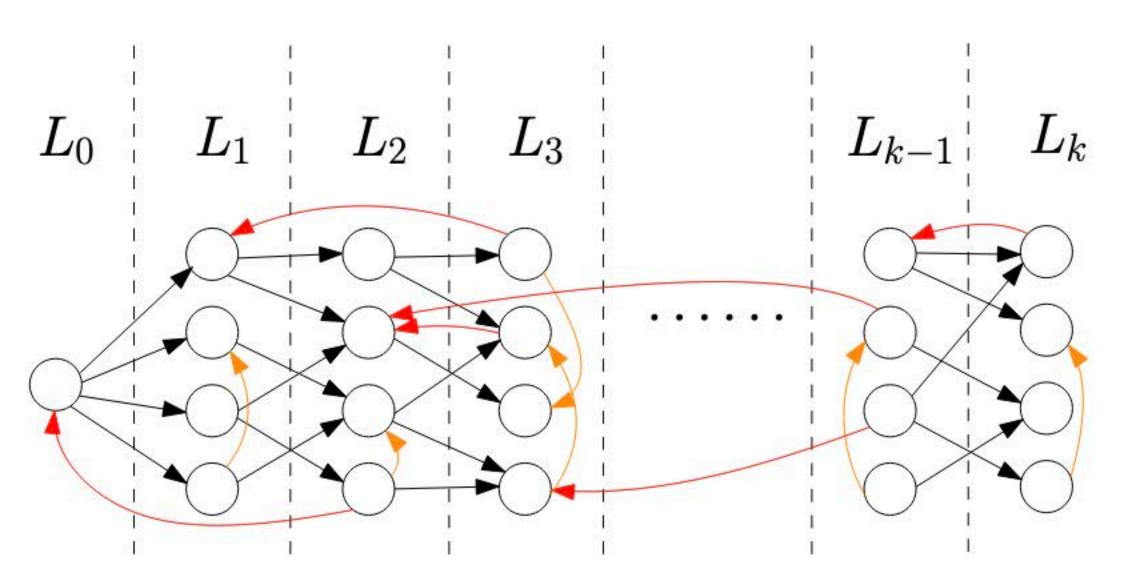
- Side edges: edges between the same layer

- Back edges: edges from further layer to nearer layer

- Jumping edge: edge from nearer layer to non-adjacent further layer

Shortest augmenting [Dinitz, Edmonds-Karp]

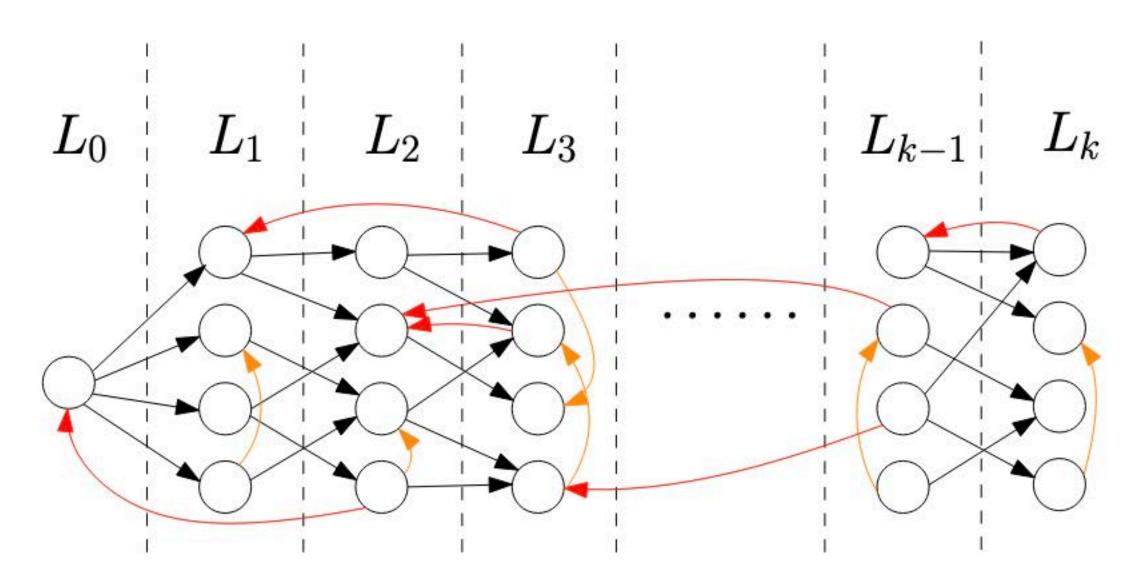
Observation: augmenting shortest path results in longer path



- Imagine the shortest s-t paths in G^f by layers
- Augmenting removes ≥ 1 forth edges, and adds ≥ 0 back edges
- No jumping edge is added by augmenting

Augmenting Path Improving [Dinitz]

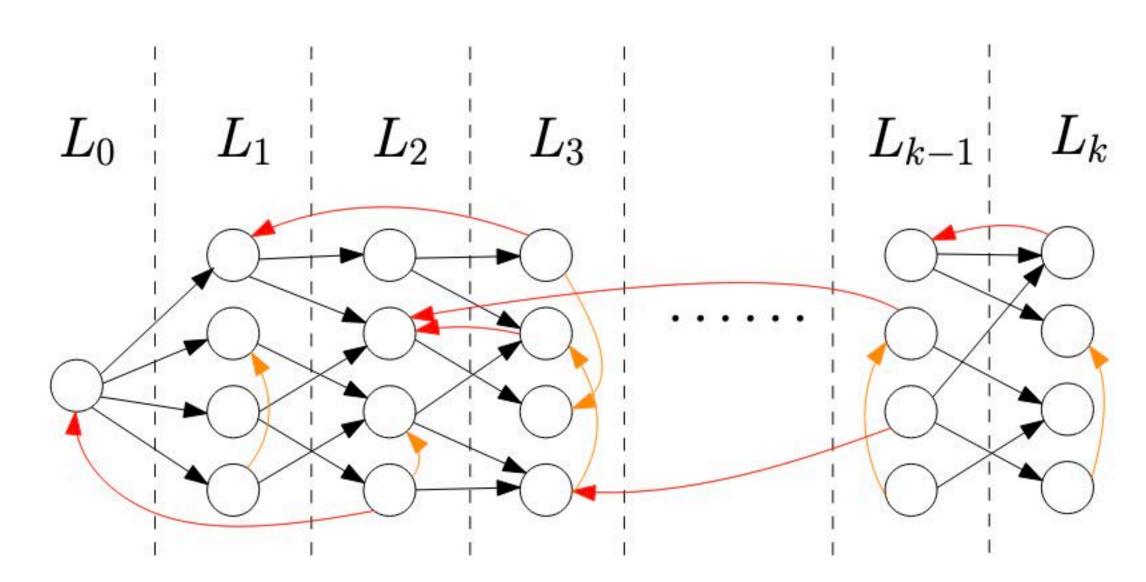
Observation: augmenting shortest path results in longer path



- Imagine the shortest s-t paths in G^f by layers
- Augmenting removes ≥ 1 forth edges, and adds ≥ 0 back edges
- No jumping edge is added by augmenting
- Augmenting all shortest paths at one round: DFS only on forth edges.

Augmenting Path Improving [Dinitz]

Observation: augmenting shortest path results in longer path



- Augmenting all shortest paths at one round: DFS only on forth edges.
 - DFS: O(nm) time.
 - Path lengths: $1, \ldots, n$.
- $O(n^2m)$ time in total

Algorithms	time	type
Ford-Fulkerson	O(mf)	pseudo-polynomial
Scaling	$O(m^2 lnf)$	wealy-polynomial
Edmonds-Karp Dinitz	O(m²n) O(mn²)	strongly-polynomial

Polynomial time: in proportion to polynomial of n, where n is the size of input

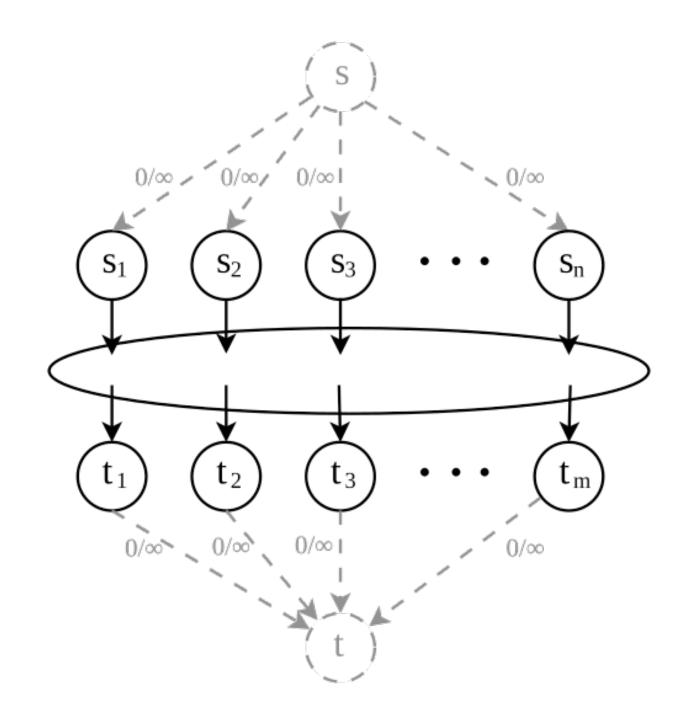
Maximum Flow Problem

Method		Complexity
Linear programming		
Ford-Fulkerson algorithm	1955	O(EU)
Edmonds-Karp algorithm	1970	$O(VE^2)$
Dinic's algorithm	1970	$O(V^2E)$
MKM (Malhotra, Kumar, Maheshwari) algorithm ^[1]	1978	$O(V^3)$
Dinic's algorithm with dynamic trees	1983	$O(VE \log V)$
General push-relabel algorithm ^[2]	1986	$O(V^2E)$
Push-relabel algorithm with FIFO vertex selection rule ^[2]	1988	$O(V^3)$
Push-relabel algorithm with maximum distance vertex selection rule ^[3]	1988	$O(V^2\sqrt{E})$
Push-relabel algorithm with dynamic trees ^[2]	1988	$O\left(VE\log rac{V^2}{E} ight)$
KRT (King, Rao, Tarjan)'s algorithm ^[4]	1994	$O\left(VE\log_{rac{E}{V\log V}}V ight)$
Binary blocking flow algorithm ^[5]	1998	$O\left(E \cdot \min\{V^{2/3}, E^{1/2}\} \cdot \log rac{V^2}{E} \cdot \log U ight)$
James B Orlin's + KRT (King, Rao, Tarjan)'s algorithm ^[6]	2013	O(VE)
Kathuria-Liu-Sidford algorithm ^[7]	2020	$E^{4/3+o(1)}U^{1/3}$
BLNPSSSW / BLLSSSW algorithm ^{[8][9]}	2020	$ ilde{O}((E+V^{3/2})\log U)$
Gao-Liu-Peng algorithm ^[10]	2021	$ ilde{O}(E^{rac{3}{2}-rac{1}{328}}\log U)$
Chen, Kyng, Liu, Peng, Gutenberg and Sachdeva's algorithm[11]	2022	$O(E^{1+o(1)}\log U)$
Bernstein, Blikstad, Saranurak, Tu ^[12]	2024	$O(n^{2+o(1)}\log U)$

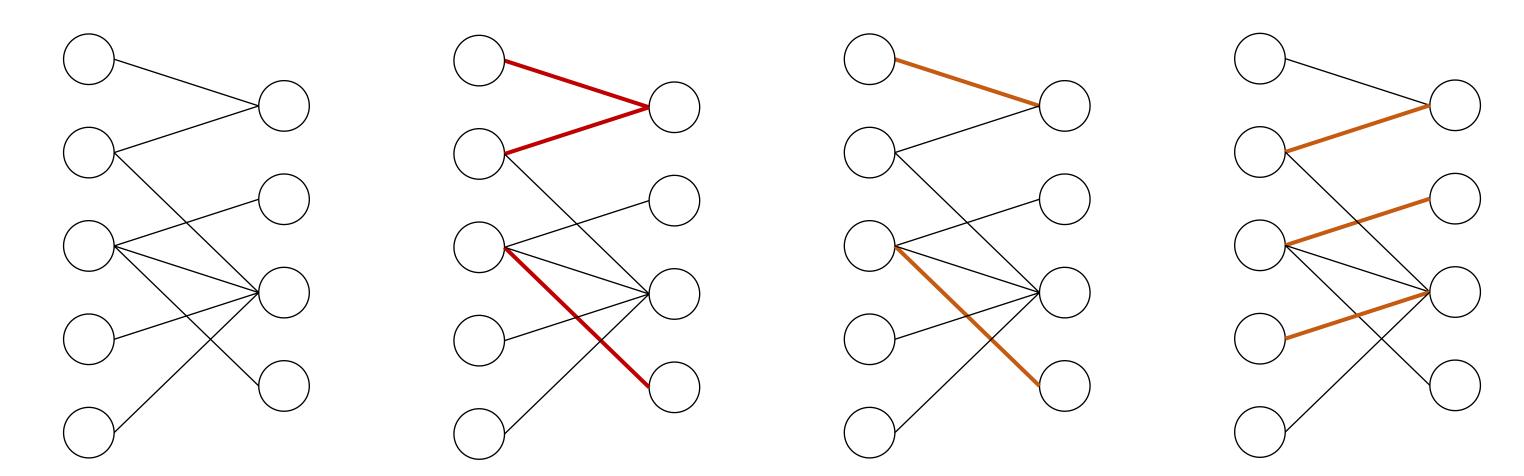
Multi-Source Multi-Sink

Input: A network G = (V, E) and capacity $c : E \to \mathbb{R}^+$, with sources $S = \{s_1, ..., s_n\}$ and sinks $T = \{t_1, ..., t_m\}$.

Output: A maximum flow from S to T across G.

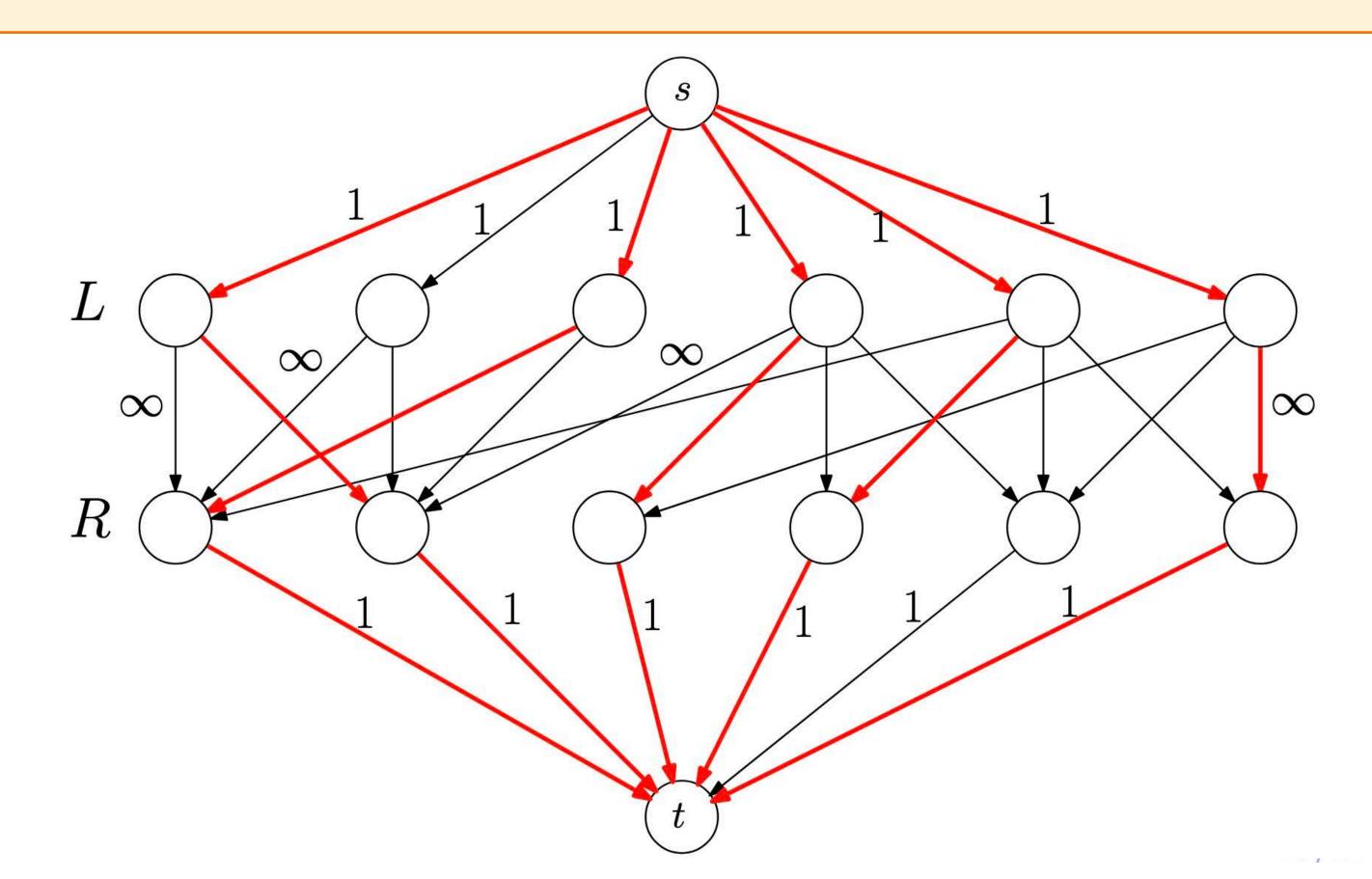


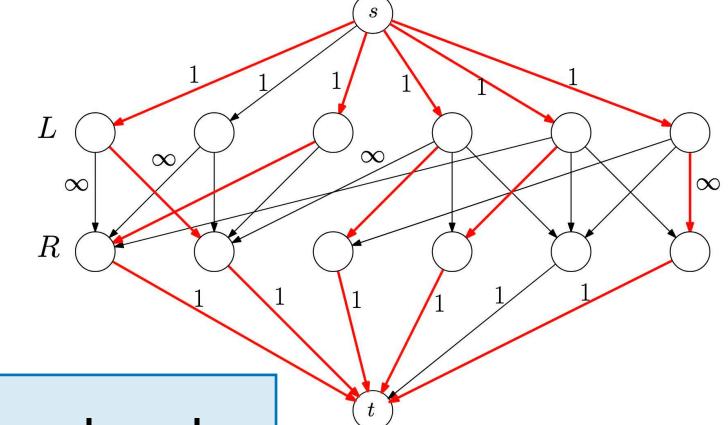
- •A graph G = (V, E) is **bipartite** if V can be partitioned into L and R, such that each edge connects a vertex in L and a vertex in R.
- •A matching of a graph G = (V, E) is a subset $M \subseteq E$, such that for each $v \in V$, at most one edge in M is incident on v.
- •A maximum matching is a matching of maximum cardinality.
- •Problem: Find a maximum matching of a bipartite graph.



Input: A bipartite graph $G = (L \cup R, E)$.

Output: A maximum matching of a bipartite graph.



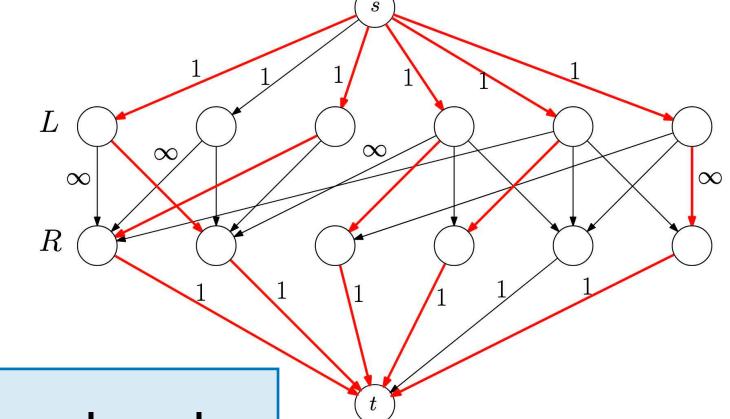


(1)
$$\exists$$
 matching M of $G \Rightarrow \exists$ flow f of G' with $\left| f \right| = \left| M \right|$

(2)
$$\exists$$
 flow f of $G' \Rightarrow \exists$ matching M of G with $|M| = |f|$.

(1):

- For each $e = (u, v) \in M$, let $f_{su} = f_e = f_{vt} = 1$
- For each $e = (u, v) \not\in M$, let $f_e = 0$
- f is valid, and |f| = |M|



- (1) \exists matching M of $G \Rightarrow \exists$ flow f of G' with $\left| f \right| = \left| M \right|$
- (2) \exists flow f of $G' \Rightarrow \exists$ matching M of G with |M| = |f|.

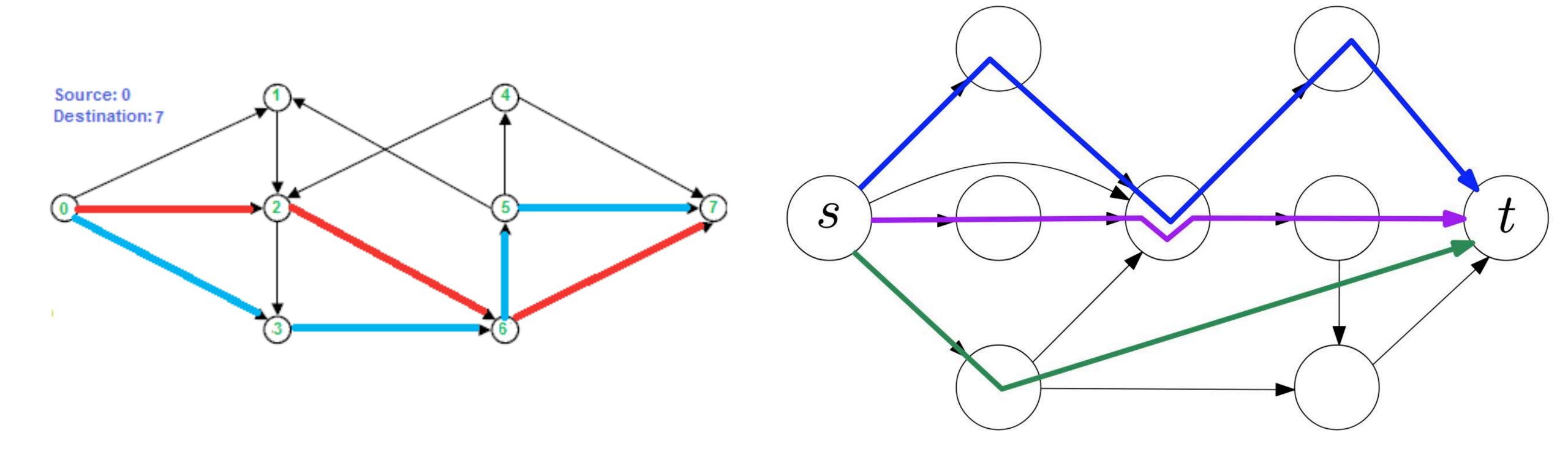
(2): Let
$$M \triangleq \{(u, v) \in E : u \in L, v \in R, f_e > 0\}$$

- *M* is a matching:
 - for any $u \in L$, $\sum_{v \in \delta(u) \setminus s} f_{uv} \le 1$; for any $v \in R$, $\sum_{u \in \delta(v) \setminus t} f_{uv} \le 1$.
 - Any $u \in L$ matches with at most one $v \in R$, so does any $v \in R$.
- |M| = |f|

#Disjont Paths

Input: A digraph G = (V, E) and source & sink $s, t \in V$.

Output: The maximum #edge-disjoint paths from s to t



s-t Min-Cut

Input: A digraph G = (V, E) and weights $c : E \to \mathbb{R}^+$, and source & sink $s, t \in V$.

Output: The minimum cut whose removal disconnects s, t.

The following statements are equivalent:

- (1) f is a maximum flow
- (2) There is no s-t path P in G^f with $\delta(P)>0$
- (3) There is $S, \neg S \subseteq V$ such that cut(S) = |f|

Global Min-Cut

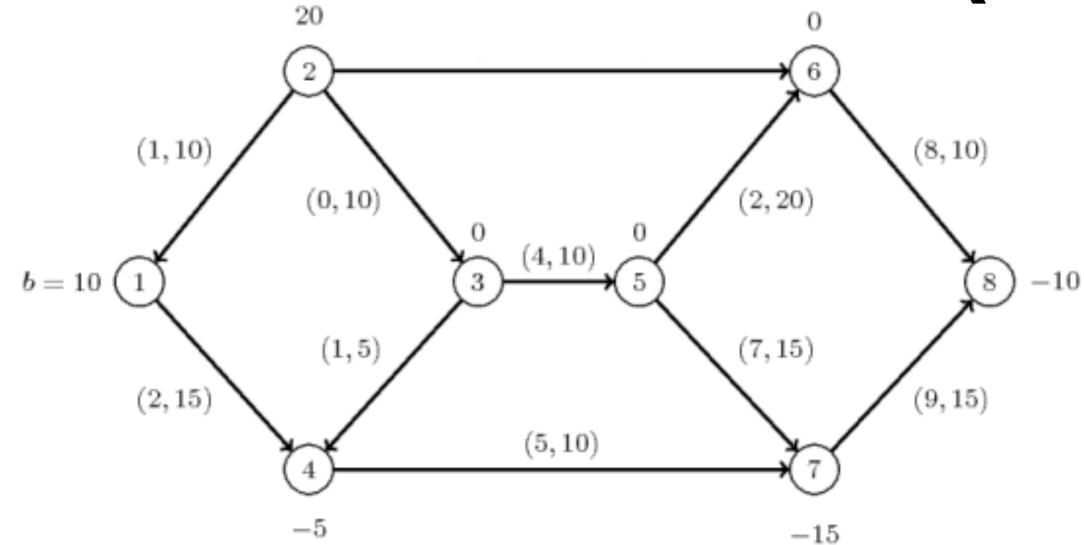
Input: A digraph G = (V, E) and weights $c : E \to \mathbb{R}^+$.

Output: The minimum cut whose removal disconnects G

The following statements are equivalent:

- (1) f is a maximum flow
- (2) There is no s-t path P in G^f with $\delta(P)>0$
- (3) There is $S, \neg S \subseteq V$ such that cut(S) = |f|

Minimum-Cost Flow Problem (MCFP)



- Edge capacity $c_e \in \mathbb{R}^+$. Flow cost $a_e \in \mathbb{R}^+$.
- Flow function $f: E \to \mathbb{R}^+$
 - Valid flow: $\forall e \in E, \ 0 \le f(e) \le c_e \& \ \forall v \in V, \ \sum_{e \in \delta_{iv}(v)} f(e) = \sum_{e \in \delta_{iv}(v)} f(e)$
- MCFP: find a flow f minimizes $\sum_{e \in \delta_{out}(s)} a_e \cdot f(e)$ while maximizing $\sum_{e \in \delta_{out}(s)} f(e)$

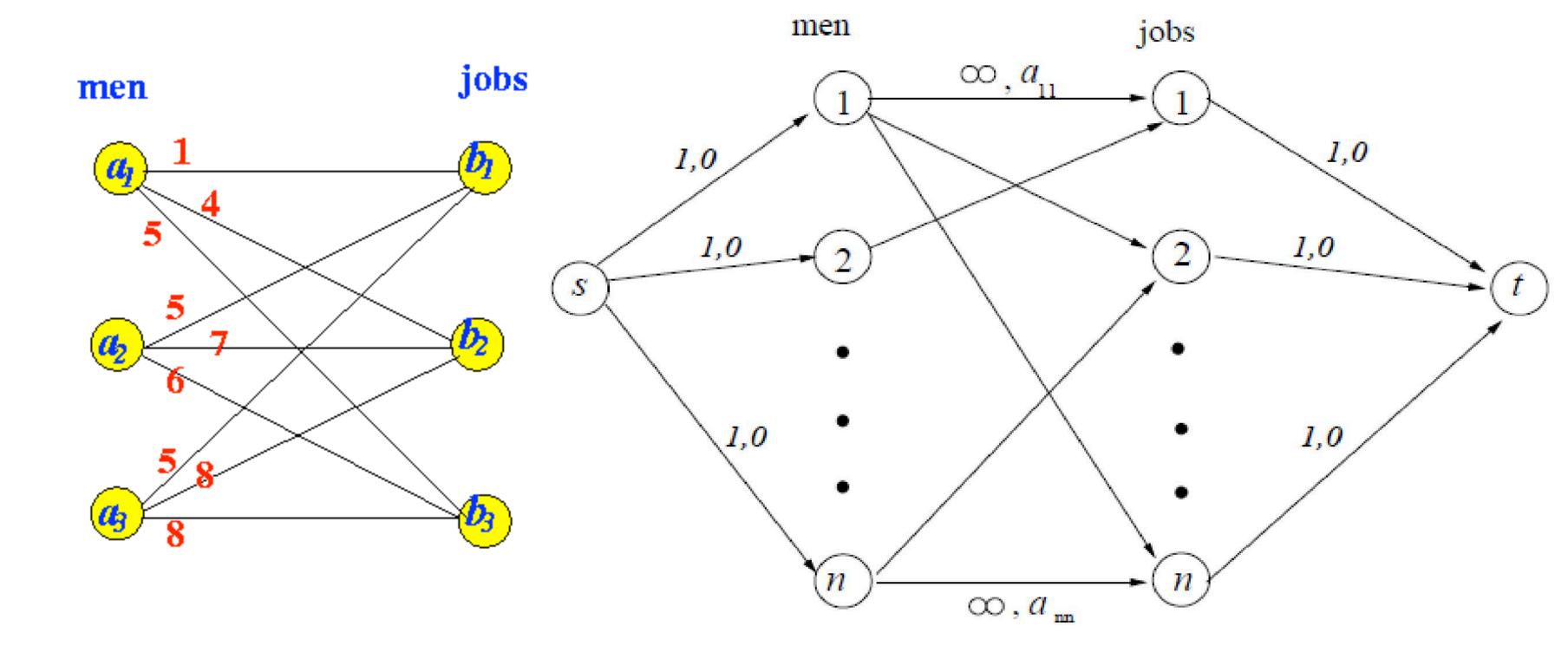
Assignment Problem

Minimum-cost perfect matching

Given matrix of costs

Morkor	Task			
Worker	Ī	П		
Ali	8	4	7	
Baba	5	2	3	
Curi	9	6	7	
Durian	9	4	8	

Make square with dummy column. Subtract minimum for each column:



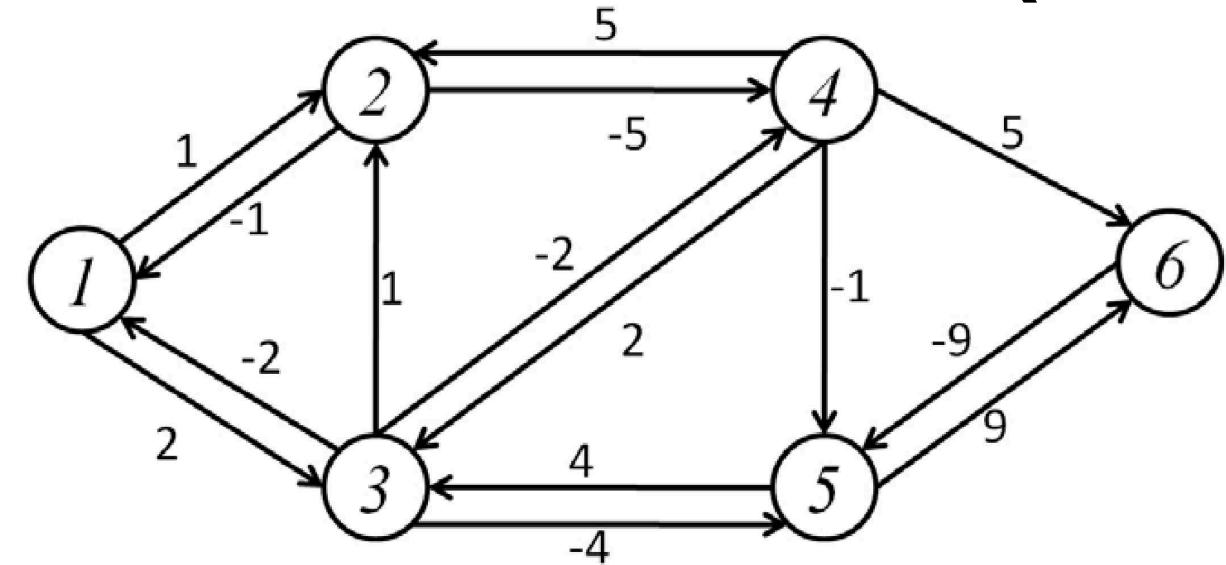
Minimum-Cost Flow Problem (MCFP)

Input: A digraph G = (V, E) and capacity & costs $c, a : E \to \mathbb{R}^+$, and source s, sink t.

Output: A flow f minimizes $\sum_{e \in \delta_{out}(s)} a_e \cdot f(e)$ while maximizing $\sum_{e \in \delta_{out}(s)} f(e)$

- An optimal solution be like: a maximum flow which cannot be improved
- Am improvement be like: redirecting the flow with lower cost
- A redirection be like:
 - pushing backward a flow from t to s, pushing forward a flow from s to t

Minimum-Cost Flow Problem (MCFP)



- An optimal solution be like: a maximum flow which cannot be improved
- Am improvement be like: redirecting the flow with lower cost
- A redirection be like:
 - pushing backward a flow from t to s, pushing forward a flow from s to t
 - a cycle in the residual graph
- An improving redirection be like:
 - a negative cycle in the residual graph

Minimum-Cost Flow Problem (MCFP)

Input: A digraph G = (V, E) and capacity & costs $c, a : E \to \mathbb{R}^+$, and source s, sink t.

Output: A flow f minimizes $\sum_{e \in \delta_{out}(s)} a_e \cdot f(e)$ while maximizing $\sum_{e \in \delta_{out}(s)} f(e)$

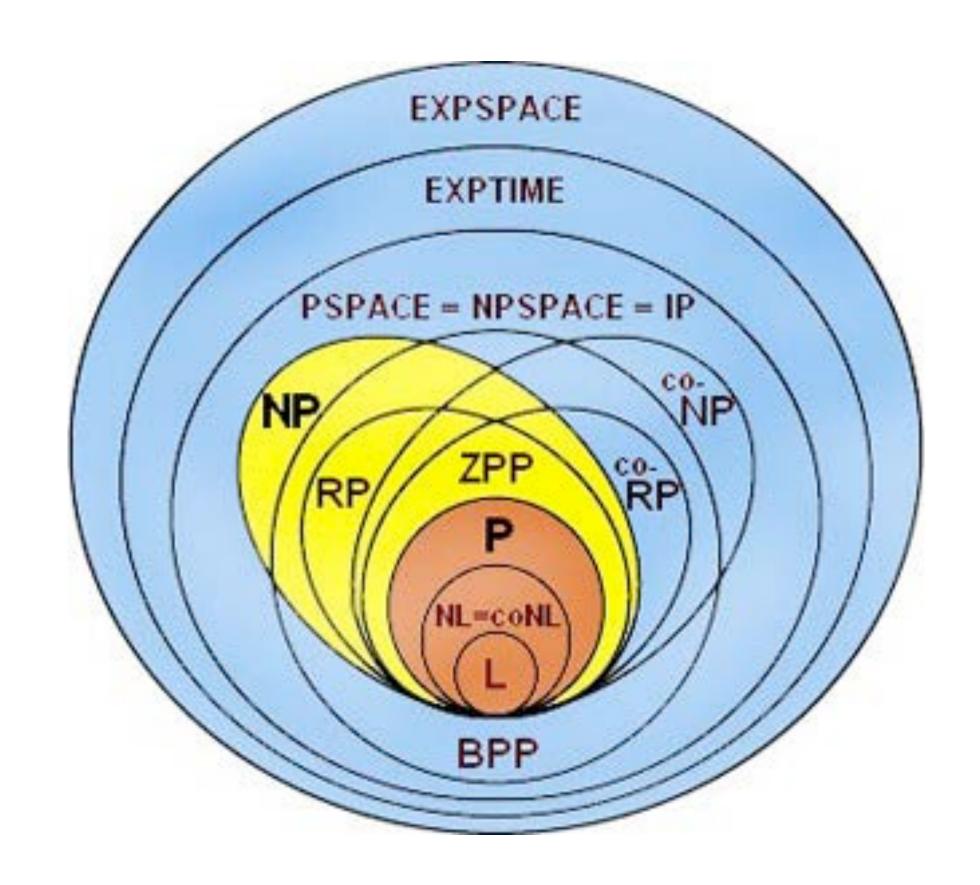
- An improving redirection be like:
 - a negative cycle in the residual graph

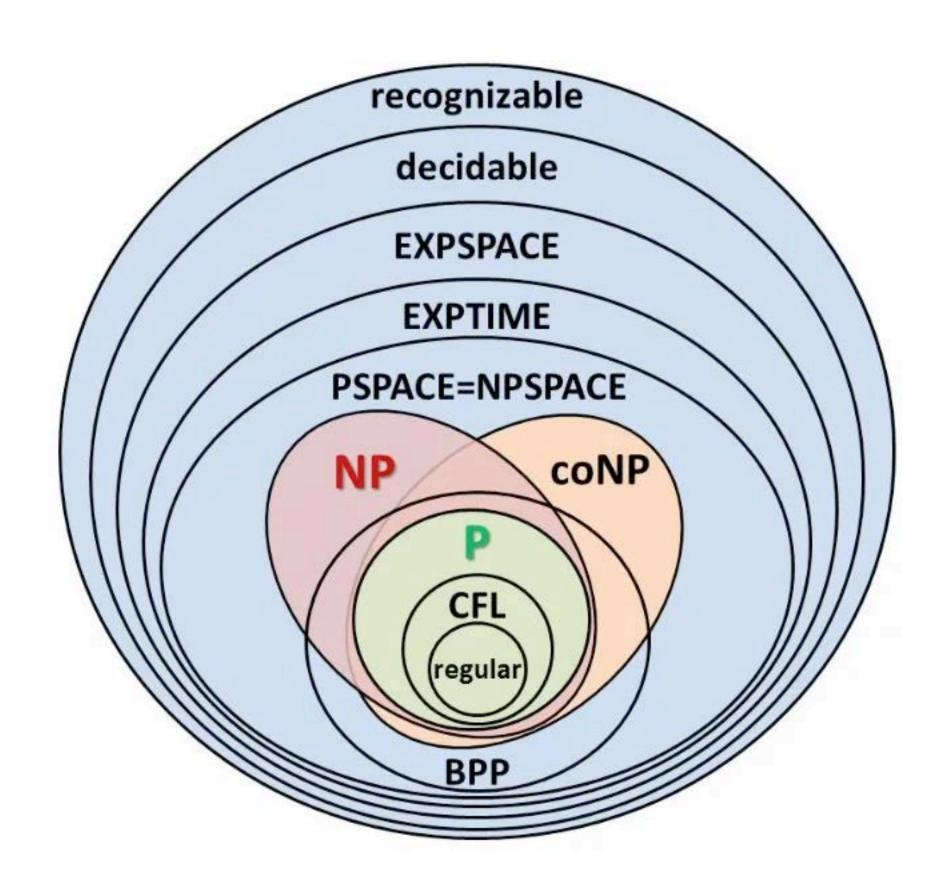
Cycle Canceling:

While exists negative cycle in residual graph cancel the negative cycle by redirecting

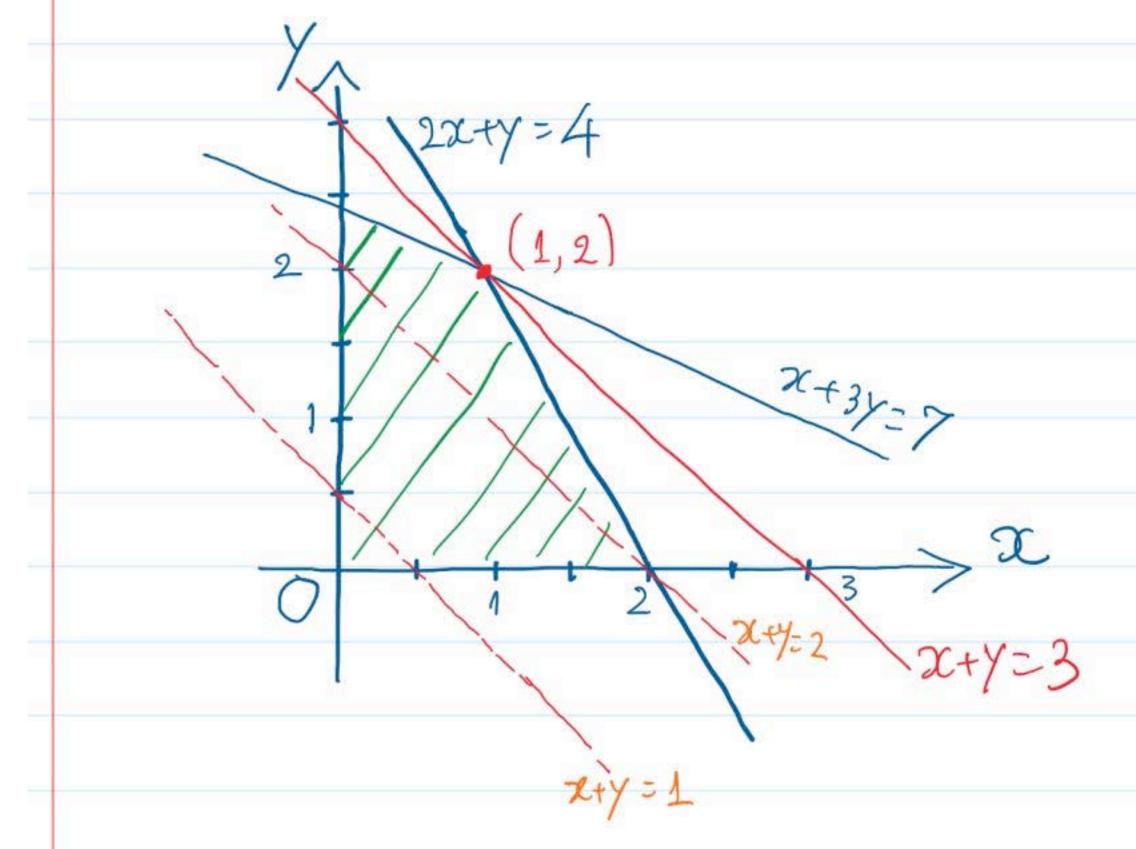
Maximum Flow Is P-Complete

Under log space reduction





Linear Programming



A Familiar Problem

某厂生产甲乙两种产品,每生产1吨产品的电耗、煤耗、所需劳动力及产值如表3所示:

表 3

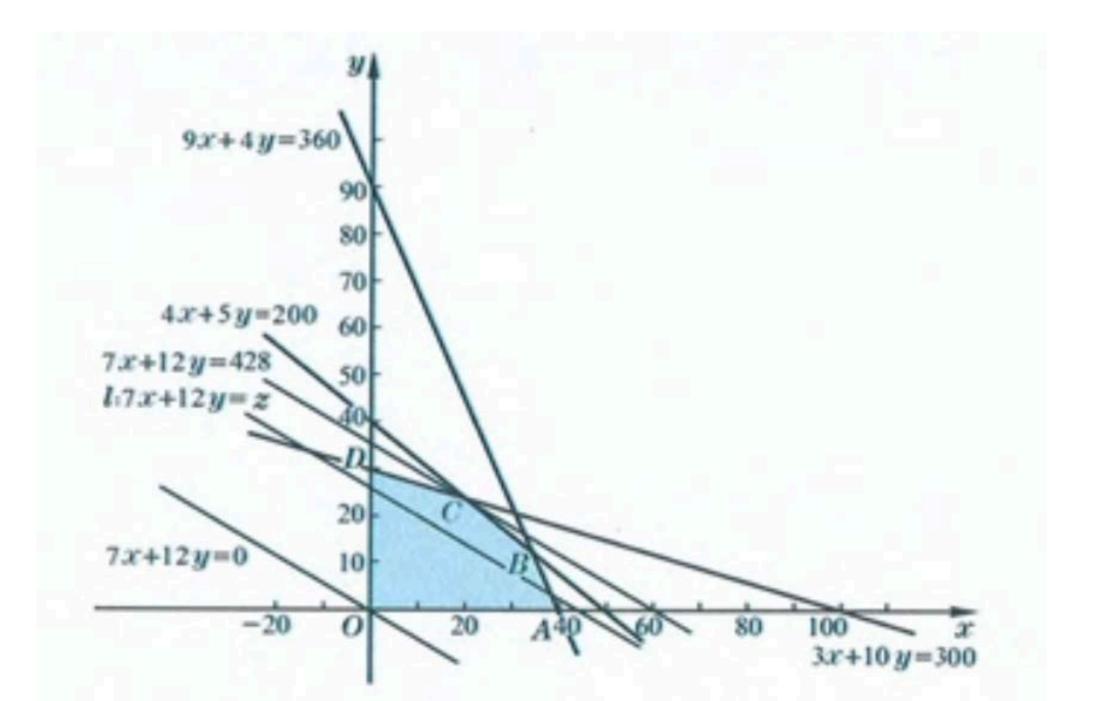
产品	电耗 (千瓦时)	煤耗 (吨)	劳动力(人)	产值(万元)
申	4	9	3	7
Z	5	4	10	12

已知该厂有劳动力 300 人,按计划煤耗每天不超过 360 吨,电耗每天不超过 200 千瓦时.每天应如何安排生产,可使产值最大?

如果设该厂每天生产甲产品 x 吨, 乙产品 y 吨, 那么上述问题可转化为在满足以下线性约束条件:

(B)
$$\begin{cases} 9x + 4y \leqslant 360, \\ 4x + 5y \leqslant 200, \\ 3x + 10y \leqslant 300, \\ x \geqslant 0, \\ y \geqslant 0, \end{cases}$$

求线性目标函数 z=7x+12y 的最大值.



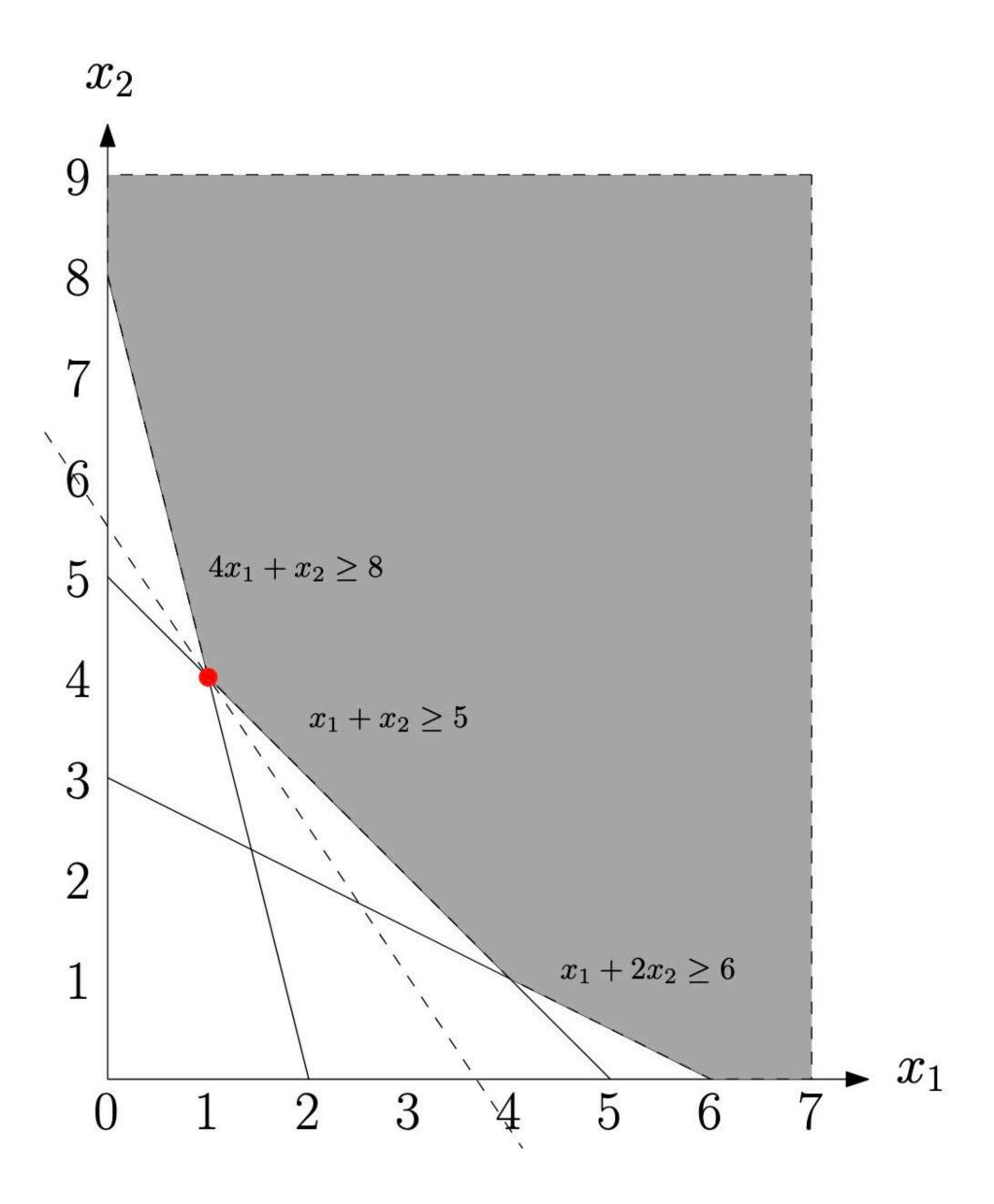
minimize
$$7x_1 + 4x_2$$

subject to $x_1 + x_2 \ge 5$
 $x_1 + 2x_2 \ge 6$
 $4x_1 + x_2 \ge 8$

$$x_1, x_2 \ge 0$$

optimal point $x_1 = 1, x_2 = 4$

value =
$$7 \times 1 + 4 \times 4 = 23$$



Linear Programming (LP)

- General form:
 - matrix $A = \{a_{ij}\}_{[m]\times[n]}$, sets $M \subseteq [m]$ and $N \subseteq [n]$

minimize
$$c^{\mathrm{T}}x$$
 subject to $a_i^{\mathrm{T}}x = b_i$ $i \in M$ $a_i^{\mathrm{T}}x \geq b_i$ $i \in \overline{M}$ $x_j \geq 0$ $j \in N$ x_j unconstrained $j \in \overline{N}$

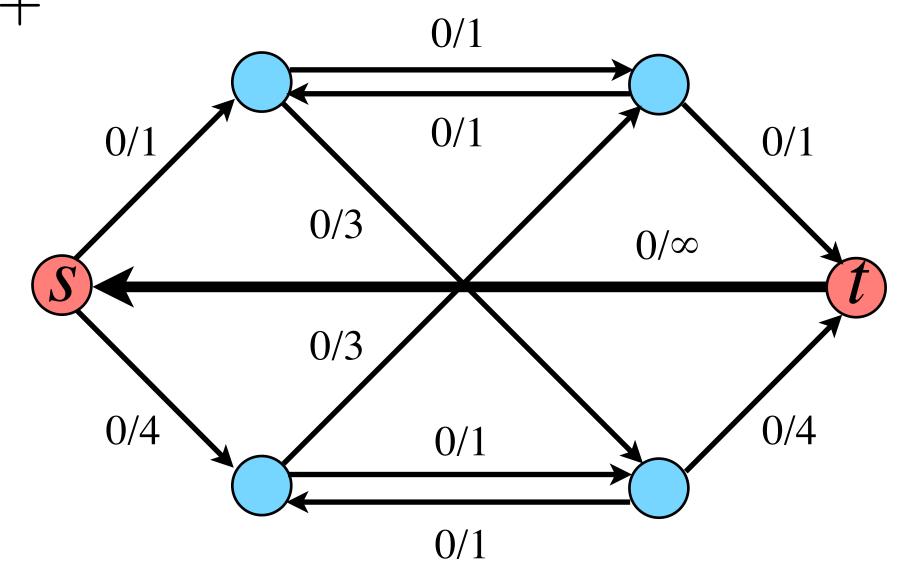
Max-Flow

digraph: G = (V, E) source: s sink: t

capacity: $c: E \to \mathbb{R}^+$

max f_{su} f_{su} f_{su} f_{su}

s.t. $0 \le f_{uv} \le c_{uv}$



$$\forall (u,v) \in E$$

$$\sum_{w:(w,u)\in E} f_{wu} - \sum_{v:(u,v)\in E} f_{uv} \ge \mathbf{0} \quad \forall u \in V \setminus \{s,t\}$$

Linear Programming (LP)

General form:

$$\begin{array}{ll} \text{min} & \boldsymbol{c}^{\mathrm{T}}\boldsymbol{x} \\ \text{s.t.} & \boldsymbol{a}_i^{\mathrm{T}}\boldsymbol{x} = b_i & i \in M \\ & \boldsymbol{a}_i^{\mathrm{T}}\boldsymbol{x} \geq b_i & i \in \overline{M} \\ & x_j \geq 0 & j \in N \\ & x_j \text{ unconstrained} & j \in \overline{N} \end{array}$$

Canonical form:

$$\begin{array}{ccc} \min & c^{\mathrm{T}}x \\ \text{s.t.} & Ax \geq b \\ & x \geq 0 \end{array}$$

$$\boldsymbol{a}_{i}^{\mathrm{T}}\boldsymbol{x} = b_{i} \implies \begin{cases} \boldsymbol{a}_{i}^{\mathrm{T}}\boldsymbol{x} \geq b_{i} \\ -\boldsymbol{a}_{i}^{\mathrm{T}}\boldsymbol{x} \geq -b_{i} \end{cases}$$

$$x_j$$
 unconstrained $\implies x_j = x_j^+ - x_j^-$ where $\begin{cases} x_j^+ \ge 0 \\ x_j^- \ge 0 \end{cases}$

Solvable in Polynomial Time

Canonical Form of Linear programming

$$\begin{array}{ll} \min & c^{T}x \\ \text{s.t.} & Ax \geq b \\ & x \geq 0 \end{array}$$

Algorithm	Theory	Practice
Simplex Method	Exponential Time	Works Well
Ellipsoid Method	Polynomial Time	Slow
Internal Point Methods	Polynomial Time	Works Well

Convex Polytopes

hyperplane:

subspace of dimension n-1

$$\sum_{j=1}^{n} a_j x_j = b$$

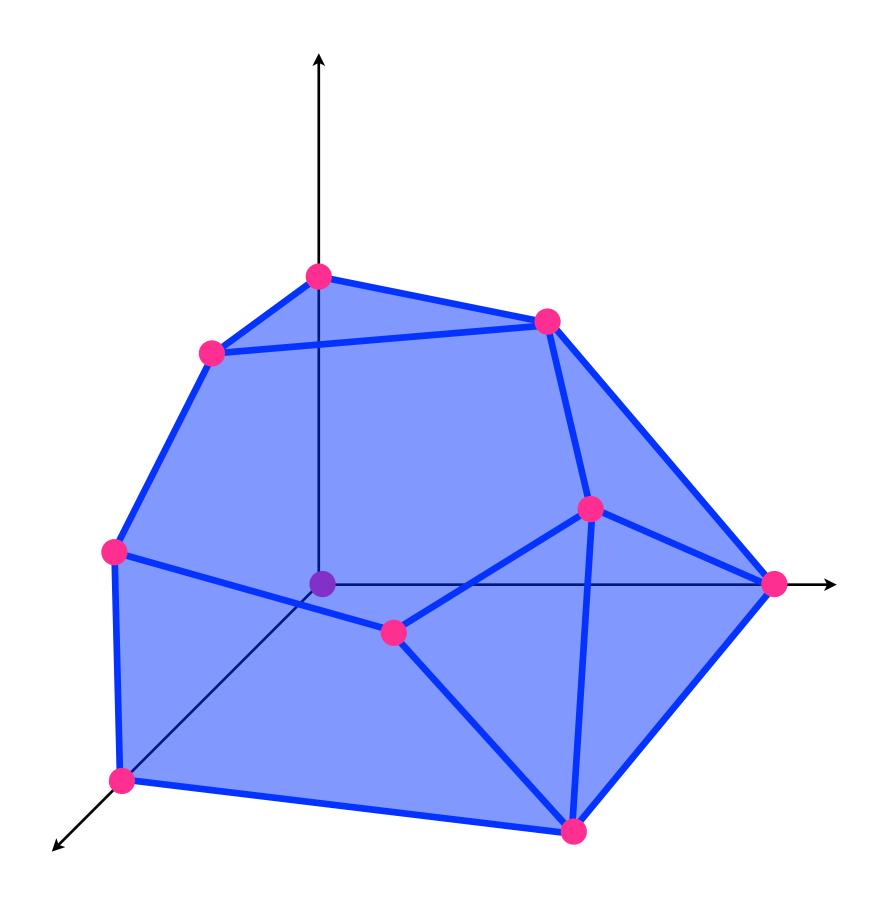
• (closed, affine) halfspace:

$$\sum_{j=1}^{n} a_j x_j \ge b$$

convex polyhedron:

intersection of finitely many halfspaces

• convex polytope: bounded convex polyhedron



Convex Polyhedron

- A set $S \subseteq \mathbb{R}^n$ is **convex** if $\lambda x + (1 \lambda)y \in S$ for all $x, y \in S$ and $\lambda \in [0,1]$. A **convex body** is a compact convex set.
- The convex hull of a set $S \subseteq \mathbb{R}^n$ is the smallest convex set $\supseteq S$.
- Affine subspace: $\{x \in \mathbb{R}^n \mid c^T x \ge b\}$ for $c \in \mathbb{R}^n \setminus \{0\}$ and $b \in \mathbb{R}$.
- Convex polyhedron: $\{x \in \mathbb{R}^n \mid Ax \ge b\}$ for $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$.
- Polytope: convex hull of a finite $V \subseteq \mathbb{R}^n \iff$ bounded polyhedron
- Vertex: point x in a convex polyhedron $P = \{x \in \mathbb{R}^n \mid Ax \ge b\}$ such that $\exists c \in \mathbb{R}^n \text{ s.t. } c^Tx < c^Ty \text{ for all } y \in P \text{ with } y \ne x$
- Extreme point: a point x in a convex polyhedron P that cannot be expressed as a convex combination of any other $y, z \in P$

Convex Polyhedron

Proposition (existence of vertex):

A convex polyhedron P has a vertex iff it does not contain a line, i.e. there're no $x, y \in \mathbb{R}^n$ s.t. $x + \lambda y \in P$ for all $\lambda \in \mathbb{R}$.

Proposition (vertex = extreme point):

For nonempty convex polyhedron P, $\forall x \in P$: $x \in X$ is a vertex $x \in X$ is an extreme point

Proposition (vertex as optimal solution):

If the convex polyhedron $\{x \in \mathbb{R}^n \mid Ax \ge b\}$ has a vertex and the LP $\min\{c^Tx \mid Ax \ge b\}$ has an optimal solution, then there is an optimal solution that is a vertex.

Linear Programming (LP)

Canonical form:

 $\begin{array}{cccc}
\min & c^{T}x \\
\text{s.t.} & Ax \ge b \\
& x \ge 0
\end{array}
\qquad \Longrightarrow \qquad \begin{array}{c}
\min & c^{T}x \\
\text{s.t.} & Ax = b \\
& x \ge 0
\end{array}$

Standard form:

min
$$c^{T}x$$

s.t. $Ax = b$
 $x > 0$

$$\boldsymbol{a}_{i}^{\mathrm{T}}\boldsymbol{x} \leq b_{i} \implies \begin{cases} \boldsymbol{a}_{i}^{\mathrm{T}}\boldsymbol{x} + s_{i} = b_{i} \\ s_{i} \geq 0 \end{cases}$$

slack variable

$$A \implies A' = \begin{bmatrix} A & I \end{bmatrix}$$

Basic Feasible Solutions (bfs)

Standard form:

$\begin{array}{ll} \min & c^{\mathrm{T}}x \\ \text{s.t.} & Ax = b \\ & x \geq 0 \end{array}$

WLOG:

$$A \in \mathbb{R}^{m \times n}$$

$$b \in \mathbb{R}^m \quad c \in \mathbb{R}^n$$

$$m = \operatorname{rank}(A) \le n$$

- Basis $B \subseteq [n]$: a set of m linearly independent columns of A
- Basic solution $x \in \mathbb{R}^n$: $A_{[m] \times B} x_B = b$ and $x_{[n] \setminus B} = 0$
 - $\Longrightarrow Ax = b$ but not necessarily $x \ge 0$
- Basic feasible solution (bfs): a basic solution satisfying $x \ge 0$

x is a bfs of the LP $\min\{c^Tx \mid Ax = b \land x \ge 0\} \iff$ x is a vertex of the polyhedron $\{x \mid Ax = b \land x \ge 0\}$

The Simplex Algorithm

Standard form:

$\begin{array}{ll} \min & c^{\mathrm{T}}x \\ \text{s.t.} & Ax = b \\ & x \geq 0 \end{array}$

WLOG:

$$A \in \mathbb{R}^{m \times n}$$

$$b \in \mathbb{R}^{m} \quad c \in \mathbb{R}^{n}$$

$$m = \operatorname{rank}(A) \leq n$$

• Two *bfs*'s are **neighbors** if their bases share m-1 columns of A

```
Simplex Algorithm (Dantzig 1947):
```

start at a *bfs* x; while \exists a neighboring *bfs* x' with $c^Tx' < c^Tx$: move to one of such x';

Stops at a *local* optima ⇒ a *global* optima (by convexity)

Linear Programming (LP) Solvers

$$\begin{array}{ll} \min & c^{\mathrm{T}}x \\ \text{s.t.} & Ax = b \\ & x \geq 0 \end{array}$$

$$A \in \mathbb{R}^{m \times n}$$

$$b \in \mathbb{R}^m \quad c \in \mathbb{R}^n$$

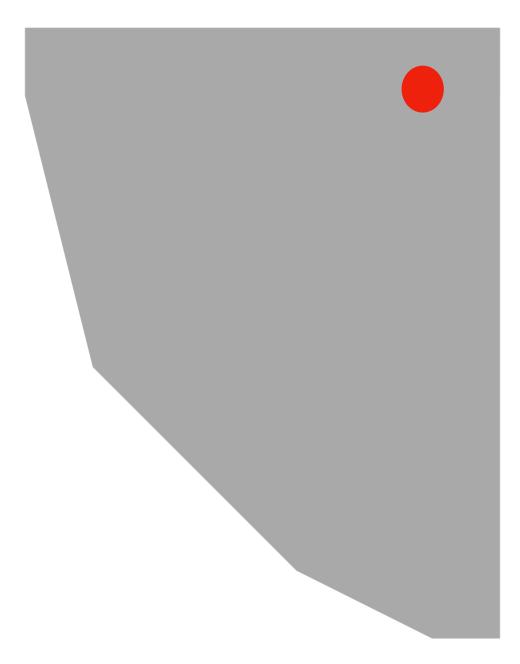
$$m = \operatorname{rank}(A) \le n$$

- Dantzig's simplex method [Dantzig '47]:
 - walks over polytope vertices along polytope edges
 - exponential time in the worst case (Klee-Minty cube, 1972)
 - poly-time in *smoothed* complexity [Spielman-Teng'01]
- Solvable in (weakly) polynomial time:
 - ellipsoid method [Khachiyan '80] in $O(n^6)$ time
 - interior-point methods [Karmarkar '84] in $O(n^{2.5})$ time [Vaidya '89] and recently, in current matrix multiplication time [Cohen, Lee, Song '19] [Jiang, Song, Weinstein, Zhang '21]

Interior Point Method

Interior Point Method (Karmarkar 1984):

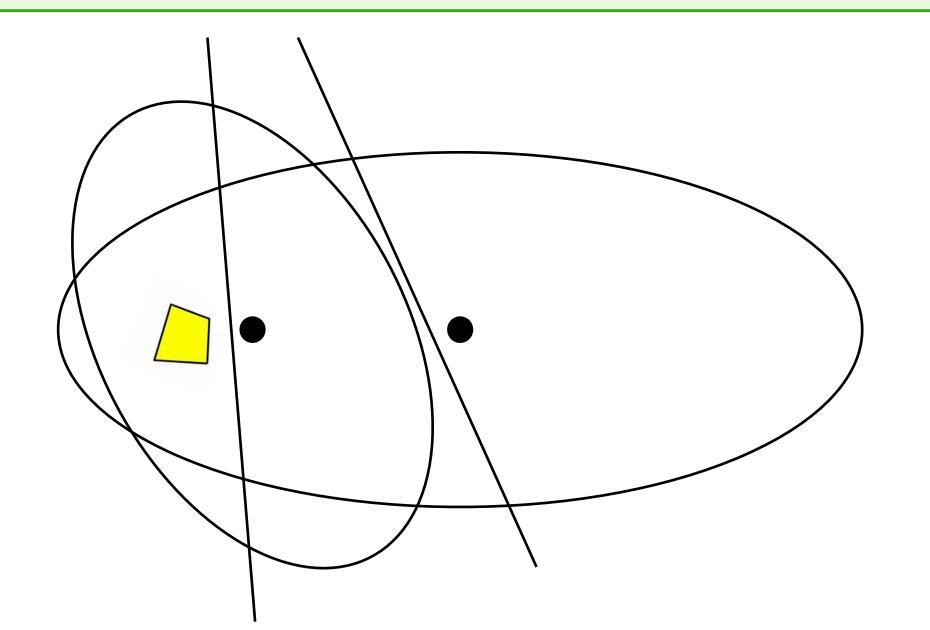
- keep the solution inside the polytope
- design penalty function so that the solution is not too close to the boundary
- the final solution will be arbitrarily close to the optimum solution



Ellipsoid Method

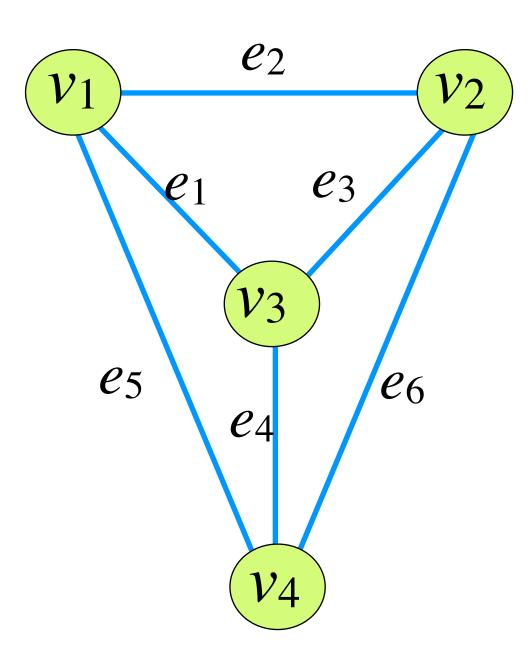
Ellipsoid Method (Khachiyan 1979):

- maintain an ellipsoid that contains the feasible region
- cut the ellipsoid in half, find smaller ellipsoid to enclose the half-ellipsoid, and repeat

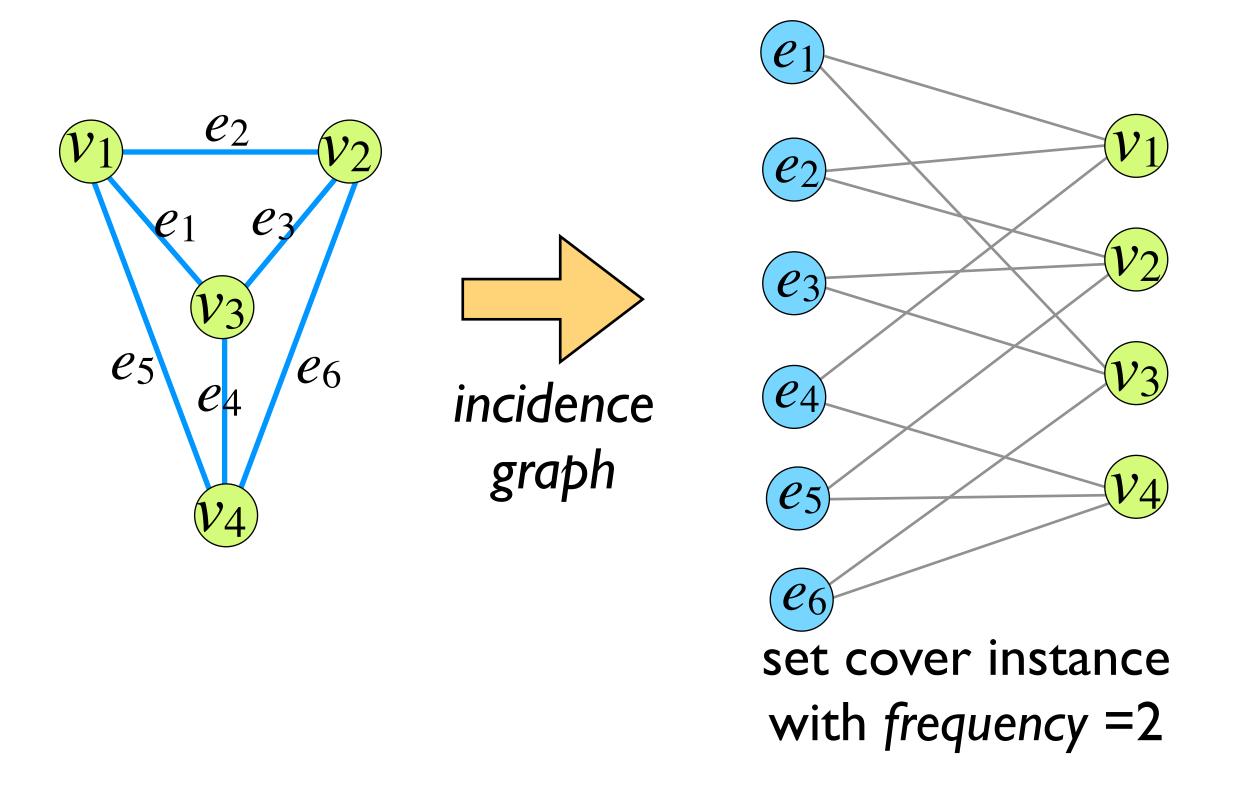


Applications of Linear Programming

- Domain: computer science, mathematics, operations research, economics
- Types of problems: transportation, scheduling, clustering, network routing, resource allocation, facility location
- Research directions:
 - polynomial time exact algorithm
 - polynomial time approximation algorithm
 - sub-routines for the branch-and-bound method for integer programming
 - other algorithmic models: online algorithm, distributed algorithms, dynamic algorithms, fast algorithms



Instance: An undirected graph G(V, E). Find the smallest $C \subseteq V$ that intersects all edges.



Instance: An undirected graph G(V, E). Find the smallest $C \subseteq V$ that intersects all edges.

- **NP**-hard
- ln(n)-approximation by greedy set cover
- 2-approximation algorithm:

Find a *maximal matching*; return the *matched* vertices;

• [Khot, Regev 2008] Assuming the unique games conjecture, there is no poly-time $(2 - \epsilon)$ -approximation algorithm.

Instance: An undirected graph G(V, E). Find the smallest $C \subseteq V$ that intersects all edges.

Integer Linear Program (ILP) for vertex cover:

minimize
$$\sum_{v \in V} x_v \quad \text{linear objective function}$$
 subject to
$$\sum_{v \in e} x_v \geq 1, \qquad e \in E \quad \text{linear constraints}$$

$$x_v \in \{0,1\}, \quad v \in V \quad \text{integer domains}$$

• Solving integer linear program is NP-hard.

Instance: An undirected graph G(V, E). Find the smallest $C \subseteq V$ that intersects all edges.

• Linear Program (LP) relaxation:

minimize
$$\sum_{v \in V} x_v$$
 subject to
$$\sum_{v \in e} x_v \geq 1, \qquad e \in E$$

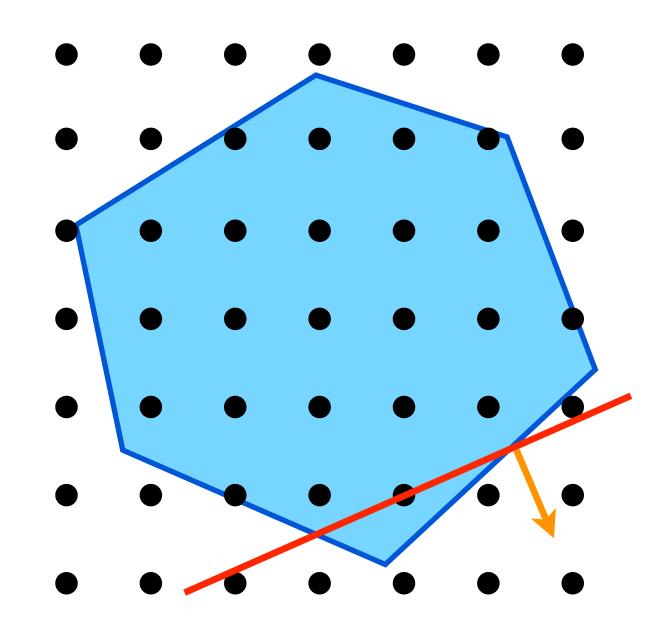
$$x_v \in [0,1], \quad v \in V$$
 fractional domains

• linear programs are solvable in polynomial time!

Integrality

 $\begin{array}{ccc} \min & c^T x \\ \text{s.t.} & Ax \geq b \\ & x \in \mathbb{Z}^n \end{array}$

LP-relaxation



Instance: An undirected graph G(V, E). Find the smallest $C \subseteq V$ that intersects all edges.

Integer Linear Program (ILP) for vertex cover:

minimize
$$\sum_{v \in V} x_v$$
 subject to
$$\sum_{v \in e} x_v \geq 1, \qquad e \in E$$

$$x_v \in \{0,1\}, \quad v \in V$$

• LP relaxation for Minimum vertex cover of G(V, E)

minimize
$$\sum_{v \in V} x_v$$
 subject to
$$\sum_{v \in e} x_v \ge 1, \qquad e \in E$$

$$x_v \in [0,1], \quad v \in V$$

LP Relaxation & Rounding:

find optimal solution $x^* \in [0,1]^V$ of LP relaxation; round x^* to an feasible *integral* solution $\hat{x} \in \{0,1\}^V$:

$$\widehat{x}_{v} = \begin{cases} 1 & \text{if } x_{v}^{*} \ge 0.5 \\ 0 & \text{otherwise} \end{cases}$$

min
$$\sum_{v \in V} x_v$$
s.t.
$$\sum_{v \in e} x_v \ge 1, \qquad e \in E$$

$$x_v \in [0,1], \quad v \in V$$

LP Relax & Round:

find OPT $x^* \in [0,1]^V$; round x^* to feasible *integral* \hat{x} :

$$\widehat{x}_{v} = \begin{cases} 1 & \text{if } x_{v}^{*} \ge 0.5 \\ 0 & \text{otherwise} \end{cases} \le 2x_{v}^{*}$$

• Soundness of rounded solution \hat{x} (as a vertex cover):

$$\sum_{v \in e} x_v^* \ge 1 \quad \Longrightarrow \quad \sum_{v \in e} \widehat{x}_v \ge 1$$

Approximation ratio:

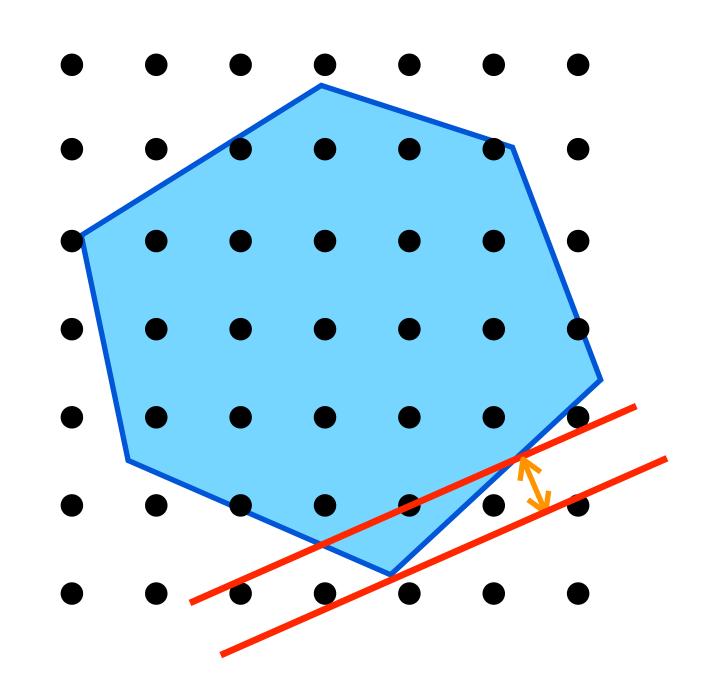
$$OPT = OPT_{Int} \ge OPT_{LP} = \sum_{v \in V} x_v^*$$

$$SOL = \sum_{v \in V} \hat{x}_v \leq 2 \sum_{v \in V} x_v^* \leq 2OPT$$

LP Relaxation & Rounding

- Modeling: Express the optimization problem as an Integer Linear Program (ILP).
- Relaxation: Relax the ILP to a Linear Program (LP).
- Solving: Find the optimal solution by an efficient LP solver.
- Rounding: Round the optimal solution to a feasible integral solution.
- Analysis: Prove that the rounded solution is not too far away from the *optimal integral* solution (usually by comparing with the optimal solution).

Integrality Gap



integrality gap =
$$\sup_{I} \frac{\text{OPT}(I)}{\text{OPT}_{\text{LP}}(I)}$$

Integrality Gap

• minimum vertex cover of G(V, E):

minimize
$$\sum_{v \in V} x_v$$
 subject to
$$\sum_{v \in e} x_v \geq 1, \qquad e \in E$$

$$x_v \in \{0,1\}, \quad v \in V$$

integrality gap =
$$\sup_{I} \frac{\text{OPT}(I)}{\text{OPT}_{LP}(I)}$$

• The 2-approx. LP-rounding algorithm shows integrality gap ≤ 2

Because the analysis compares the relaxed OPT with an integral feasible solution (output of the algorithm)

Integrality Gap

• minimum vertex cover of G(V, E):

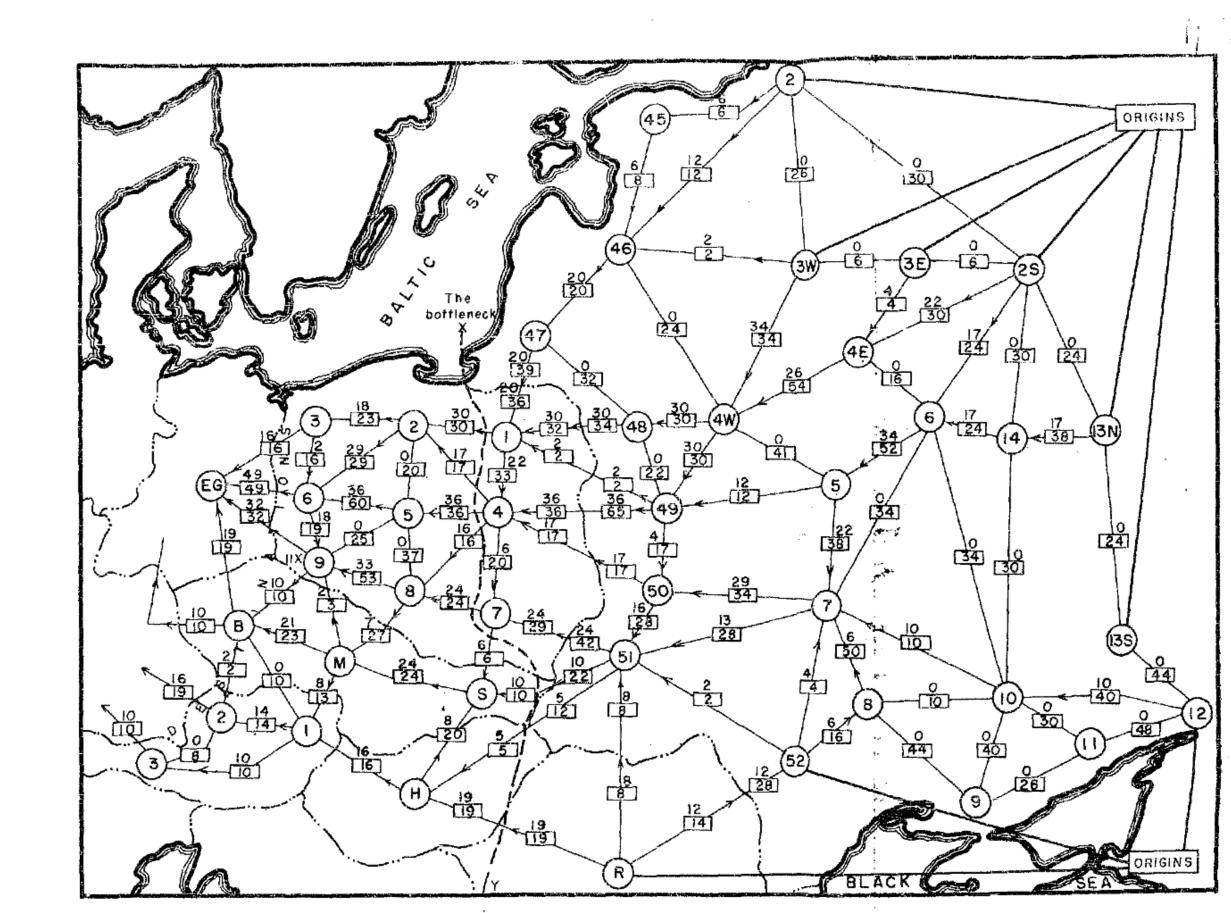
minimize
$$\sum_{v \in V} x_v$$
 subject to
$$\sum_{v \in e} x_v \geq 1, \qquad e \in E$$

$$x_v \in \{0,1\}, \quad v \in V$$

integrality gap =
$$\sup_{I} \frac{\text{OPT}(I)}{\text{OPT}_{\text{LP}}(I)}$$

- For LP relaxation of vertex cover: integrality gap = 2
- [Singh '19] int. gap on $G = \left(2 \frac{2}{\chi^f(G)}\right)$ fractional chromatic number

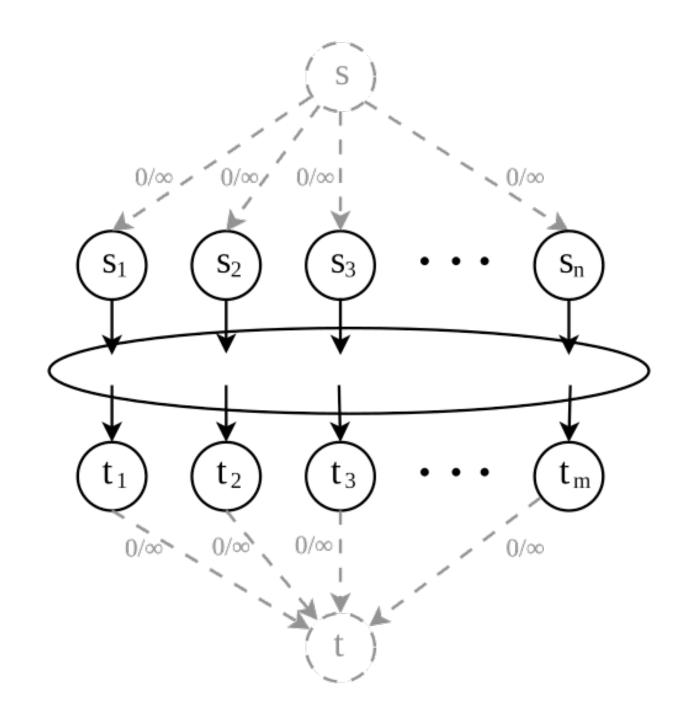
Network Flow (Recap)



Multi-Source Multi-Sink

Input: A network G = (V, E) and capacity $c : E \to \mathbb{R}^+$, with sources $S = \{s_1, ..., s_n\}$ and sinks $T = \{t_1, ..., t_m\}$.

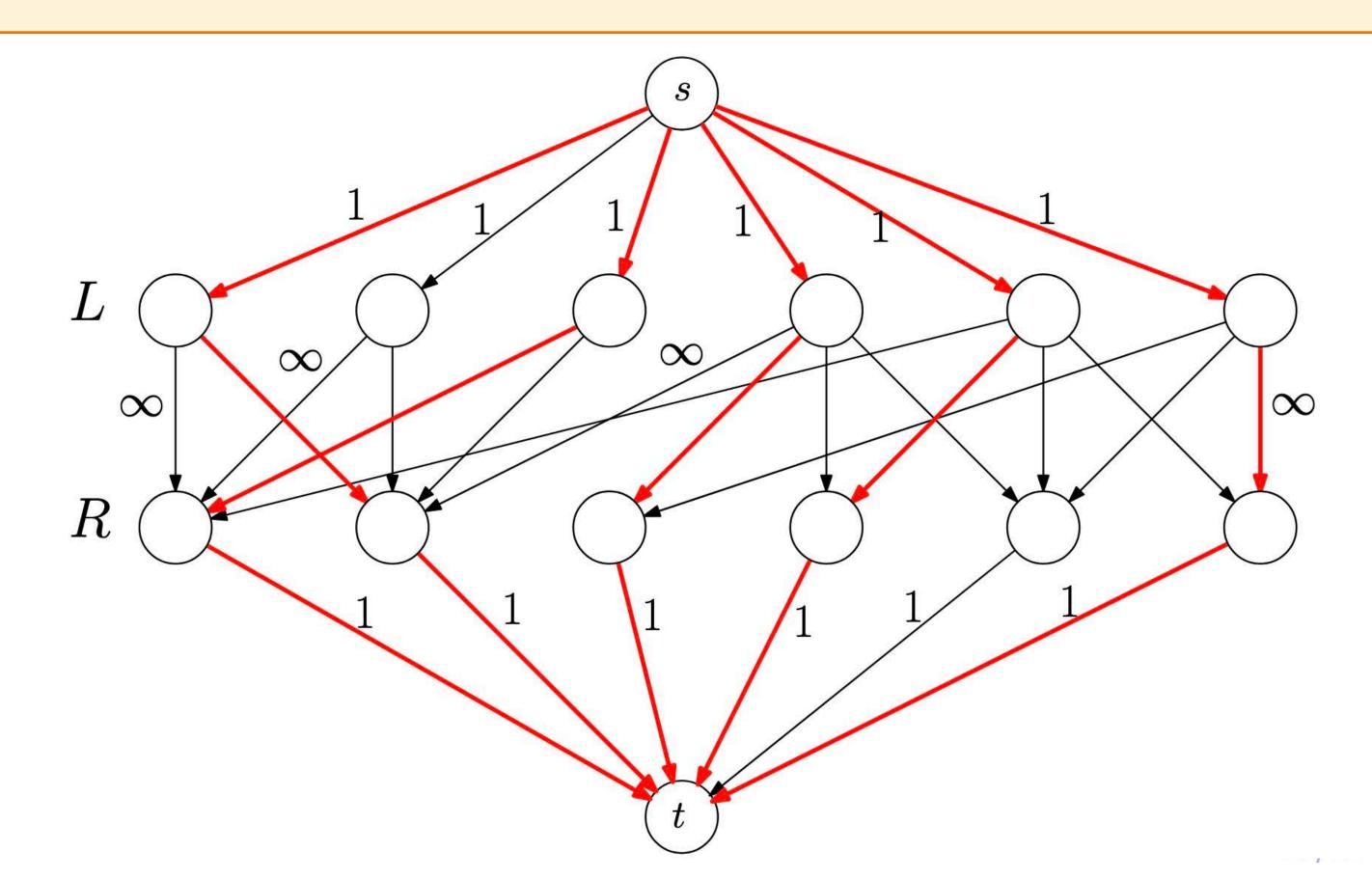
Output: A maximum flow from S to T across G.



Maximum Bipartite Matching

Input: A bipartite graph $G = (L \cup R, E)$.

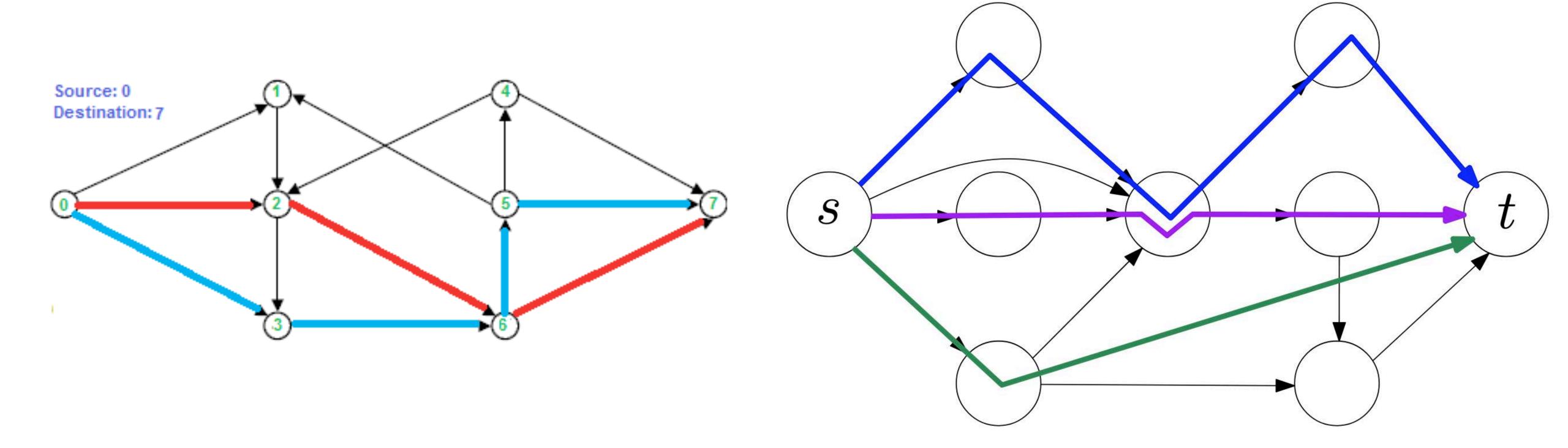
Output: A maximum matching of a bipartite graph.



#Disjont Paths

Input: A digraph G = (V, E) and source & sink $s, t \in V$.

Output: The maximum #edge-disjoint paths from s to t



Global Min-Cut

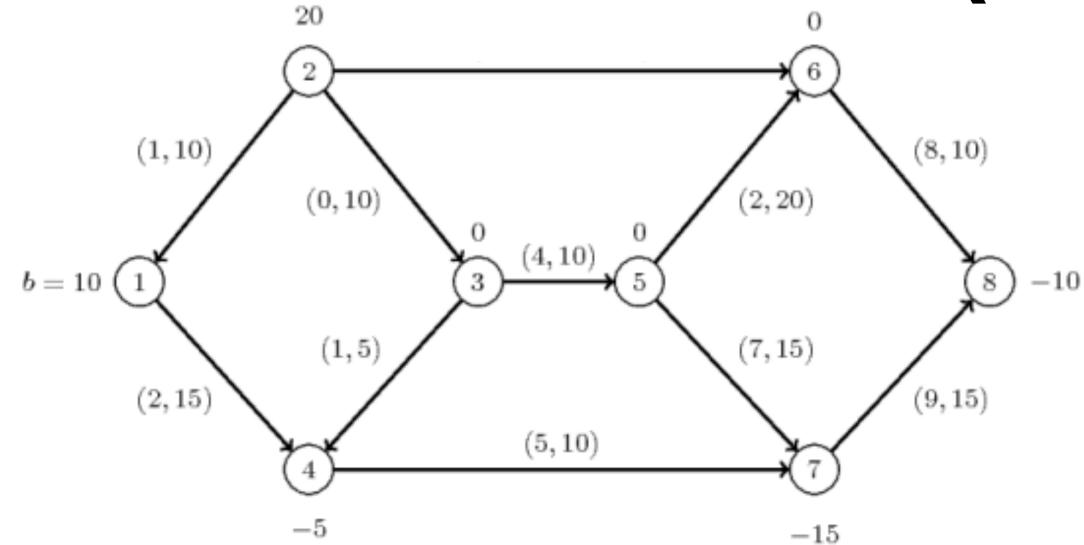
Input: A digraph G = (V, E) and weights $c : E \to \mathbb{R}^+$.

Output: The minimum cut whose removal disconnects G

The following statements are equivalent:

- (1) f is a maximum flow
- (2) There is no s-t path P in G^f with $\delta(P)>0$
- (3) There is $S, \neg S \subseteq V$ such that cut(S) = |f|

Minimum-Cost Flow Problem (MCFP)



- Edge capacity $c_e \in \mathbb{R}^+$. Flow cost $a_e \in \mathbb{R}^+$.
- Flow function $f: E \to \mathbb{R}^+$
 - Valid flow: $\forall e \in E, \ 0 \le f(e) \le c_e \& \ \forall v \in V, \ \sum_{e \in \delta_{iv}(v)} f(e) = \sum_{e \in \delta_{iv}(v)} f(e)$
- MCFP: find a flow f minimizes $\sum_{e \in \delta_{out}(s)} a_e \cdot f(e)$ while maximizing $\sum_{e \in \delta_{out}(s)} f(e)$

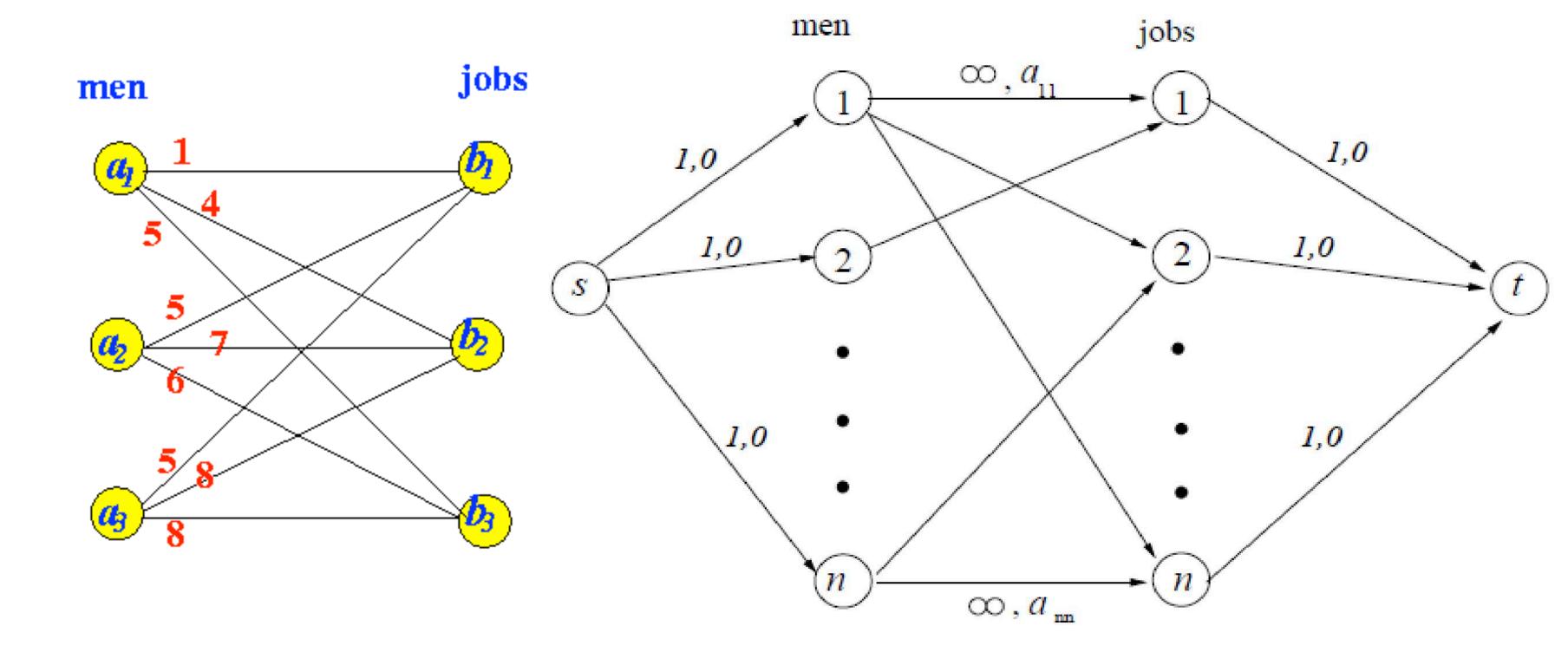
Assignment Problem

Minimum-cost perfect matching

Given matrix of costs

Worker	Task		
	Ī	П	
Ali	8	4	7
Baba	5	2	3
Curi	9	6	7
Durian	9	4	8

Make square with dummy column. Subtract minimum for each column:



Minimum-Cost Flow Problem (MCFP)

Input: A digraph G = (V, E) and capacity & costs $c, a : E \to \mathbb{R}^+$, and source s, sink t.

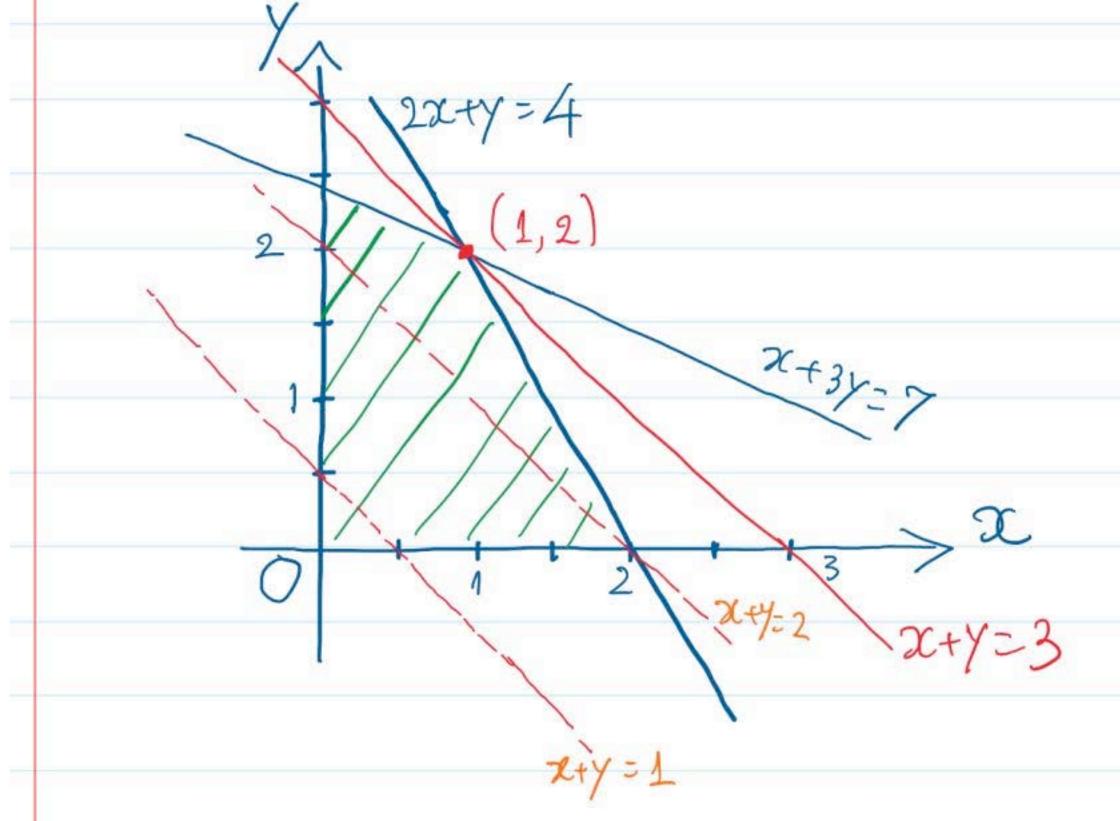
Output: A flow f minimizes $\sum_{e \in \delta_{out}(s)} a_e \cdot f(e)$ while maximizing $\sum_{e \in \delta_{out}(s)} f(e)$

- An improving redirection be like:
 - a negative cycle in the residual graph

Cycle Canceling:

While exists negative cycle in residual graph cancel the negative cycle by redirecting

Linear Programming (Recap)



A Familiar Problem

某厂生产甲乙两种产品,每生产1吨产品的电耗、煤耗、所需劳动力及产值如表3所示:

表 3

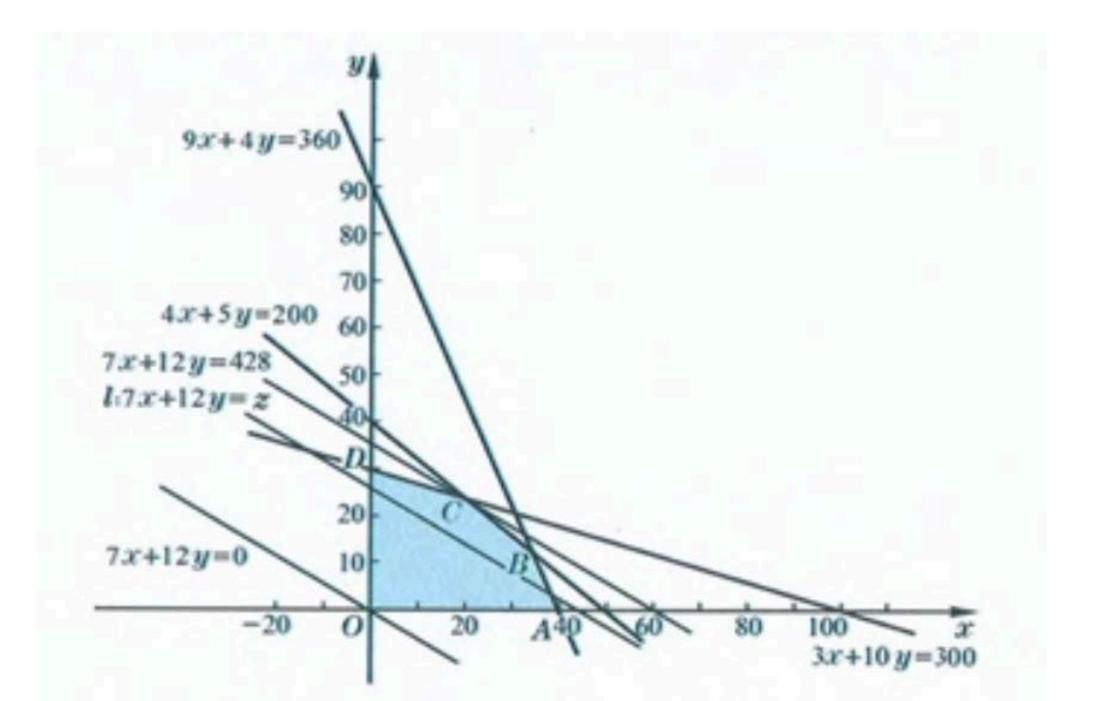
产品	电耗 (千瓦时)	煤耗 (吨)	劳动力(人)	产值(万元)
申	4	9	3	7
Z	5	4	10	12

已知该厂有劳动力 300 人,按计划煤耗每天不超过 360 吨,电耗每天不超过 200 千瓦时.每天应如何安排生产,可使产值最大?

如果设该厂每天生产甲产品 x 吨, 乙产品 y 吨, 那么上述问题可转化为在满足以下线性约束条件:

(B)
$$\begin{cases} 9x + 4y \leqslant 360, \\ 4x + 5y \leqslant 200, \\ 3x + 10y \leqslant 300, \\ x \geqslant 0, \\ y \geqslant 0, \end{cases}$$

求线性目标函数 z=7x+12y 的最大值.



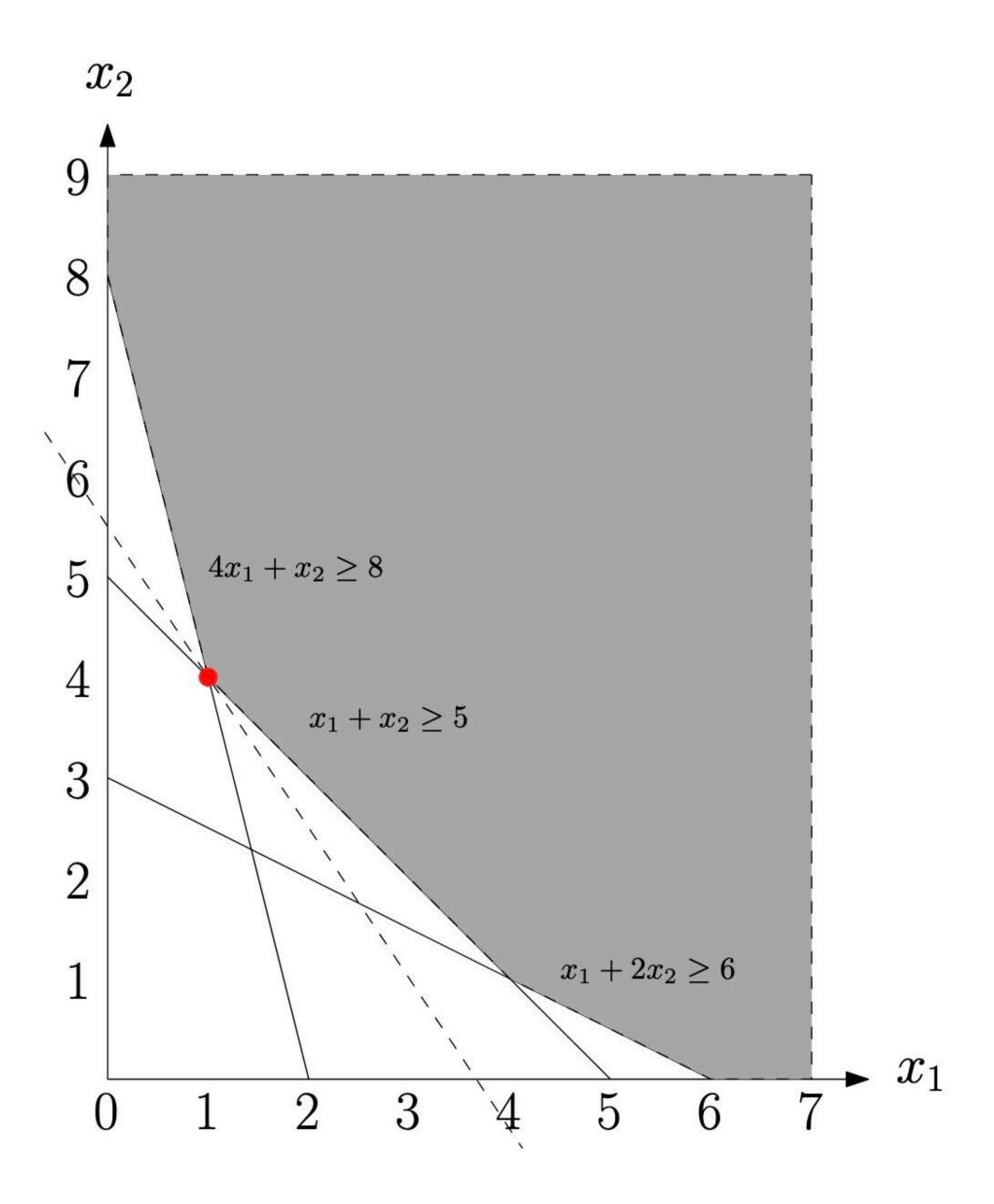
minimize
$$7x_1 + 4x_2$$

subject to $x_1 + x_2 \ge 5$
 $x_1 + 2x_2 \ge 6$
 $4x_1 + x_2 \ge 8$

$$x_1, x_2 \ge 0$$

optimal point $x_1 = 1, x_2 = 4$

value =
$$7 \times 1 + 4 \times 4 = 23$$



Linear Programming (LP)

- General form:
 - matrix $A = \{a_{ij}\}_{[m]\times[n]}$, sets $M \subseteq [m]$ and $N \subseteq [n]$

minimize
$$c^{\mathrm{T}}x$$
 subject to $a_i^{\mathrm{T}}x = b_i$ $i \in M$ $a_i^{\mathrm{T}}x \geq b_i$ $i \in \overline{M}$ $x_j \geq 0$ $j \in N$ x_j unconstrained $j \in \overline{N}$

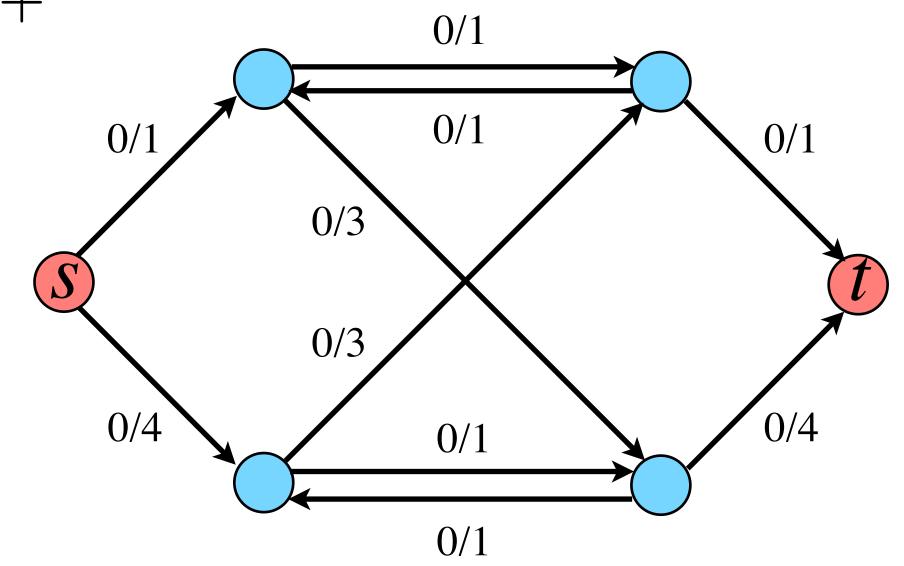
Max-Flow

digraph: G = (V, E) source: s sink: t

capacity: $c: E \to \mathbb{R}^+$

 $\max \sum_{u:(s,u)\in E} f_{su}$

 $\textbf{s.t.} \quad 0 \leq f_{uv} \leq c_{uv}$



$$\forall (u,v) \in E$$

$$\sum_{w:(w,u)\in E} f_{wu} - \sum_{v:(u,v)\in E} f_{uv} = 0 \quad \forall u \in V \setminus \{s,t\}$$

Linear Programming (LP)

General form:

$$\begin{array}{ll} \text{min} & \boldsymbol{c}^{\mathrm{T}}\boldsymbol{x} \\ \text{s.t.} & \boldsymbol{a}_i^{\mathrm{T}}\boldsymbol{x} = b_i & i \in M \\ & \boldsymbol{a}_i^{\mathrm{T}}\boldsymbol{x} \geq b_i & i \in \overline{M} \\ & x_j \geq 0 & j \in N \\ & x_j \text{ unconstrained} & j \in \overline{N} \end{array}$$

Canonical form:

$$\begin{array}{ccc} \min & c^{\mathrm{T}}x \\ \text{s.t.} & Ax \geq b \\ & x \geq 0 \end{array}$$

$$\boldsymbol{a}_{i}^{\mathrm{T}}\boldsymbol{x} = b_{i} \implies \begin{cases} \boldsymbol{a}_{i}^{\mathrm{T}}\boldsymbol{x} \geq b_{i} \\ -\boldsymbol{a}_{i}^{\mathrm{T}}\boldsymbol{x} \geq -b_{i} \end{cases}$$

$$x_j$$
 unconstrained $\implies x_j = x_j^+ - x_j^-$ where $\begin{cases} x_j^+ \ge 0 \\ x_j^- \ge 0 \end{cases}$

Solvable in Polynomial Time

Canonical Form of Linear programming

$$\begin{array}{ll} \min & c^{T}x \\ \text{s.t.} & Ax \geq b \\ & x \geq 0 \end{array}$$

Algorithm	Theory	Practice
Simplex Method	Exponential Time	Works Well
Ellipsoid Method	Polynomial Time	Slow
Internal Point Methods	Polynomial Time	Works Well

Linear Programming (LP)

Canonical form:

 $\begin{array}{cccc}
\min & c^{T}x \\
\text{s.t.} & Ax \ge b \\
& x \ge 0
\end{array}
\qquad \Longrightarrow \qquad \begin{array}{c}
\min & c^{T}x \\
\text{s.t.} & Ax = b \\
& x \ge 0
\end{array}$

Standard form:

$$x \ge 0$$

$$\boldsymbol{a}_{i}^{\mathrm{T}}\boldsymbol{x} \leq b_{i} \implies \begin{cases} \boldsymbol{a}_{i}^{\mathrm{T}}\boldsymbol{x} + s_{i} = b_{i} \\ s_{i} \geq 0 \end{cases}$$

slack variable

$$A \implies A' = [A \ I]$$

Linear Programming (LP) Solvers

$$\begin{array}{ll} \min & c^{\mathrm{T}}x \\ \text{s.t.} & Ax = b \\ & x \geq 0 \end{array}$$

$$A \in \mathbb{R}^{m \times n}$$

$$b \in \mathbb{R}^m \quad c \in \mathbb{R}^n$$

$$m = \operatorname{rank}(A) \le n$$

- Dantzig's simplex method [Dantzig '47]:
 - walks over polytope vertices along polytope edges
 - exponential time in the worst case (Klee-Minty cube, 1972)
 - poly-time in *smoothed* complexity [Spielman-Teng'01]
- Solvable in (weakly) polynomial time:
 - ellipsoid method [Khachiyan '80] in $O(n^6)$ time
 - interior-point methods [Karmarkar '84] in $O(n^{2.5})$ time [Vaidya '89] and recently, in current matrix multiplication time [Cohen, Lee, Song '19] [Jiang, Song, Weinstein, Zhang '21]

The Simplex Algorithm

Standard form:

$\begin{array}{ll} \min & c^{\mathrm{T}}x \\ \text{s.t.} & Ax = b \\ & x \geq 0 \end{array}$

WLOG:

$$A \in \mathbb{R}^{m \times n}$$

$$b \in \mathbb{R}^{m} \quad c \in \mathbb{R}^{n}$$

$$m = \operatorname{rank}(A) \leq n$$

• Two *bfs*'s are **neighbors** if their bases share m-1 columns of A

```
Simplex Algorithm (Dantzig 1947):
```

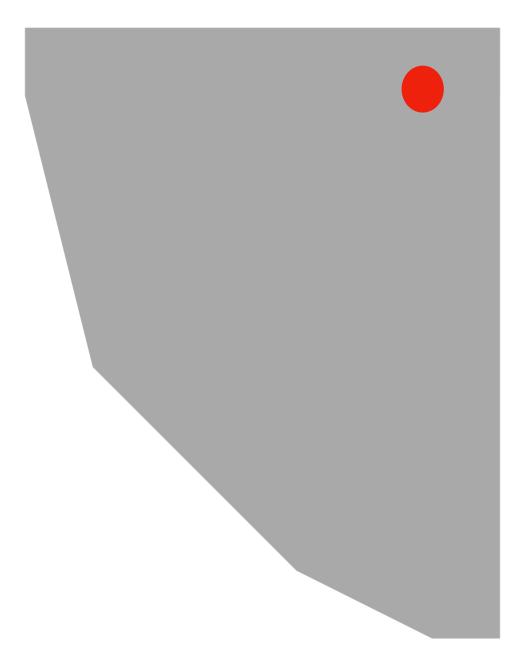
start at a *bfs* x; while \exists a neighboring *bfs* x' with $c^Tx' < c^Tx$: move to one of such x';

Stops at a *local* optima ⇒ a *global* optima (by convexity)

Interior Point Method

Interior Point Method (Karmarkar 1984):

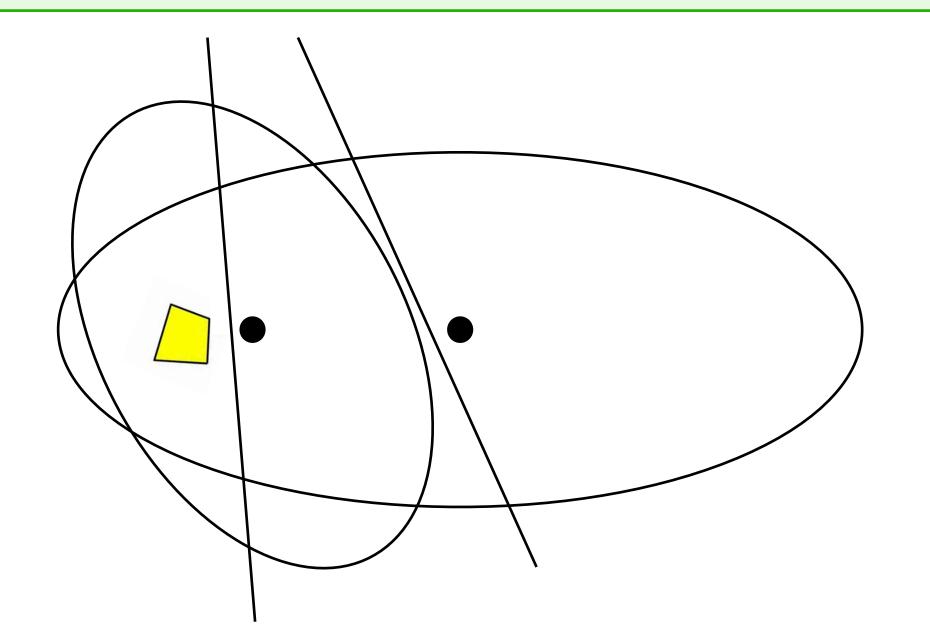
- keep the solution inside the polytope
- design penalty function so that the solution is not too close to the boundary
- the final solution will be arbitrarily close to the optimum solution



Ellipsoid Method

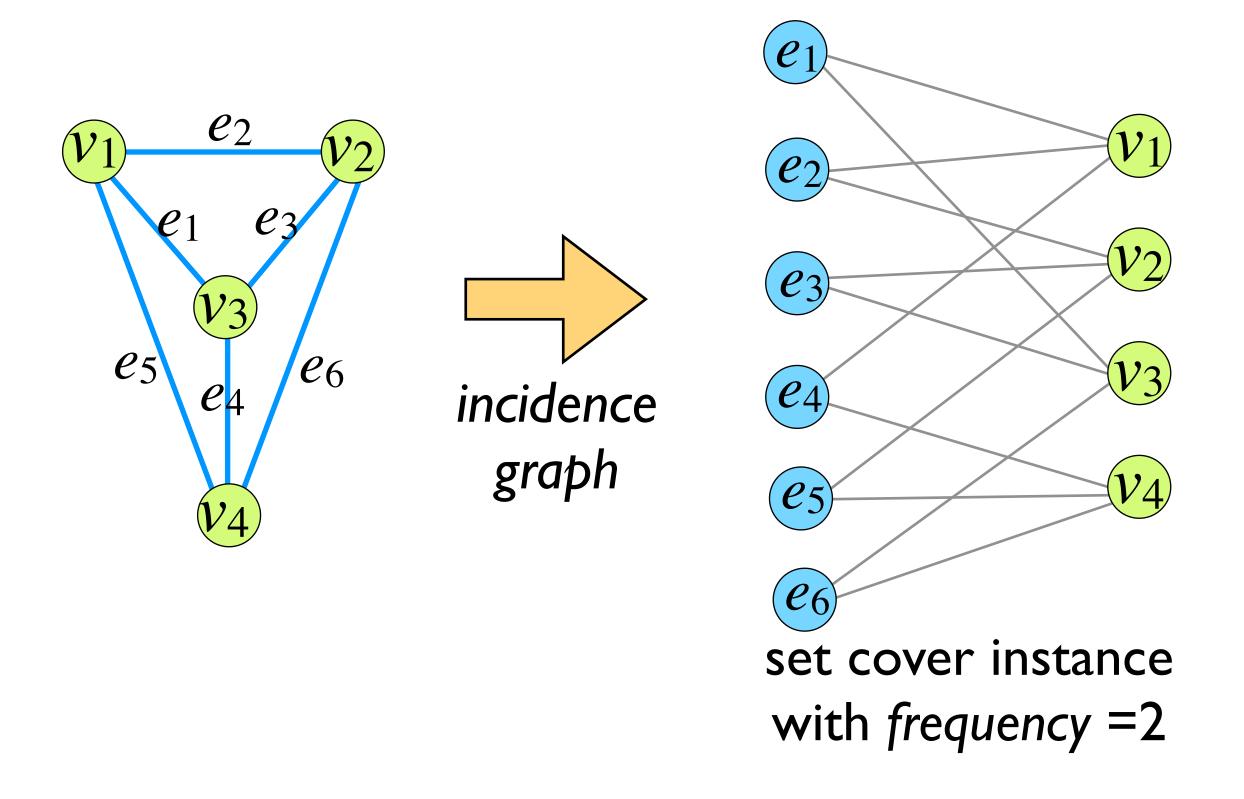
Ellipsoid Method (Khachiyan 1979):

- maintain an ellipsoid that contains the feasible region
- cut the ellipsoid in half, find smaller ellipsoid to enclose the half-ellipsoid, and repeat



Vertex Cover

Instance: An undirected graph G(V, E). Find the smallest $C \subseteq V$ that intersects all edges.



Vertex Cover

Instance: An undirected graph G(V, E). Find the smallest $C \subseteq V$ that intersects all edges.

Integer Linear Program (ILP) for vertex cover:

minimize
$$\sum_{v \in V} x_v \quad \text{linear objective function}$$
 subject to
$$\sum_{v \in e} x_v \geq 1, \qquad e \in E \quad \text{linear constraints}$$

$$x_v \in \{0,1\}, \quad v \in V \quad \text{integer domains}$$

• Solving integer linear program is NP-hard.

Vertex Cover

Instance: An undirected graph G(V, E). Find the smallest $C \subseteq V$ that intersects all edges.

• Linear Program (LP) relaxation:

minimize
$$\sum_{v \in V} x_v$$
 subject to
$$\sum_{v \in e} x_v \geq 1, \qquad e \in E$$

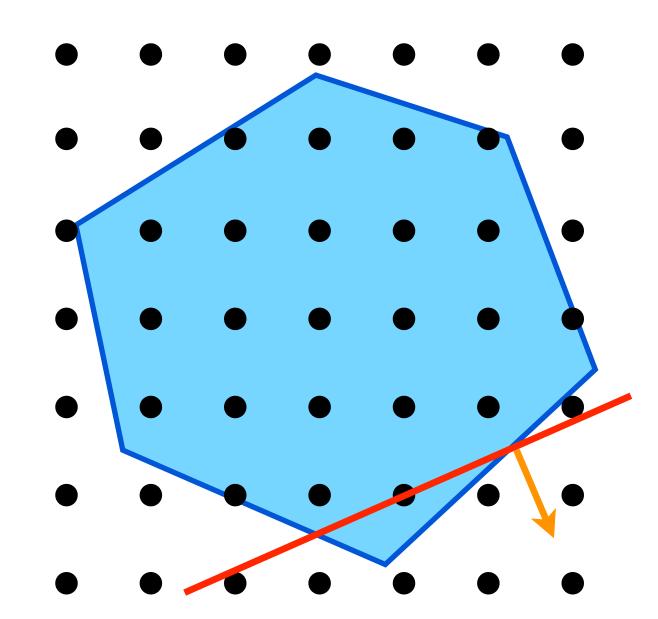
$$x_v \in [0,1], \quad v \in V$$
 fractional domains

• linear programs are solvable in polynomial time!

Integrality

 $\begin{array}{ccc} \min & c^T x \\ \text{s.t.} & Ax \geq b \\ & x \in \mathbb{Z}^n \end{array}$

LP-relaxation



min
$$\sum_{v \in V} x_v$$
s.t.
$$\sum_{v \in e} x_v \ge 1, \qquad e \in E$$

$$x_v \in [0,1], \quad v \in V$$

LP Relax & Round:

find OPT $x^* \in [0,1]^V$; round x^* to feasible *integral* \hat{x} :

$$\widehat{x}_{v} = \begin{cases} 1 & \text{if } x_{v}^{*} \ge 0.5 \\ 0 & \text{otherwise} \end{cases} \le 2x_{v}^{*}$$

• Soundness of rounded solution \hat{x} (as a vertex cover):

$$\sum_{v \in e} x_v^* \ge 1 \quad \Longrightarrow \quad \sum_{v \in e} \widehat{x}_v \ge 1$$

Approximation ratio:

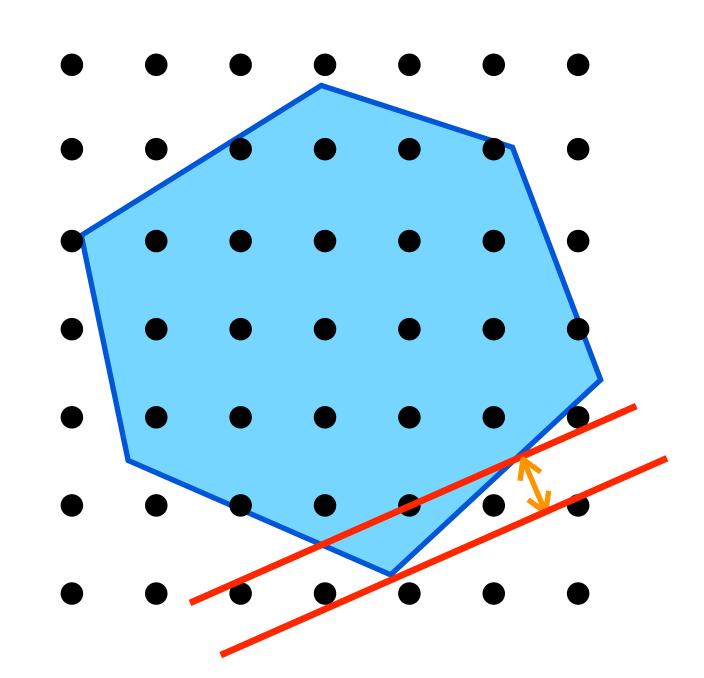
$$OPT = OPT_{Int} \ge OPT_{LP} = \sum_{v \in V} x_v^*$$

$$SOL = \sum_{v \in V} \hat{x}_v \leq 2 \sum_{v \in V} x_v^* \leq 2OPT$$

LP Relaxation & Rounding

- Modeling: Express the optimization problem as an Integer Linear Program (ILP).
- Relaxation: Relax the ILP to a Linear Program (LP).
- Solving: Find the optimal solution by an efficient LP solver.
- Rounding: Round the optimal solution to a feasible integral solution.
- Analysis: Prove that the rounded solution is not too far away from the *optimal integral* solution (usually by comparing with the optimal solution).

Integrality Gap



integrality gap =
$$\sup_{I} \frac{\text{OPT}(I)}{\text{OPT}_{\text{LP}}(I)}$$

Integrality Gap

• minimum vertex cover of G(V, E):

minimize
$$\sum_{v \in V} x_v$$
 subject to
$$\sum_{v \in e} x_v \geq 1, \qquad e \in E$$

$$x_v \in \{0,1\}, \quad v \in V$$

integrality gap =
$$\sup_{I} \frac{\text{OPT}(I)}{\text{OPT}_{\text{LP}}(I)}$$

- For LP relaxation of vertex cover: integrality gap = 2
- [Singh '19] int. gap on $G = \left(2 \frac{2}{\chi^f(G)}\right)$ fractional chromatic number

MAX-SAT

 $(x OR y OR z) AND (x OR <math>\overline{y} OR z) AND$

 $(x OR y OR \overline{z}) AND (x OR \overline{y} OR \overline{z}) AND$

 $(\bar{x} \text{ OR y OR z}) \text{ AND } (\bar{x} \text{ OR } \bar{y} \text{ OR } \bar{z})$

Max-SAT

Instance: A CNF formula $\Phi = C_1 \wedge C_2 \wedge \cdots \wedge C_m$.

Find an assignment $x \in \{T, F\}^n$ that maximizes the number of satisfied clauses.

• CNF (Conjunctive Normal Form): conjunction (∧) of clauses

$$\Phi = (x_1 \lor \neg x_2 \lor x_3) \land (x_1 \lor x_2 \lor x_4) \land (x_3 \lor \neg x_4 \lor \neg x_5)$$

- Boolean variables: $x_1, x_2, ..., x_n \in \{T, F\}$
- Clause: disjunction (v) of literals
- literal: x_i or $\neg x_i$
- Max-SAT: NP-hard

Random Assignment

Instance: A CNF formula $\Phi = C_1 \wedge C_2 \wedge \cdots \wedge C_m$.

Find an assignment $x \in \{T, F\}^n$ that maximizes the number of satisfied clauses.

Random assignment:

each x_i is assigned a value from $\{T, F\}$ uniformly and independently at random

• A clause
$$C_j = (\mathcal{C}_1 \vee \cdots \vee \mathcal{C}_k)$$
 of k_j literals: $\Pr[C_j \text{ is satisfied }] = 1 - 2^{-k_j} \geq \frac{1}{2}$

$$\mathbb{E} [\# \text{ of satisfied clauses}] = \sum_{i=1}^{m} \Pr[C_i \text{ is satisfied}] \ge \frac{m}{2} \ge \frac{1}{2}OPT$$

Integer Program

Instance: A CNF formula $\Phi = C_1 \wedge C_2 \wedge \cdots \wedge C_m$.

$$\Phi = (x_1 \lor \neg x_2 \lor x_3) \land (x_1 \lor x_2 \lor x_4) \land (x_3 \lor \neg x_4 \lor \neg x_5)$$

- Boolean variables: $x_1, ..., x_n \in \{0, 1\}$ $x_i = 1 \iff x_i = T$
- Clauses: $C_j = (\mathcal{E}_1 \vee \cdots \vee \mathcal{E}_k) = \bigvee x_i \vee \bigvee \neg x_i$ $S_j^+ = \left\{ i \mid x_i \text{ appears in } C_j \right\}$ $i \in S_j^+$ $i \in S_j^-$

 - $S_j^- = \left\{ i \mid \neg x_i \text{ appears in } C_j \right\}$

$$C_j$$
 is satisfied $\iff \sum_{i \in S_i^+} x_i + \sum_{i \in S_i^-} (1 - x_i) \ge 1$

Integer Program

Instance: Clauses C_1, \dots, C_m , where for each clause C_j :

$$S_j^+ = \left\{i \mid x_i \text{ appears in } C_j\right\}, \ S_j^- = \left\{i \mid \neg x_i \text{ appears in } C_j\right\}$$

maximize
$$\sum_{j=1}^m y_j$$
 subject to
$$\sum_{i \in S_j^+} x_i + \sum_{i \in S_j^-} (1-x_i) \ge y_j \qquad 1 \le j \le m$$

$$x_i \in \{0,1\} \qquad 1 \le i \le n$$

$$y_j \in \{0,1\} \qquad 1 \le j \le m$$

LP Relaxation

Instance: Clauses C_1, \dots, C_m , where for each clause C_i :

$$S_j^+ = \left\{i \mid x_i \text{ appears in } C_j\right\}, \ S_j^- = \left\{i \mid \neg x_i \text{ appears in } C_j\right\}$$

maximize
$$\sum_{j=1}^m y_j$$
 subject to
$$\sum_{i \in S_j^+} x_i + \sum_{i \in S_j^-} (1-x_i) \ge y_j \qquad 1 \le j \le m$$

$$x_i \in [0,1] \qquad 1 \le i \le n$$

$$y_j \in [0,1] \qquad 1 \le j \le m$$

Linear Randomized Rounding

Instance: Clauses C_1, \dots, C_m , where for each clause C_j : $S_j^+ = \left\{i \mid x_i \text{ appears in } C_j\right\}, S_j^- = \left\{i \mid \neg x_i \text{ appears in } C_j\right\}$

maximize
$$\sum_{j=1}^{m} y_{j}$$
 subject to
$$\sum_{i \in S_{j}^{+}} x_{i}^{*} + \sum_{i \in S_{j}^{-}} (1 - x_{i}^{*}) \geq y_{j}^{*} \qquad 1 \leq j \leq m$$

$$\forall i, j$$
 Optimal solution: $\boldsymbol{x}^{*} \in [0,1]^{n}, \ \boldsymbol{y}^{*} \in [0,1]^{m}$ Linear rounding:
$$\hat{x}_{i} = \begin{cases} 1 & \text{with prob. } x_{i}^{*} \\ 0 & \text{with prob. } 1 - x_{i}^{*} \end{cases}$$
 (independently)
$$= \sum_{j=1}^{m} y_{j}^{*} \qquad \text{AM-GM}$$

$$= 1 - \prod_{i \in S_{j}^{+}} (1 - x_{i}^{*}) \prod_{i \in S_{j}^{-}} x_{i}^{*} \geq 1 - \left(1 - y_{j}^{*}/k_{j}\right)^{k_{j}}$$

B

$$= 1 - \prod_{i \in S_j^+} (1 - x_i^*) \prod_{i \in S_j^-} x_i^* \ge 1 - \left(1 - y_j^*/k_j\right)^{s}$$

$$(C_j \text{ has } k_j \text{ literals}) \qquad \text{Jenssen's inequality} \ge \left[1 - \left(1 - 1/k_j\right)^{k_j}\right] y_j^*$$

$$\ge (1 - 1/e) y_i^*$$

maximize
$$\sum_{j=1}^m y_j$$
 subject to
$$\sum_{i \in S_j^+} x_i + \sum_{i \in S_j^-} (1-x_i) \ge y_j \qquad 1 \le j \le m$$

$$x_i, y_j \in [0,1] \qquad \forall i,j$$

Optimal solution: $x^* \in [0,1]^n$, $y^* \in [0,1]^m$

Linear rounding:
$$\hat{x}_i = \begin{cases} 1 & \text{with prob. } x_i^* \\ 0 & \text{with prob. } 1 - x_i^* \end{cases}$$
 (independently)

•
$$OPT = OPT_{Int} \le OPT_{LP}$$
 = $\sum_{j=1}^{m} y_j^*$

•
$$\Pr[C_j \text{ is satisfied }] = 1 - \prod_{i \in S_i^+} (1 - x_i^*) \prod_{i \in S_i^-} x_i^* \ge (1 - 1/e) y_j^*$$

$$\mathbb{E}[SOL] = \sum_{j=1}^{m} \Pr[C_j \text{ is satisfied }] \ge (1 - 1/e) \sum_{j=1}^{m} y_j^* \ge (1 - 1/e)OPT$$

maximize
$$\sum_{j=1}^m y_j$$
 subject to
$$\sum_{i \in S_j^+} x_i + \sum_{i \in S_j^-} (1-x_i) \ge y_j \qquad 1 \le j \le m$$

$$x_i, y_j \in \llbracket 0,1 \rrbracket \qquad \forall i,j$$

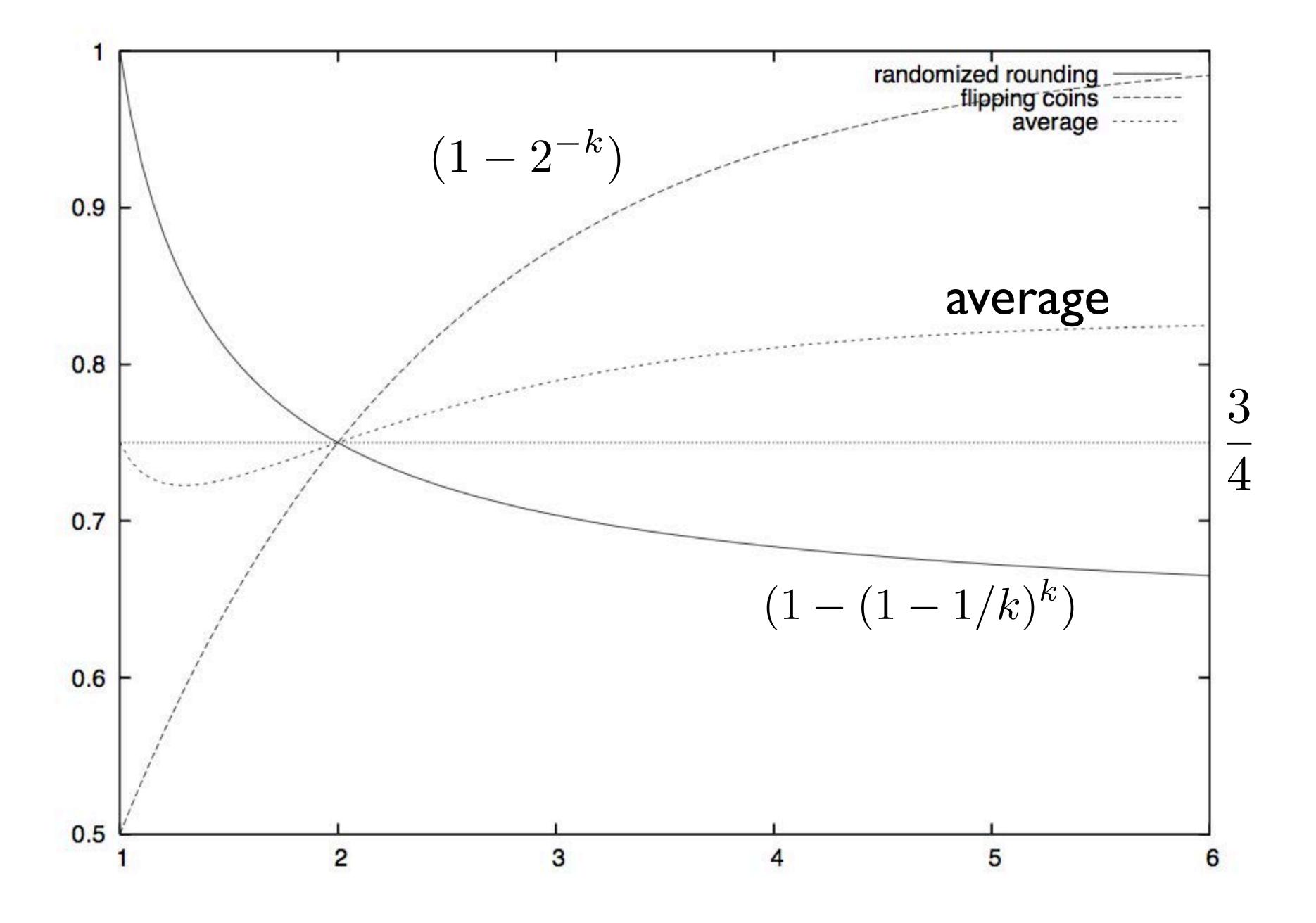
Optimal solution: $x^* \in [0,1]^n$, $y^* \in [0,1]^m$

Linear rounding:
$$\hat{x}_i = \begin{cases} 1 & \text{with prob. } x_i^* \\ 0 & \text{with prob. } 1 - x_i^* \end{cases}$$
 (independently)

• $\Pr[C_j \text{ is satisfied }] \ge (1 - (1 - 1/k_j)^{k_j}) \cdot y_j^*$

Random assignment:
$$\hat{x}_i = \begin{cases} 1 & \text{with prob. } 1/2 \\ 0 & \text{with prob. } 1/2 \end{cases}$$
 (independently)

•
$$\Pr[C_j \text{ is satisfied }] = 1 - 2^{-k_j} \ge (1 - 2^{-k_j}) \cdot y_j^* \ge (1 - 1/e) \cdot y_j^*$$



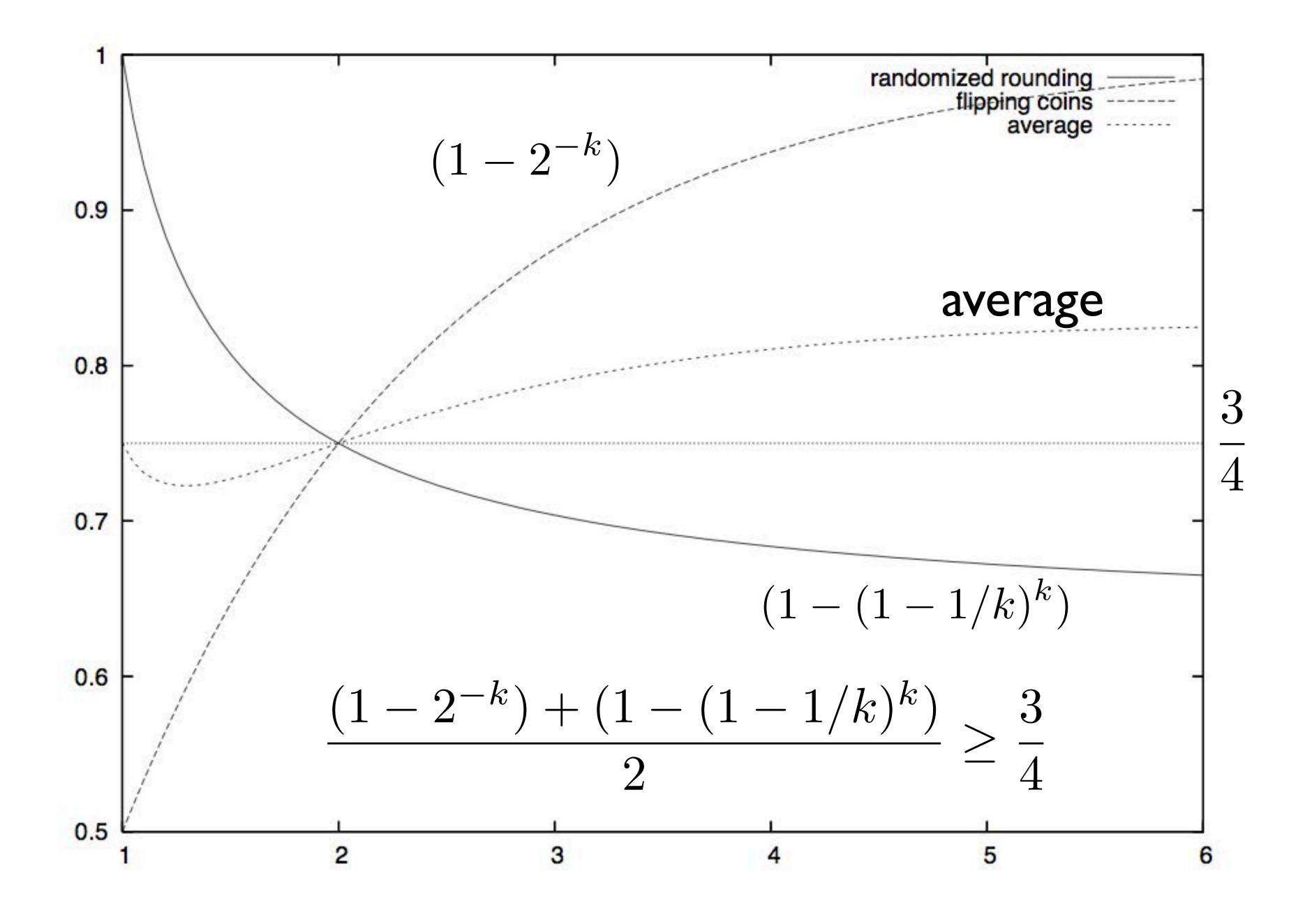
Power of Two Choices

- Use random assignment to satisfy M_1 clauses;
- Use linear rounding of LP relaxation to satisfy M_2 clauses;
- · Return the solution with more satisfied clauses.

$$\mathbb{E}\left[\max\{M_1, M_2\}\right] \ge \mathbb{E}\left[\frac{M_1 + M_2}{2}\right]$$

$$\mathbb{E}\left[M_1\right] \ge \sum_{j=1}^m \left(1 - 2^{-k_j}\right) \cdot y_j^*$$

$$\mathbb{E}\left[M_{2}\right] \geq \sum_{i=1}^{m} \left(1 - (1 - 1/k_{j})^{k_{j}}\right) \cdot y_{j}^{*}$$



Power of Two Choices

- Use random assignment to satisfy M_1 clauses;
- Use linear rounding of LP relaxation to satisfy M_2 clauses;
- Return the solution with more satisfied clauses.

$$\mathbb{E}\left[\max\{M_{1}, M_{2}\}\right] \ge \mathbb{E}\left[\frac{M_{1} + M_{2}}{2}\right] \ge \frac{3}{4} \sum_{j=1}^{m} y_{j}^{*} \ge \frac{3}{4} OPT$$

$$\mathbb{E}\left[M_1\right] \ge \sum_{j=1}^m \left(1 - 2^{-k_j}\right) \cdot y_j^*$$

$$\mathbb{E}\left[M_{2}\right] \geq \sum_{j=1}^{m} \left(1 - (1 - 1/k_{j})^{k_{j}}\right) \cdot y_{j}^{*}$$

Max-SAT

Instance: A CNF formula $\Phi = C_1 \wedge C_2 \wedge \cdots \wedge C_m$.

Find an assignment $x \in \{T, F\}^n$ that maximizes the number of satisfied clauses.

- Use random assignment to satisfy M_1 clauses;
- Use linear rounding of LP relaxation to satisfy M_2 clauses;
- Return the solution with more satisfied clauses.
- This combined algorithm outputs a random solution that satisfies $\geq \frac{3}{4}OPT$ clauses in expectation.
- Can this be achieved by a single algorithm?

Non-Linear Rounding

Instance: Clauses C_1, \dots, C_m , where for each clause C_j : $S_j^+ = \left\{i \mid x_i \text{ appears in } C_j\right\}, S_j^- = \left\{i \mid \neg x_i \text{ appears in } C_j\right\}$

maximize
$$\sum_{j=1}^m y_j$$
 subject to
$$\sum_{i \in S_j^+} x_i + \sum_{i \in S_j^-} (1-x_i) \ge y_j \qquad 1 \le j \le m$$

$$x_i, y_j \in [0,1] \qquad \forall i,j$$

Optimal fractional solution: $x^* \in [0,1]^n$, $y^* \in [0,1]^m$

Nonlinear rounding:
$$\hat{x}_i = \begin{cases} 1 & \text{with prob. } f(x_i^*) \\ 0 & \text{with prob. } 1 - f(x_i^*) \end{cases}$$
 (independently)

maximize
$$\sum_{j=1}^m y_j$$
 subject to
$$\sum_{i \in S_j^+} x_i^* + \sum_{i \in S_j^-} (1 - x_i^*) \ge y_j^* \qquad 1 \le j \le m$$

$$x_i, y_j \in [0,1] \quad \forall i,j$$

Optimal fractional solution: $x^* \in [0,1]^n$, $y^* \in [0,1]^m$

Nonlinear rounding:
$$\hat{x}_i = \begin{cases} 1 & \text{with prob. } f(x_i^*) \\ 0 & \text{with prob. } 1 - f(x_i^*) \end{cases}$$
 (independently)

$$\Pr[C_j \text{ is unsatisfied }] = \prod_{i \in S_i^+} (1 - f(x_i^*)) \prod_{i \in S_i^-} f(x_i^*)$$

Suppose: for some c > 1

$$1 - c^{-x} \le f(x) \le c^{x-1}$$

$$\begin{vmatrix}
i \in S_j^+ & i \in S_j^- \\
-\left(\sum_{i \in S_j^+} x_i^* + \sum_{i \in S_j^-} (1 - x_i^*)\right) \\
\leq c$$

maximize
$$\sum_{j=1}^m y_j$$
 subject to
$$\sum_{i \in S_j^+} x_i + \sum_{i \in S_j^-} (1-x_i) \ge y_j \qquad 1 \le j \le m$$

$$x_i, y_j \in [0,1] \qquad \forall i,j$$

Optimal fractional solution: $x^* \in [0,1]^n$, $y^* \in [0,1]^m$

Nonlinear rounding:
$$\hat{x}_i = \begin{cases} 1 & \text{with prob. } f(x_i^*) \\ 0 & \text{with prob. } 1 - f(x_i^*) \end{cases}$$
 (independently)

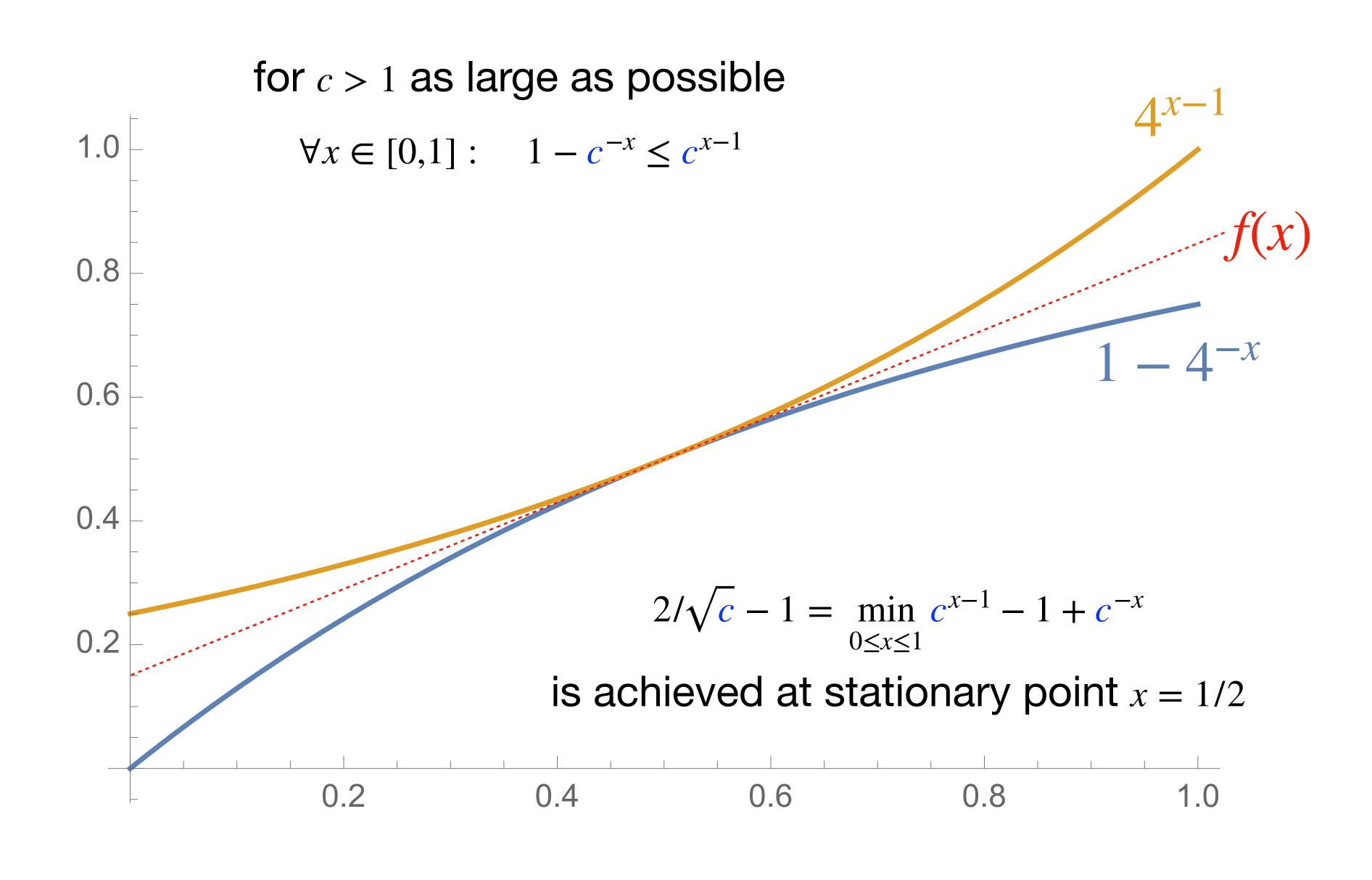
Suppose: for some c > 1 $1 - c^{-x} \le f(x) \le c^{x-1}$

$$1 - c^{-x} \le f(x) \le c^{x-1}$$

 $\Pr[C_i \text{ is unsatisfied}] \leq c^{-y_j^*}$

Jenssen's inequality

$$\mathbb{E}[SOL] \ge \sum_{i=1}^{m} \left(1 - c^{-y_j^*}\right) \ge (1 - 1/c) \sum_{j=1}^{m} y_j^* \ge (1 - 1/c)OPT$$



maximize
$$\sum_{j=1}^m y_j$$
 subject to
$$\sum_{i \in S_j^+} x_i + \sum_{i \in S_j^-} (1-x_i) \ge y_j \qquad 1 \le j \le m$$

$$x_i, y_j \in [0,1] \qquad \forall i,j$$

Optimal fractional solution: $x^* \in [0,1]^n$, $y^* \in [0,1]^m$

Nonlinear rounding:
$$\hat{x}_i = \begin{cases} 1 & \text{with prob. } f(x_i^*) \\ 0 & \text{with prob. } 1 - f(x_i^*) \end{cases}$$
 (independently)

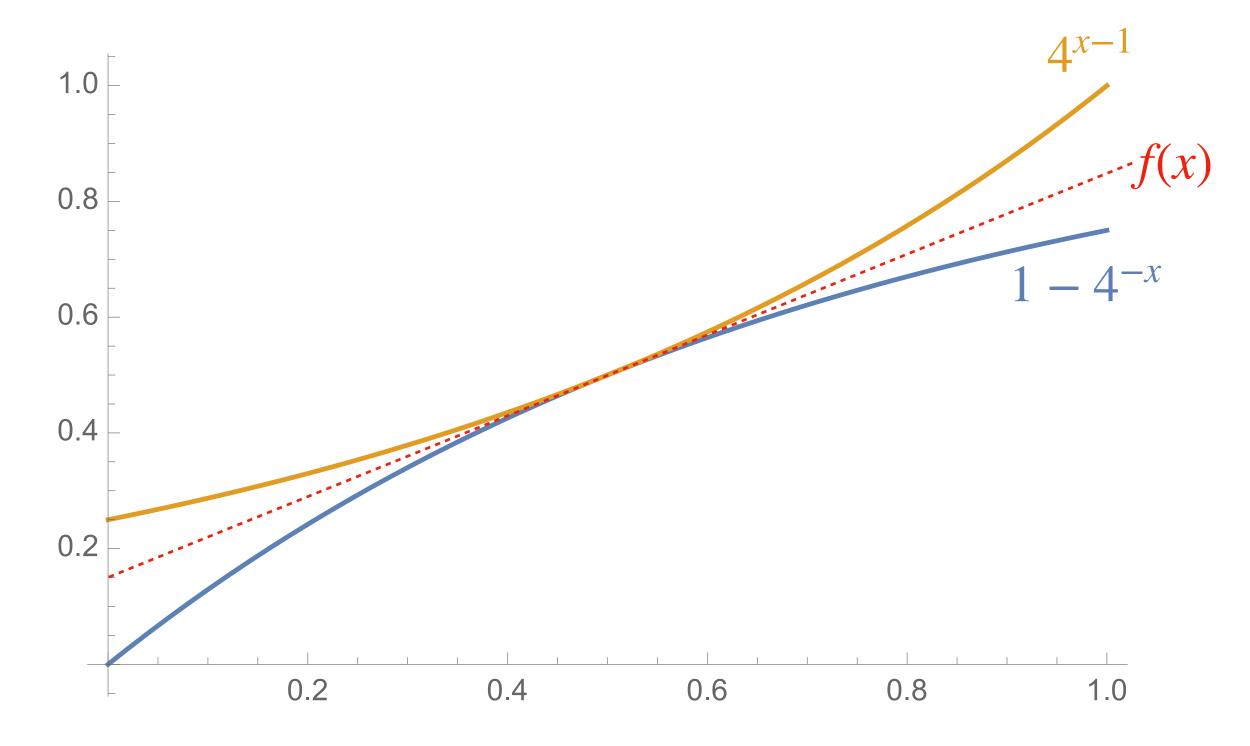
Suppose:
$$1 - 4^{-x} \le f(x) \le 4^{x-1}$$

 $\Pr[C_i \text{ is unsatisfied}] \leq 4^{-y_j^*}$

Jenssen's inequality

$$\mathbb{E}[SOL] \ge \sum_{j=1}^{m} \left(1 - 4^{-y_j^*}\right) \ge \frac{3}{4} \sum_{j=1}^{m} y_j^* \ge \frac{3}{4} OPT$$

Max-SAT



- Nonlinear rounding of LP-relaxation for Max-SAT satisfies $\geq \frac{3}{4}OPT$ clauses in expectation.
- Easy-to-compute *explicit* rounding $f(\cdot)$?

Power of Two Choices

- Use random assignment to satisfy M_1 clauses;
- Use linear rounding of LP relaxation to satisfy M_2 clauses;
- Return the solution with more satisfied clauses.

$$\mathbb{E}\left[\max\{M_{1}, M_{2}\}\right] \ge \mathbb{E}\left[\frac{M_{1} + M_{2}}{2}\right] \ge \frac{3}{4} \sum_{j=1}^{m} y_{j}^{*} \ge \frac{3}{4} OPT$$

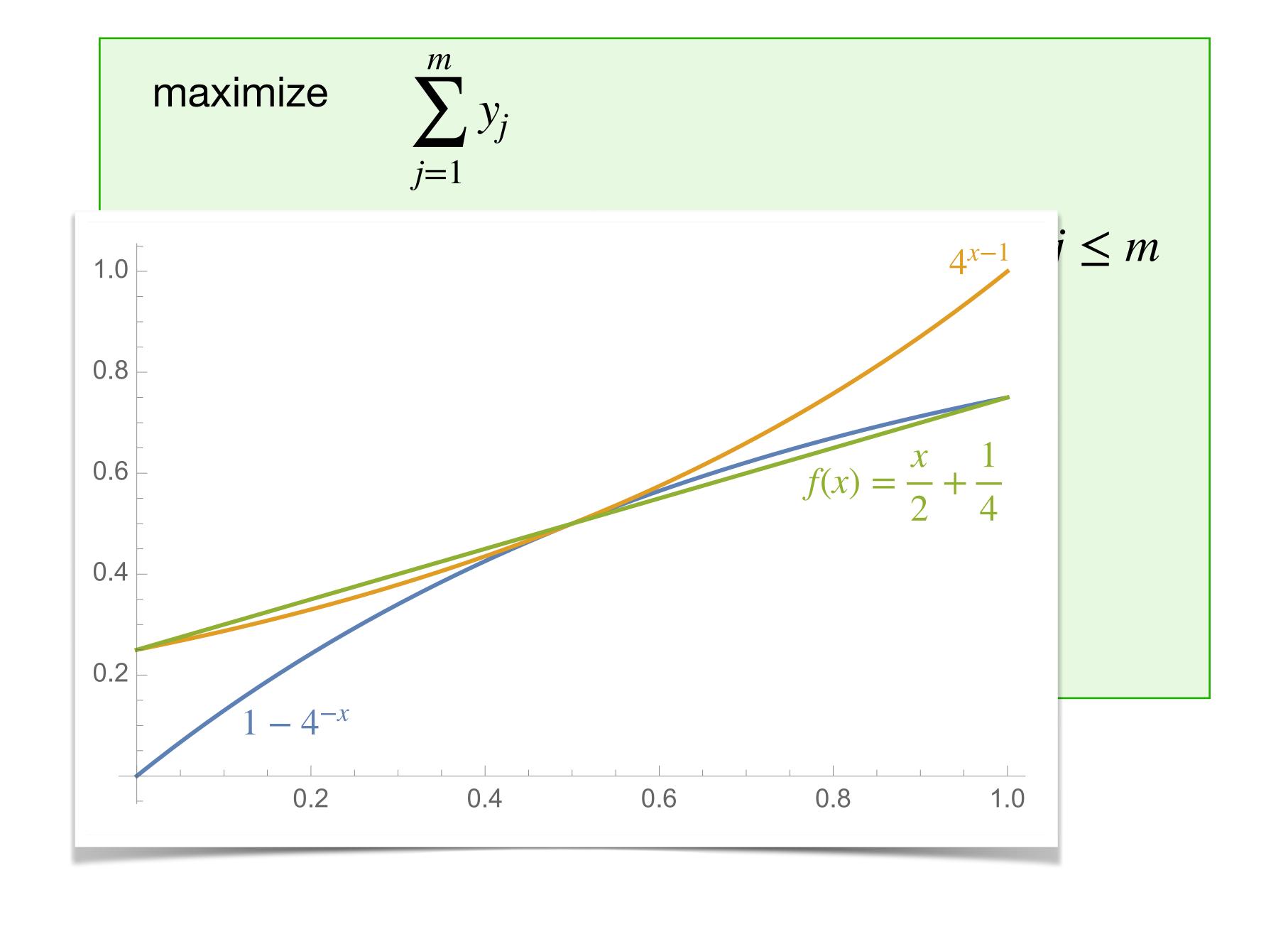
average of two rounding schemes

maximize
$$\sum_{j=1}^m y_j$$
 subject to
$$\sum_{i \in S_j^+} x_i + \sum_{i \in S_j^-} (1-x_i) \ge y_j \qquad 1 \le j \le m$$

$$x_i, y_j \in [0,1] \qquad \forall i,j$$

Optimal solution: $x^* \in [0,1]^n$, $y^* \in [0,1]^m$

$$\hat{x}_i = \begin{cases} \begin{cases} 1 & \text{w.p. } \frac{1}{2} \\ 0 & \text{w.p. } \frac{1}{2} \end{cases} & \text{w.p. } \frac{1}{2} \end{cases} \text{ (random assign.)} \\ \begin{cases} 1 & \text{w.p. } x_i^* \\ 0 & \text{w.p. } 1 - x_i^* \end{cases} & \text{w.p. } \frac{1}{2} \end{cases} \text{ (linear rounding)}$$



maximize
$$\sum_{j=1}^m y_j$$
 subject to
$$\sum_{i \in S_j^+} x_i^* + \sum_{i \in S_j^-} (1-x_i^*) \ge y_j^* \qquad 1 \le j \le m$$

$$x_i, y_j \in [0,1] \quad \forall i,j$$

Optimal solution: $x^* \in [0,1]^n$, $y^* \in [0,1]^m$

$$\hat{x}_i = \begin{cases} 1 & \text{with prob. } \frac{1}{2}x_i^* + \frac{1}{4} = f(x_i^*) \\ 0 & \text{with prob. } -\frac{1}{2}x_i^* + \frac{3}{4} = 1 - f(x_i^*) \end{cases}$$

$$\Pr[C_{j} \text{ is unsatisfied}] = \prod_{i \in S_{j}^{+}} \left(-\frac{1}{2}x_{i}^{*} + \frac{3}{4}\right) \prod_{i \in S_{j}^{-}} \left(\frac{1}{2}x_{i}^{*} + \frac{1}{4}\right)$$

$$\mathsf{AM} \leq \left(\frac{1}{k_{j}} \left(\sum_{i \in S_{j}^{+}} \left(-\frac{1}{2}x_{i}^{*} + \frac{3}{4}\right) + \sum_{i \in S_{j}^{-}} \left(\frac{1}{2}x_{i}^{*} + \frac{1}{4}\right)\right)\right)^{k_{j}} \leq \left(\frac{3}{4} - \frac{y_{j}^{*}}{2k_{j}}\right)^{k_{j}}$$

maximize
$$\sum_{j=1}^m y_j$$
 subject to
$$\sum_{i \in S_j^+} x_i + \sum_{i \in S_j^-} (1-x_i) \ge y_j \qquad 1 \le j \le m$$

$$x_i, y_j \in [0,1] \qquad \forall i,j$$

Optimal solution: $x^* \in [0,1]^n$, $y^* \in [0,1]^m$

$$\hat{x}_i = \begin{cases} 1 & \text{with prob. } \frac{1}{2}x_i^* + \frac{1}{4} = f(x_i^*) \\ 0 & \text{with prob. } -\frac{1}{2}x_i^* + \frac{3}{4} = 1 - f(x_i^*) \end{cases}$$

$$\Pr[C_j \text{ is satisfied }] \ge 1 - \left(\frac{3}{4} - \frac{y_j^*}{2k_j}\right)^{k_j} \ge \left(1 - \left(\frac{3}{4} - \frac{1}{2k_j}\right)^{k_j}\right) y_j^* \ge \frac{3}{4} y_j^*$$
Jenssen's inequality

$$\mathbb{E}[SOL] \ge \frac{3}{4} \sum_{j=1}^{m} y_j^* \ge \frac{3}{4} OPT$$

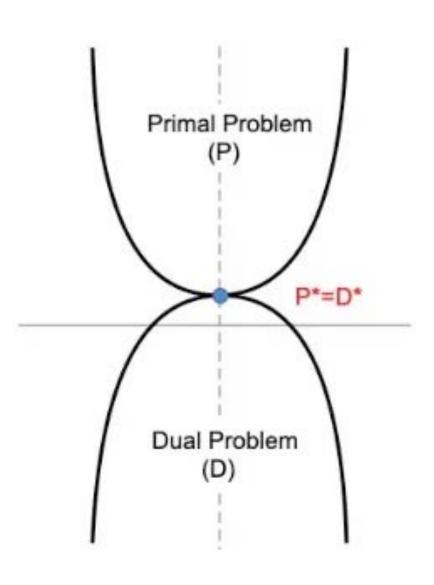
Max-SAT

Instance: A CNF formula $\Phi = C_1 \wedge C_2 \wedge \cdots \wedge C_m$.

Find an assignment $x \in \{T, F\}^n$ that maximizes the number of satisfied clauses.

- Randomized rounding of LP-relaxation for Max-SAT satisfies $\geq \frac{3}{4}OPT$ clauses in expectation.
- It can be de-randomized via conditional expectation.
- The integrality gap of the LP-relaxation for Max-SAT is 3/4.
- Max-3SAT has a 7/8-approximation algorithm by rounding semidefinite programming (SDP) relaxation, and cannot have >7/8-approximation ratio in poly-time unless NP=P.

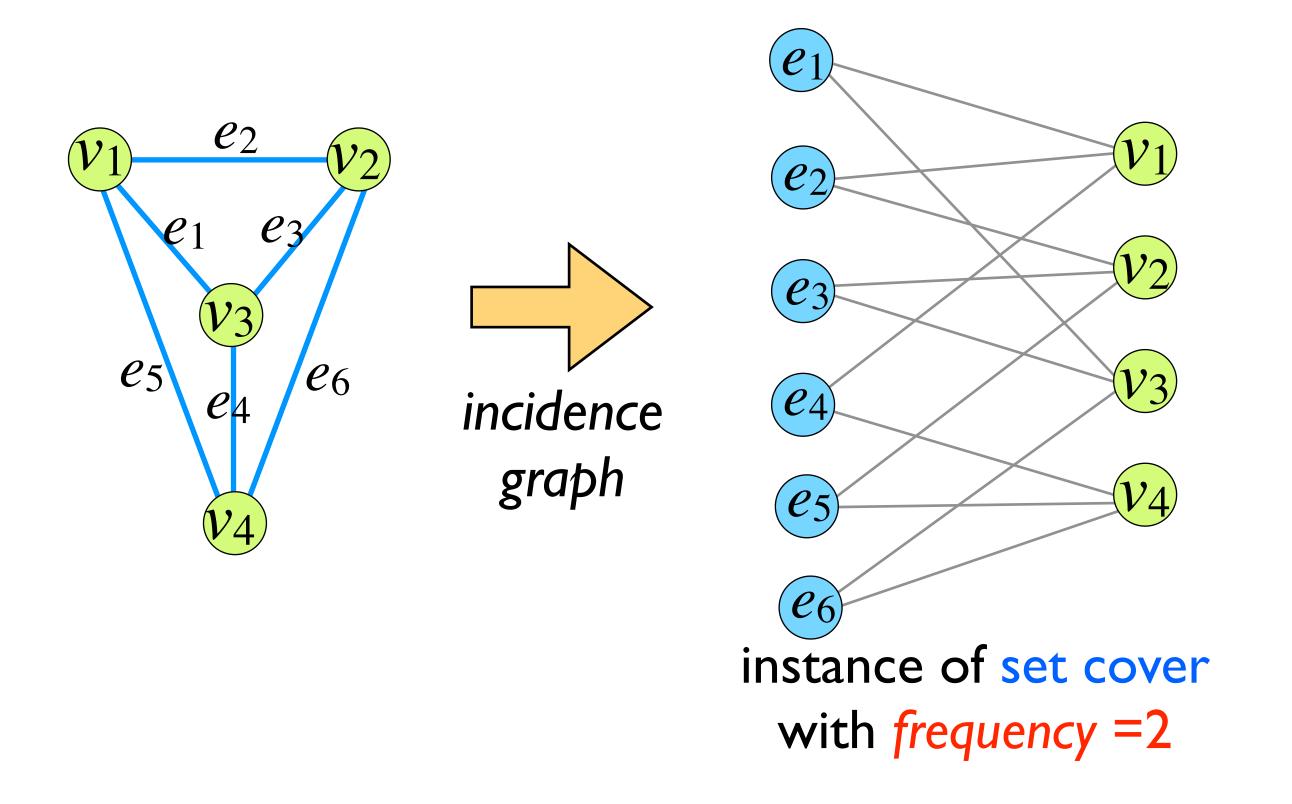
Duality



Vertex Cover

Instance: An undirected graph G(V,E)

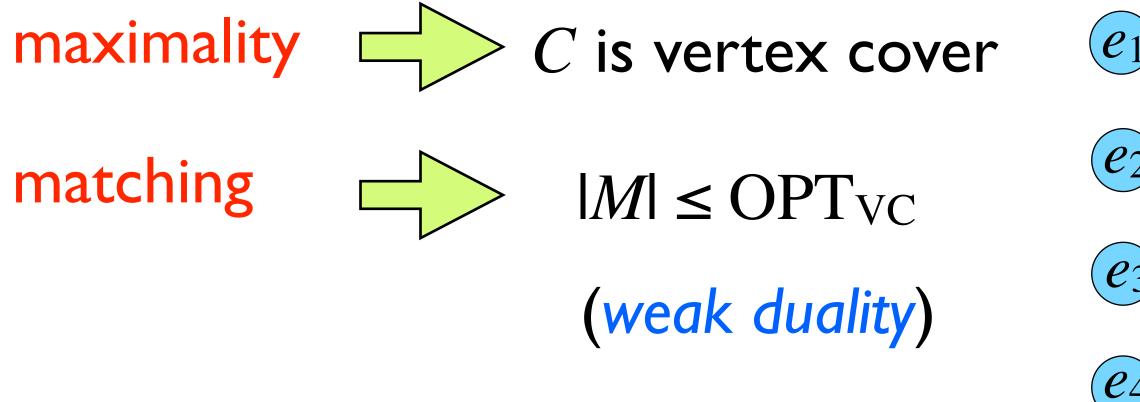
Find the smallest $C \subseteq V$ that every edge has at least one endpoint in C.



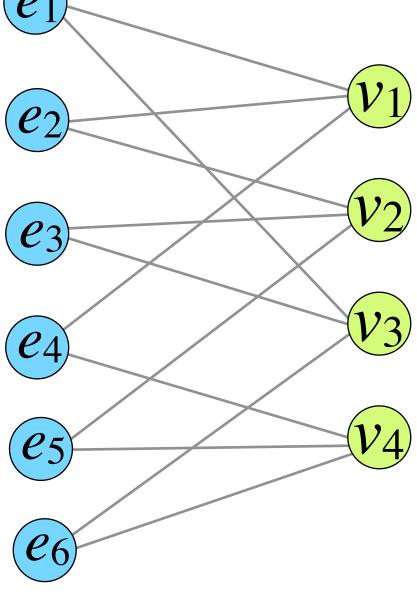
Instance: An undirected graph G(V,E)

Find the smallest $C \subseteq V$ that every edge has at least one endpoint in C.

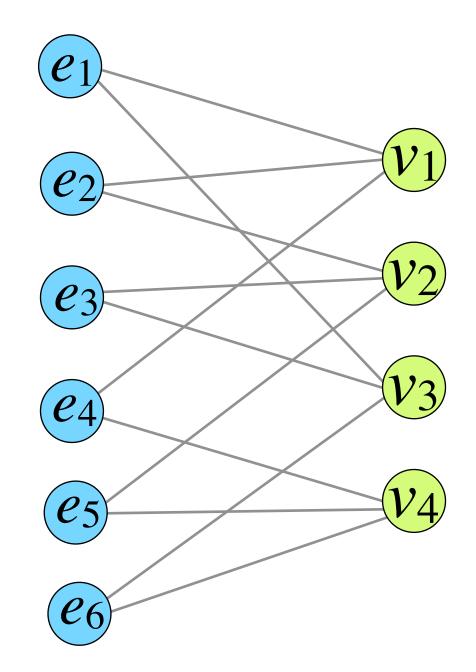
Find a maximal matching M; return the set $C = \{v: (u,v) \in M\}$ of matched vertices;



 $|C| \le 2|M| \le 2\text{OPT}$



Duality



vertex cover:

constraints

variables

$$\sum_{v \in e} x_v \ge 1$$

 $x_{v} \in \{0,1\}$

matching:

variables

constraints

$$y_e \in \{0,1\}$$

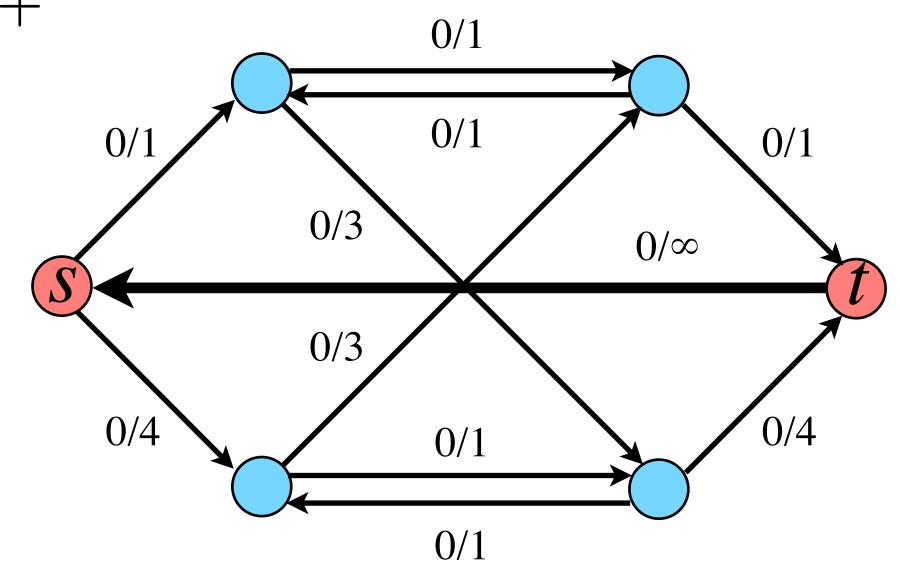
 $\sum_{e\ni v} y_e \le 1$

Max-Flow

digraph: G = (V, E) source: s sink: t

capacity: $c: E \to \mathbb{R}^+$

max f_{ts}



$$d_{uv}$$
 s.t. $0 \le f_{uv} \le c_{uv}$

$$\forall (u, v) \in E$$

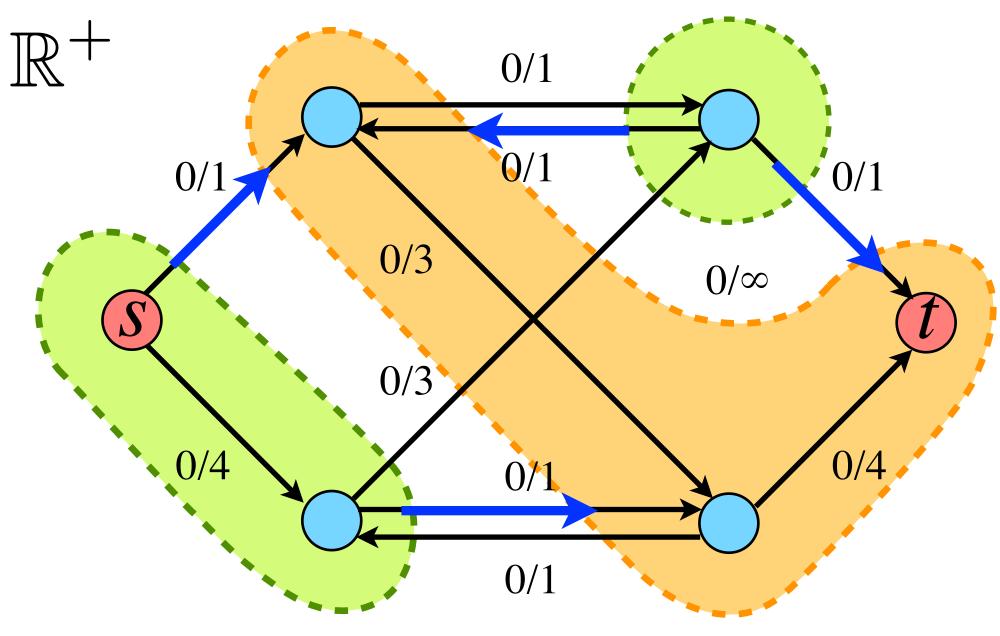
$$p_u \qquad \sum_{w:(w,u)\in E} f_{wu} - \sum_{v:(u,v)\in E} f_{uv} \ge 0 \qquad \forall u \in V$$

Dual-LP

digraph: G = (V, E) source: s

sink: t

capacity: $c: E \to \mathbb{R}^+$



 $\sum c_{uv}d_{uv}$ $(u,v)\in E$

$$s.t. \quad d_{uv} - p_u + p_v \ge 0$$

$$p_s - p_t \ge 1$$

$$d_{uv}, \geq pQ, \in p\{0\geq 1\}$$

$$\forall (u,v) \in E$$

$$\forall (u, v) \in E \quad \forall u \in V$$

Duality

Instance: graph G(V,E)

primal: minimize
$$\sum_{v \in V} x_v$$

subject to
$$\sum_{v \in e} x_v \ge 1, \quad \forall e \in E$$

$$x_v \in \{0,1\}, \quad \forall v \in V$$
 covers

vertex

matchings

dual: maximize
$$\sum_{e \in E} y_e$$

subject to
$$\sum_{e \ni v} y_v \le 1, \quad \forall v \in V$$

$$y_e \in \{0, 1\}, \quad \forall e \in E$$

Duality for LP-Relaxation

 $y_e \ge 0, \quad \forall e \in E$

Instance: graph G(V,E)

$$\begin{array}{ll} \text{primal:} & \min & \sum_{v \in V} x_v \\ & \text{subject to} & \sum_{v \in e} x_v \geq 1, \quad \forall e \in E \\ & x_v \geq 0, \quad \forall v \in V \\ & \text{dual:} & \max & \sum_{e \in E} y_e \\ & \text{subject to} & \sum_{e \ni v} y_v \leq 1, \quad \forall v \in V \end{array}$$

Estimate the Optima

minimize
$$7x_1 + x_2 + 5x_3$$

VI

subject to $x_1 - x_2 + 3x_3 \ge 10$
 $x_1 + 2x_2 - x_3 \ge 6$

II

 $x_1, x_2, x_3 \ge 0$

 $10 \le OPT \le 30$ y feasible solution

$$\boldsymbol{x} = (2, 1, 3)$$

Estimate the Optima

Primal-Dual

Primal

$$min 7x_1 + x_2 + 5x_3$$

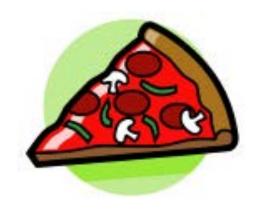
Dual

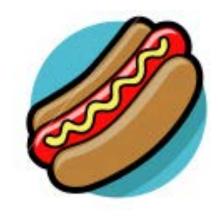
$$\begin{array}{lll} \max & 10y_1 + 6y_2 \\ \text{s.t.} & y_1 + 5y_2 \leq 7 \\ -y_1 + 2y_2 \leq 1 \\ 3y_1 - y_2 \leq 5 \\ y_1, \, y_2 \geq 0 \end{array}$$

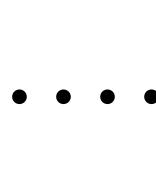
∀dual feasible ≤primal OPT

 $LP \in NP \cap coNP$

Surviving Problem







price	
vitamin	1
•	
•	

<i>C</i> ₁	<i>C</i> 2	• • • •	C_n
a 11	a_{12}	• • • •	a_{1n}
•	•		•
a_{m1}	a_{m2}	• • • •	a_{mn}

healthy $\geq b_1$

solution:

 x_1 x_2 ····

 \mathcal{X}_n

minimize the total price while keeping healthy

Surviving Problem

$$min c^Tx$$

s.t.
$$Ax \ge b$$

$$x \ge 0$$

price	C 1	<i>C</i> 2	• • • •	C_n	healthy
vitamin 1	a_{11}	a_{12}	• • • •	a_{1n}	$\geq b_1$
	•	•		•	•
vitamin m	a_{m1}	a_{m2}	• • • •	a_{mn}	$\geq b_m$

solution:

 x_1 x_2 ····

 \mathcal{X}_n

minimize the total price while keeping healthy

Primal:

Dual:

 $min c^Tx$

$$\max b^{T}y$$

s.t.
$$Ax \ge b$$

s.t.
$$y^{T}A \leq c^{T}$$

$$y \geq 0$$

$$x \ge 0$$

$$y \ge 0$$

dual

solution: price

healthy

<i>y</i> ₁	vitamin
•	•
y_m	vitamin 1

<i>C</i> ₁	<i>C</i> 2	• • • •	C_n
a_{11}	a_{12}	• • • •	a_{1n}
•	•		•
a_{m1}	a_{m2}	• • • •	a_{mn}

m types of vitamin pills, design a pricing system competitive to n natural foods, max the total price

Primal: Dual:

$$\min c^{T}x \geq \max b^{T}y$$

s.t.
$$Ax \ge b$$
 s.t. $y^TA \le c^T$

$$x \ge 0$$
 $y \ge 0$

Monogamy: dual(dual(LP)) = LP

Weak Duality:

 \forall feasible primal solution x and dual solution y

$$y^{T}b \leq y^{T}Ax \leq c^{T}x$$

Primal:

Dual:

$$\min c^{T}x \geq$$

$$max b^Ty$$

s.t.
$$Ax \ge b$$

s.t.
$$y^T A \leq c^T$$

$$x \ge 0$$

$$y \ge 0$$

Weak Duality Theorem:

 \forall feasible primal solution x and dual solution y

$$y^{T}b \leq c^{T}x$$

Primal:

Dual:

$$min c^T x$$

$$max b^Ty$$

s.t.
$$Ax \ge b$$

s.t.
$$y^{T}A \leq c^{T}$$

$$x \ge 0$$

$$y \ge 0$$

Strong Duality Theorem:

Primal LP has finite optimal solution x^* iff dual LP has finite optimal solution y^* .

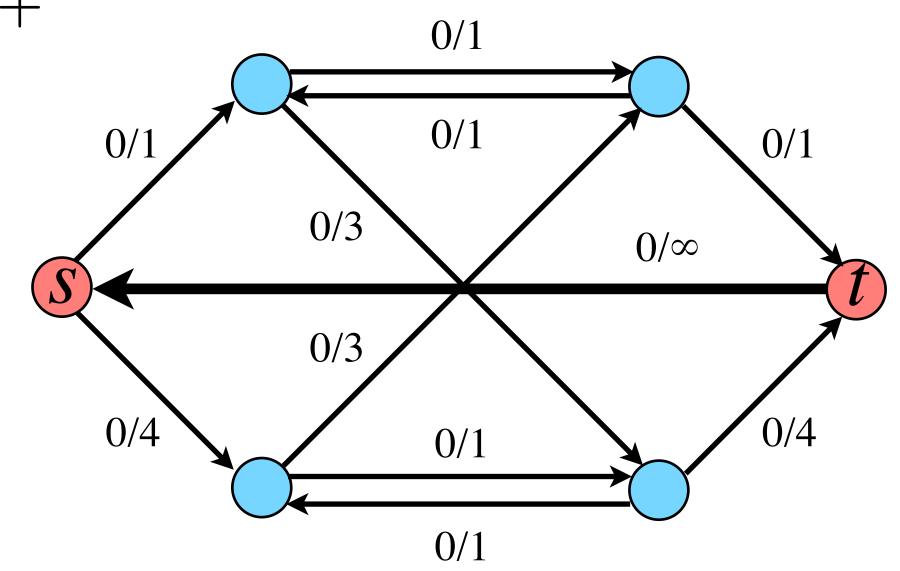
$$y^{*T}b = c^{T}x^{*}$$

Max-Flow

digraph: D(V,E) source: s sink: t

capacity: $c: E \to \mathbb{R}^+$

max f_{ts}



$$d_{uv}$$
 s.t. $0 \le f_{uv} \le c_{uv}$

$$\forall (u, v) \in E$$

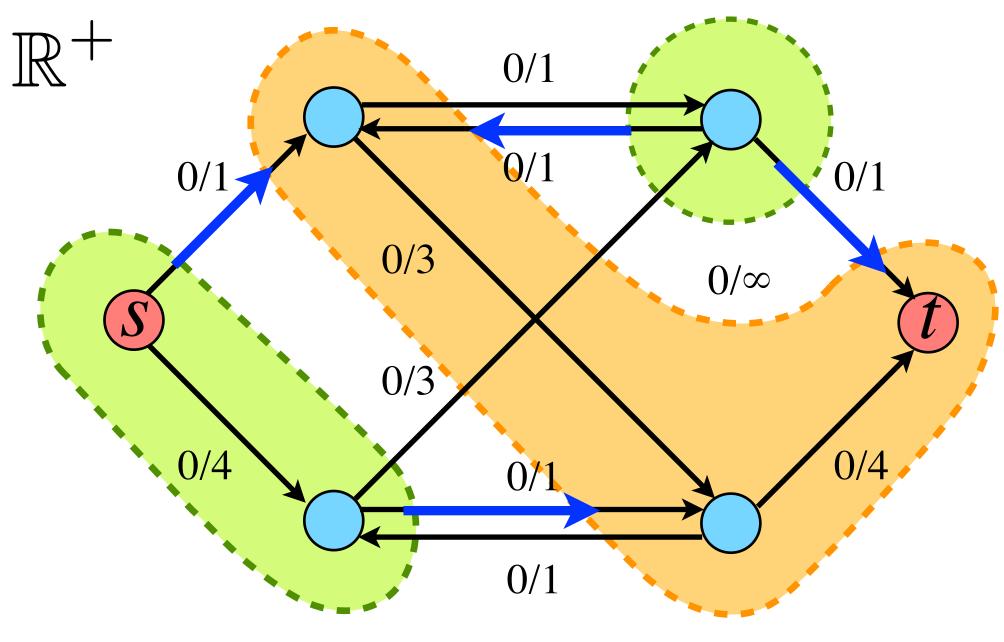
$$p_u \qquad \sum_{w:(w,u)\in E} f_{wu} - \sum_{v:(u,v)\in E} f_{uv} \leq 0 \qquad \forall u \in V$$

Dual-LP

digraph: D(V,E) source: s

sink: t

capacity: $c: E \to \mathbb{R}^+$



 $\sum c_{uv}d_{uv}$ $(u,v)\in E$

s.t.
$$d_{uv} - p_u + p_v \ge 0$$

$$\forall (u,v) \in E$$

$$p_s - p_t \ge 1$$

$$d_{uv}, p_u \in \{0, 1\}$$

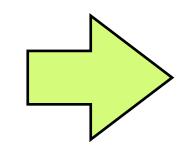
$$\forall (u, v) \in E \quad \forall u \in V$$

Primal: min
$$c^{T}x$$
 Dual: max $b^{T}y$ s.t. $Ax \ge b$ s.t. $y^{T}A \le c^{T}$ $x \ge 0$ $y \ge 0$

 \forall feasible primal solution x and dual solution y

$$y^{T}b \leq y^{T}A \ x \leq c^{T}x$$

Strong Duality Theorem x and y are both optimal iff $y^Tb = y^TA \ x = c^Tx$



$$y^{\mathrm{T}}b = y^{\mathrm{T}}A \ x = c^{\mathrm{T}}x$$

$$m = n$$

$$\forall i$$
: either A_i : $x = b_i$ or $y_i = 0$

$$\forall j$$
: either $y^T A_{\cdot j} = c_j$ or $x_j = 0$

$$\forall i: \text{ either } A_i \cdot x = b_i \text{ or } y_i = 0$$

$$\forall j: \text{ either } y^T A \cdot j = c_j \text{ or } x_j = 0$$

$$\sum_{i=1}^m b_i y_i = \sum_{i=1}^m \left(\sum_{j=1}^n a_{ij} x_j\right) y_i$$

$$\sum_{j=1}^n c_j x_j = \sum_{j=1}^n \left(\sum_{i=1}^m a_{ij} y_i\right) x_j$$

Complementary Slackness

Primal: min $c^{T}x$ Dual: max $b^{T}y$ s.t. $Ax \ge b$ s.t. $y^{T}A \le c^{T}$ $x \ge 0$

Complementary Slackness Conditions:

 \forall feasible primal solution x and dual solution y and y are both optimal iff

 $\forall i$: either A_i : $x = b_i$ or $y_i = 0$

 $\forall j$: either $y^T A_{\cdot j} = c_j$ or $x_j = 0$

Relaxed Complementary Slackness

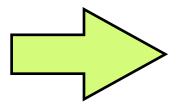
Primal: min
$$c^{T}x$$
 Dual: max $b^{T}y$ s.t. $Ax \ge b$ s.t. $y^{T}A \le c^{T}$ $x \ge 0$ $y \ge 0$

 \forall feasible primal solution x and dual solution y

for
$$\alpha, \beta \geq 1$$
:

for α , $\beta \ge 1$: $\forall i$: either A_i , $x \le \alpha$ b_i or $y_i = 0$

 $\forall j$: either $y^T A_{j} \ge c_j / \beta$ or $x_j = 0$



 $c^{T}x \leq \alpha\beta b^{T}y \leq \alpha\beta OPT_{LP}$

$$\sum_{j=1}^{n} c_j x_j \le \sum_{j=1}^{n} \left(\beta \sum_{i=1}^{m} a_{ij} y_i \right) x_j = \beta \sum_{i=1}^{m} \left(\sum_{j=1}^{n} a_{ij} x_j \right) y_i \le \alpha \beta \sum_{i=1}^{m} b_i y_i$$

Primal-Dual Schema

Dual

Primal IP: min
$$c^{T}x$$
 LP-relax: max $b^{T}y$ s.t. $Ax \ge b$ s.t. $y^{T}A \le c^{T}$ $x \in \mathbb{Z}_{\ge 0}$ $y \ge 0$

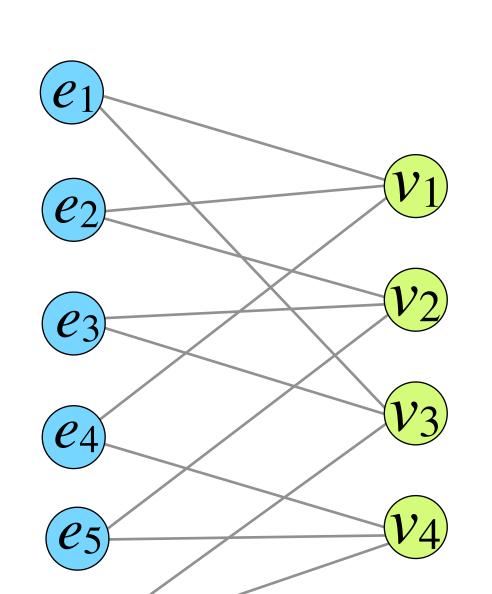
Find a primal integral solution x and a dual solution y

for
$$\alpha$$
, $\beta \ge 1$:

for
$$\alpha, \beta \ge 1$$
: $\forall i$: either $A_i \cdot x \le \alpha b_i$ or $y_i = 0$

$$\forall j$$
: either $y^T A_{\cdot j} \ge c_j / \beta$ or $x_j = 0$

$$c^{T}x \leq \alpha\beta b^{T}y \leq \alpha\beta OPT_{LP} \leq \alpha\beta OPT_{IP}$$



primal:

$$\min \sum_{v \in V} x_v$$

$$\mathbf{s.t.} \quad \sum_{v \in e} x_v \ge 1, \quad \forall e \in E$$

$$x_v \in \{0, 1\}, \quad \forall v \in V$$

dual-relax:

$$\min \sum_{e \in E} y_e$$

s.t.
$$\sum_{e \ni v} y_e \le 1, \quad \forall v \in V$$

$$y_e \ge 0, \quad \forall e \in E$$

vertex cover:

constraints

variables

$$\sum_{v \in e} x_v \ge 1$$

$$x_{v} \in \{0,1\}$$

matching:

variables

constraints

$$y_e \in \{0,1\}$$

 $\sum_{e\ni v} y_e \le 1$

feasible (x, y) such that:

$$\forall e: \text{ pither } \Rightarrow_{v} \sum_{x \in e} x_{v} \leq c x$$

$$\forall v: \text{ with } dr \Rightarrow_e xy = y_e - v + v = 0$$

primal:

$$\min \sum_{v \in V} x_v$$

s.t.
$$\sum_{v \in e} x_v \ge 1$$
, $\forall e \in E$ $x_v \in \{0,1\}$, $\forall v \in V$

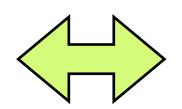
dual-relax:

$$\min \sum_{e \in E} y_e$$

$$\text{s.t.} \quad \sum_{e \ni v} y_e \le 1, \quad \forall v \in V$$

$$y_e \ge 0, \quad \forall e \in E$$

event: "v is tight (saturated)" $\sum_{e\ni v} y_e = 1$

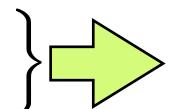


$$\sum_{e\ni v} y_e = 1$$

Initially x = 0, y = 0; while $E \neq \emptyset$

pick an $e \in E$ and raise y_e until some w goes tight; set $x_v = 1$ for those tight v and delete all $e \ni v$ from E;

every deleted e is incident to a v that $x_v = 1$ $\forall e \in E$: $\sum_{v \in e} x_v \ge 1$ all edges are eventually deleted

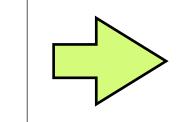


x is feasible

relaxed complementary slackness:

$$\forall e$$
: either $\sum_{v \in e} x_v \le 2$ or $y_e = 0$

$$\forall v$$
: either $\sum_{e\ni v} y_e = 1$ or $x_v = 0$



$$\sum_{v \in V} x_v \le 2 \cdot OPT$$

```
Initially x = 0, y = 0;

while E \neq \emptyset to 1

pick an e \in E and raise y_e until some v goes tight;

set x_v = 1 for those tight v and delete all e \ni v from E;

v \in e
```

Find a maximal matching; return the set of matched vertices;

the returned set is a vertex cover $SOL \le 2 \ OPT$

The Primal-Dual Schema

Write down an LP-relaxation and its dual.

min
$$c^{T}x$$

s.t. $Ax \ge b$
 $x \in \mathbb{Z}_{\ge 0}$

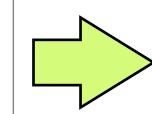
min
$$c^{T}x$$

s.t. $Ax \ge b$
 $x \in \mathbb{Z}_{\ge 0}$
max $b^{T}y$
s.t. $y^{T}A \le c^{T}$
 $y \ge 0$

- Start with a primal infeasible solution x and a dual feasible solution y (usually x=0, y=0).
- Raise x and y until x is feasible:
 - raise y until some dual constraints gets tight $y^TA_{ij} = c_j$;
 - raise x_i (integrally) corresponding to the tight dual constraints.
- Show the complementary slackness conditions:

$$\forall i$$
: either $A_i \cdot x \le \alpha \ b_i$ or $y_i = 0$
 $\forall j$: either $y^T A_{\cdot j} = c_j$ or $x_j = 0$

$$\leq \alpha \ \text{OPT}$$



$$c^{\mathsf{T}}x \leq \alpha \ b^{\mathsf{T}}y$$

$$\leq \alpha \ \mathsf{OPT}$$