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Doob Sequence
• The Doob sequence  of -variate function  on 

random variables , is given by


:        


        

Y0, Y1, …, Yn n f : ℝn → ℝ
X1, …, Xn

∀0 ≤ i ≤ n Yi = 𝔼 [ f(X1, …, Xn) ∣ X1, …, Xi ]
Y0 = 𝔼 [ f(X1, …, Xn) ] f(X1, …, Xn) = Yn

no information full information

}Pr ( f(X1, …, Xn) − 𝔼[ f(X1, …, Xn)] < t)
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Poisson Point Process
(Stochastic counting process with exponential interarrival)

• The Poisson process  with rate  is a continuous time 
process defined as follows —— imagine we have such a clock:

•  counts the number of times the clock rings up to time , initially ;

• The time elapse (interarrival time) between any two consecutive ringings (including the 

time elapse before 1st ringing) is independent exponential with parameter 


• Due to memoryless and minimum: The process defined by  independent clocks 
with the same rate  is equivalent to the 1-clock process with rate 


• (Poisson distribution) For any  and any integer ,


{N(t) ∣ t ≥ 0} λ > 0

N(t) t N(0) = 0

λ

k
λ kλ

t, s ≥ 0 n ≥ 0

Pr(N(t + s) − N(s) = n) = Pr(N(t) = n) = e−λt (λt)n

n!

“Poisson”

clock



Random Processes
(Stochastic processes)

• A random process is a family  of random variables


•  is a set of indices, where each  is usually interpreted as time


• discrete-time: countable , usually  or 


• continuous-time: uncountable , usually 


•  takes values in a state space 


• discrete-space:  countable , e.g. 


• continuous-space:  uncountable , e.g. 

{Xt : t ∈ 𝒯}

𝒯 t ∈ 𝒯
𝒯 𝒯 = {0,1,2,…} 𝒯 = {1,2,…}

𝒯 𝒯 = [0,∞)

Xt 𝒮
𝒮 𝒮 = ℤ

𝒮 𝒮 = ℝ



Random Processes
(Stochastic processes)

• Bernoulli process: i.i.d. Bernoulli trials 


• Branching (Galton-Watson) process:  and                  

where  are i.i.d. non-negative integer-valued random variables


• Poisson process: continuous-time counting process  such that


 for any  


where  are i.i.d. exponential random variables with parameter 

X0, X1, X2, … ∈ {0,1}

X0 = 1 Xn+1 =
Xn

∑
j=1

ξ(n)
j

{ξ(n)
j : n, j ≥ 0}

{N(t) ∣ t ≥ 0}
N(t) = max{n ∣ X1 + ⋯ + Xn ≤ t} t ≥ 0

{Xi} λ > 0



Martingales



Martingale (鞅)
• A sequence  of random variables is a martingale with respect to 

another sequence  if, for all ,


• 


•        (martingale property)


• By definition:  is a function of 


• Current capital  in a fair gambling game with outcomes 


• Super-martingale (上鞅): 


• Sub-martingale (下鞅): 

{Yn : n ≥ 0}
{Xn : n ≥ 0} n ≥ 0

𝔼 [ |Yn |] < ∞

𝔼 [ Yn+1 ∣ X0, X1, …, Xn ] = Yn

Yn X0, X1, …, Xn

Yn X0, X1, …, Xn

𝔼 [ Yn+1 ∣ X0, X1, …, Xn ] ≤ Yn

𝔼 [ Yn+1 ∣ X0, X1, …, Xn ] ≥ Yn



Martingale (鞅)
• A sequence  of random variables is a martingale with respect to 

another sequence  if, for all ,


• 


•        (martingale property)


•  are defined on the probability space 


•  defines a sub- -field  (the smallest -field s.t.  is -measurable)


•  is a filtration of , i.e. 


• The martingale property is expressed as 

{Yn : n ≥ 0}
{Xn : n ≥ 0} n ≥ 0

𝔼 [ |Yn |] < ∞

𝔼 [ Yn+1 ∣ X0, X1, …, Xn ] = Yn

{Xn : n ≥ 0} (Ω, Σ, Pr)
(X0, X1, …, Xn) σ Σn ⊆ Σ σ (X0, …, Xn) Σn

{Σn : n ≥ 0} Σ Σ0 ⊆ Σ1 ⊆ ⋯ ⊆ Σ
𝔼 [ Yn+1 ∣ Σn ] = Yn



Examples of Martingale 
• Doob martingale:  


• vertex/edge exposure martingale for random graph


• Capital in a fair gambling game (arbitrary betting strategy)


• Unbiased 1D random walk:   with i.i.d. uniform 


• de Moivre’s martingale:  , where  and 
 are independent with 


• Polya’s urn: The urn contains marbles with different colors. At each turn, a 
marble is selected u.a.r., and replaced with  marbles of that same color.

Yi = 𝔼 [ f(X1, …, Xn) ∣ X1, …, Xi ]

Yn =
n

∑
i=1

Xi Xi ∈ {−1,1}

Yn = (p/(1 − p))Xn Xn =
n

∑
i=1

Xi

Xi ∈ {−1,1} Pr(Xi = 1) = p

k



Studies of Martingale

• For martingale  with respect to :





• Concentration of measure (tail inequality):  Azuma’s inequality


   


• Optional stopping theorem (OST): good quitting strategy (i.e. stopping time )


 ?

{Yn : n ≥ 0} {Xn : n ≥ 0}

𝔼 [ Yn+1 ∣ X0, X1, …, Xn ] = Yn

Pr ( Yn − Y0 ≥ t) ≤ 2 exp (−
2t2

∑n
i=1 c2

i )
τ

𝔼[Yτ] > 𝔼[Y0]



Fair Gambling Game

• If  is a martingale with respect to , then ,





Proof:   By total expectation 


As a martingale,  


 

{Yn : n ≥ 0} {Xn : n ≥ 0} ∀n ≥ 0

𝔼 [Yn] = 𝔼 [Y0]
𝔼 [Yn] = 𝔼 [𝔼 [ Yn ∣ X0, X1, …, Xn−1 ]]

𝔼 [ Yn ∣ X0, X1, …, Xn−1 ] = Yn−1

⟹ 𝔼 [Yn] = 𝔼 [𝔼 [ Yn ∣ X0, X1, …, Xn−1 ]] = 𝔼 [Yn−1]



Stopping Time

• A nonnegative integer-valued random variable  is a stopping time with 
respect to the sequence  if for any  the occurrence 
of the event  is determined by the evaluation of 


• Formally,  defines a filtration of -fields  
such that  is -measurable (and  is the smallest such -field). 
Then  is a stopping time if  for any .


• Intuitively,  is a stopping time, if whether stopping at time  is determined 
by the outcomes of  

T
{Xt : t = 0,1,2,…} n ≥ 0

T = n X0, X1, …, Xn

{Xt : t = 0,1,2,…} σ Σ0 ⊆ Σ1 ⊆ ⋯
(X0, X1, …, Xn) Σn Σn σ

T {T = n} ∈ Σn n ≥ 0

T n
X0, X1, …, Xn



Stopped Martingale

• Consider a martingale  and a stopping time , both with respect to 
. The stopped martingale  is defined as





• Stopped martingales are martingale.


Proof:      Note event  is determined by evaluation of  only. Also note 
. Let’s calculate :


{Yn : n ≥ 0} T
{Xn : n ≥ 0} {YT

n : n ≥ 0}

YT
n ≜ {Yn  if n ≤ T

YT  if n > T

T ≥ i X0, …, Xi−1
YT

i = YT
i−1 + 1T≥i ⋅ (Yi − Yi−1) 𝔼 [YT

i+1 |X0…Xi]
𝔼 [YT

i + 1T>i ⋅ (Yi+1 − Yi) |X0…Xi] = 𝔼 [YT
i |X0…Xi] + 𝔼 [1T>i ⋅ (Yi+1 − Yi) |X0…Xi]

( ,  determined by )1T>i Yi X≤i

(= )Yi

= YT
i + 1T>i(𝔼[Yi+1 |…Xi] − Yi)



Optional Stopping Theorem (OST)
(Martingale Stopping Theorem)

• Optional Stopping Theorem (OST): Let  be a martingale and  
be a stopping time, both with respect to . Then


  

if any one of the following conditions holds:


• (bounded time) there is a finite  such that .


• (bounded range)  a.s., and there is a finite  s.t.  for all 


• (bounded differences)  and there is a finite  such that


 for all 

{Yt : t ≥ 0} T
{Xt : t ≥ 0}

𝔼 [YT] = 𝔼 [Y0]

N T < N
T < ∞ c |Yt | < c t

𝔼[T] < ∞ c
𝔼[ |Yt+1 − Yt | ∣ X0, X1, …, Xt] < c t ≥ 0



Optional Stopping Theorem (OST)
(Martingale Stopping Theorem)

• Optional Stopping Theorem (OST): Let  be a martingale and  
be a stopping time, both with respect to . Then


  

(general condition) if all the following conditions hold:


• 


• 


• 


• The proof of this general OST utilizes Doob’s optional sampling argument

{Yt : t ≥ 0} T
{Xt : t ≥ 0}

𝔼 [YT] = 𝔼 [Y0]

Pr(T < ∞) = 1
𝔼[ |YT | ] < ∞
lim
n→∞

𝔼 [Yn ⋅ I[T > n]] = 0



Gambler’s Ruin
(Symmetric Random Walk in One-Dimension)

• Let   where  are i.i.d. uniform (Rademacher) R.V.s


• Let  be the first time  that  or 


•  is a martingale and  is a stopping time (both w.r.t. ) 
satisfying that  for all  and  a.s.


(OST)   


        

Yt =
t

∑
i=1

Xi Xi ∈ {−1, + 1}

T t Yt = − a Yt = b

{Yt : t ≥ 0} T {Xi : i ≥ 1}
|YT

t | ≤ max{a, b} 0 ≤ t T < ∞
⟹ 𝔼[YT] = 𝔼[YT

T ] = 𝔼[Y0] = 0

𝔼[YT] = b ⋅ Pr(YT = b) − a ⋅ Pr(YT ≠ b) ⟹ Pr(YT = b) =
a

a + b

−a b0

+1−1



Wald’s Equation
(Linearity of expectation with randomly many random variables)

• Wald’s equation: Let  be i.i.d. R.V. with . Let  be a 
stopping time with respect to . If , then





• Proof:  For , let , which is a martingale. Observe that:


  and  


By OST:  .  Note that  

X1, X2, … μ = 𝔼[Xi] < ∞ T
X1, X2, … 𝔼[T] < ∞

𝔼 [
T

∑
i=1

Xi] = 𝔼[T] ⋅ μ

t ≥ 1 Yt = Σt
i=1(Xi − μ)

𝔼[T] < ∞ 𝔼[ |Yt+1 − Yt | ∣ X1, …, Xt] = 𝔼[ |Xt+1 − μ | ] < ∞
𝔼[YT] = 𝔼[Y1] = 0 𝔼[YT] = 𝔼 [ΣT

i=1Xi] − 𝔼[T] ⋅ μ



Optional Stopping Theorem (OST)
(Martingale Stopping Theorem)

• Optional Stopping Theorem (OST): Let  be a martingale and  
be a stopping time, both with respect to . Then


  

if any one of the following conditions holds:


• (bounded time) there is a finite  such that .


• (bounded range)  a.s., and there is a finite  s.t.  for all 


• (bounded differences)  and there is a finite  such that


 for all 

{Yt : t ≥ 0} T
{Xt : t ≥ 0}

𝔼 [YT] = 𝔼 [Y0]

N T < N
T < ∞ c |Yt | < c t

𝔼[T] < ∞ c
𝔼[ |Yt+1 − Yt | ∣ X0, X1, …, Xt] < c t ≥ 0



• Optional Stopping Theorem (OST): Let  be a martingale and 
 be a stopping time, both with respect to .  Then


  

• Proof: 








{Yt : t ≥ 0}
n ≤ T ≤ m {Xt : t ≥ 0}

𝔼 [YT |X0, …, Xn−1] = Yn

𝔼[YT |X<n] = 𝔼 [𝔼[YT |X<m] |X<n] = 𝔼 [Σk∈[n,m]𝔼[Yk ⋅ I(T = k) |X<m] X<n]
= 𝔼 [Σk∈[n,m)Yk ⋅ I(T = k) X<n] + 𝔼 [𝔼[Ym ⋅ I(T = m) |X<m] X<n]

𝔼 [𝔼[Ym ⋅ I(T = m) |X<m] X<n] = 𝔼 [I(T = m) ⋅ 𝔼[Ym |X<m] X<n]
= 𝔼 [I(T = m) ⋅ Ym−1 ∣ X<n]

Optional Stopping Theorem (OST)
(Martingale Stopping Theorem)



• Let  be a martingale and  be a stopping time, both 
with respect to . Then


  


• Proof (count.): 





{Yt : t ≥ 0} n ≤ T ≤ m
{Xt : t ≥ 0}

𝔼 [YT |X0, …, Xn−1] = Yn

𝔼[YT |X<n] = 𝔼 ∑
k∈[n,m)

Yk ⋅ I(T = k) X<n + 𝔼 [I(T = m) ⋅ Ym−1 ∣ X<n]

= 𝔼 [Ymin{T,m−1} ∣ X<n]
…

= 𝔼 [Ymin{T,n} ∣ X<n] = 𝔼[Yn |X<n] = Yn



Optional Stopping Theorem (OST)
(Martingale Stopping Theorem)

• Proof: 


Let , then , so  by bounded time case.


Therefore, 

lim
n→∞

𝔼 [Ymin{T,n}] − 𝔼[YT] = 0 ⟹ 𝔼[YT] = lim
n→∞

𝔼 [Ymin{T,n}]
T′￼ = min{T, n} T′￼ ∈ [0,n] 𝔼[YT′￼

] = Y0

𝔼[YT] = lim
n→∞

𝔼 [Ymin{T,n}] = Y0

• Let  be a martingale and  be a stopping time, both with respect 
to .  If ,  for all , then


  

{Yt : t ≥ 0} T
{Xt : t ≥ 0} Pr(T < ∞) = 1 𝔼 [maxt Yt ] < ∞ t ≤ T

𝔼 [YT] = Y0



Optional Stopping Theorem (OST)
(Martingale Stopping Theorem)

• Let  be a martingale and  be a stopping time, both with respect 
to .  If ,  for all , then


  

{Yt : t ≥ 0} T
{Xt : t ≥ 0} Pr(T < ∞) = 1 𝔼 [maxt Yt ] < ∞ t ≤ T

𝔼 [YT] = Y0

• Proof (cont.): Let . By assumption, . 





Since  and , 

W ≜ maxt Ymin{T,t} 𝔼[ |YT | ] ≤ 𝔼[W] < ∞

𝔼 [Ymin{T,n}] − 𝔼[YT] ≤ 𝔼 [ Ymin{T,n} − YT I(T ≥ n)] ≤ 2𝔼[W ⋅ I(T ≥ n)]

Pr(T < ∞) = 1 𝔼[W] < ∞ lim
n→∞

2𝔼[W ⋅ I(T ≥ n)] = 0



Optional Stopping Theorem (OST)
(Martingale Stopping Theorem)

• Let  be a martingale and  be a stopping time, both with respect 
to .  If , and  
for all , then


  


• Proof: Let . Clearly .





{Yt : t ≥ 0} T
{Xt : t ≥ 0} Pr(T < ∞) = 1,𝔼[T] < ∞ 𝔼[ |Yt+1 − Yt |X≤t] ≤ c

t
𝔼 [YT] = Y0

Zn ≜ |Yn − Yn−1 | , Z0 ≜ |Y0 | , W ≜ Z0 + …ZT W ≥ |YT |
𝔼[W] = Σk≥0𝔼[Zk ⋅ I(T ≥ k)] = Σk≥0𝔼 [𝔼[Zk ⋅ I(T ≥ k) |X<k]]

𝔼[W] ≤ Σk≥0c ⋅ Pr(T ≥ k) ≤ c ⋅ (1 + 𝔼[T]) < ∞

= Σk≥0𝔼 [I(T ≥ k) ⋅ 𝔼[ |Yk − Yk−1 | X<k]] ≤ Σk≥0c ⋅ Pr(T ≥ k)
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Markov Chain (马尔可夫链)

• A discrete-time random process  is a Markov chain if 





• The Markov property (memoryless property):  


• The next state  depends on the current state  but is independent of 
the history  of how the process arrived at state 


•  is conditionally independent of  given 


X0, X1, X2, …

Pr(Xt+1 = xt+1 ∣ Xt = xt, …, X0 = x0) = Pr(Xt+1 = xt+1 ∣ Xt = xt)

Xt+1 Xt
X0, X1, …, Xt−1 Xt

Xt+1 X0, X1, …, Xt−1 Xt

X0 → X1 → ⋯ → Xt−1 → Xt → Xt+1



Transition Matrix (转移矩阵)

• A discrete-time random process  is a Markov chain if 





 


•  is called the transition matrix: (assuming discrete-space)


 for any , any  


where  is the discrete state space on which  take values.


•  is a (row/right-)stochastic matrix:     and  

X0, X1, X2, …

Pr(Xt+1 = xt+1 ∣ Xt = xt, …, X0 = x0) = Pr(Xt+1 = xt+1 ∣ Xt = xt)

= P(xt, xt+1) = P(t)(xt, xt+1)

P
P(x, y) = Pr(Xt+1 = y ∣ Xt = x) x, y ∈ 𝒮 t ∈ ℕ

𝒮 X0, X1, X2, …

P P ≥ 0 P1 = 1

(time-homogeneous)



Transition Matrix (转移矩阵)

• For a Markov chain  with discrete state space 





where  is the transition matrix, which is a (row/right-)stochastic matrix


• Let  be the mass function (pmf) of . By total probability:


 


 

X0, X1, X2, … 𝒮

Pr(Xt+1 = y ∣ Xt = x) = P(x, y)

P ∈ ℝ𝒮×𝒮
≥0

π(t)(x) = Pr(Xt = x) Xt

π(t+1)(y) = Pr(Xt+1 = y) = ∑
x∈S

Pr(Xt+1 = y ∣ Xt = x) Pr(Xt = x) = π(t)P

π(0) P π(1) P ⋯ P π(t) P π(t+1) P ⋯

= (π(t)P)y



Random Walk (随机游走)

• WLOG: a Markov chain is a random walk 

on state space 


• Each state  corresponds to a vertex 


• Given the current state , the probability of next state being  is:


 


• Initially, , for :


𝒮

x ∈ 𝒮

x ∈ 𝒮 y ∈ 𝒮

P(x, y) = Pr(Xt+1 = y ∣ Xt = x)

π(0)(x) = Pr(X0 = x) t ≥ 0

π(t+1) = π(t)P
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Stationary Distribution (稳态分布)

• A distribution (pmf)  on state space  is called a stationary distribution of 
the Markov chain  if  





•  is a fixpoint (equilibrium) of the linear dynamic system


   


π 𝒮
P

πP = π

π

P = [
0 1 0

1/3 0 2/3
1/3 1/3 1/3] π = ( 1

4
,

3
8

,
3
8 )

P20 ≈
0.2500 0.3750 0.3750
0.2500 0.3750 0.3750
0.2500 0.3750 0.3750

1/3

1/3

1/3

1/3

2/3

1

1
2

3

• A distribution (pmf)  on state space  is called a stationary distribution of 
the Markov chain  if  





•  is a fixpoint (equilibrium) of the linear dynamic system


   


π 𝒮
P

πP = π

π

P = [
0 1 0

1/3 0 2/3
1/3 1/3 1/3] π = ( 1

4
,

3
8

,
3
8 )

P20 ≈
0.2500 0.3750 0.3750
0.2500 0.3750 0.3750
0.2500 0.3750 0.3750

P20 ≈
0.2500 0.3750 0.3750
0.2500 0.3750 0.3750
0.2500 0.3750 0.3750

π = ( 1
4

,
3
8

,
3
8 )



Stationary Distribution (稳态分布)

1/3

1/3

1/3

1/3

2/3

1

1
2

3

• A distribution (pmf)  on state space  is called a stationary distribution of 
the Markov chain  if  





•  is a fixpoint (equilibrium) of the linear dynamic system


• Perron-Frobenius Theorem:


- stochastic matrix : 


-  is also a left eigenvalue of 


- left eigenvector  is nonnegative


• stationary distribution always exists

π 𝒮
P

πP = π

π

P P1 = 1
1 P

πP = π



Examples

component 
A

component 
B

stationary distributions: π = λπA + (1 − λ)πB

P = [PA 0
0 PB]

state 

x
state 

y

1

1

doesn’t always converge: (a, b) → (b, a) → (a, b)…



Convergence Theorem
• Markov chain convergence theorem (Fundamental Theorem of MC): 


If a Markov chain  on state space  is irreducible and ergodic, 
then there is a unique stationary distribution  on  such that 


  for any 


• Irreducibility:  the chain is irreducible if  is an irreducible matrix (不可约矩阵)

     the state space  is strongly connected under 


• Ergodicity:  the chain is ergodic (遍历) if all states are aperiodic (无周期)

and positive recurrent (正常返)

X0, X1, X2… 𝒮
π 𝒮

π(x) = lim
t→∞

Pr(Xt = x ∣ X0 = x0) x0 ∈ 𝒮

P
⟺ 𝒮 P



Ergodicity
• Let  be a Markov chain on state space  with transition matrix .


• The period  of a state  is  


• A state  is called aperiodic if 


•    is aperiodic


• A state  is called recurrent if  

and further called positive recurrent if 


• Kakutani Shizuo (角谷静夫): random walk is recurrent on  but non-recurrent on 

“A drunk man will find his way home, but a drunk bird may get lost forever.”


• On finite state space :  irreducible  all states are positive recurrent

X0, X1, X2… 𝒮 P

d(x) x ∈ 𝒮 d(x) = gcd{t ≥ 1 ∣ Pt(x, x) > 0}
x ∈ 𝒮 d(x) = 1

P(x, x) > 0 ⟹ x

x ∈ 𝒮 Pr(∃t ≥ 1, Xt = x ∣ X0 = x) = 1
𝔼 [min{t ≥ 1 : Xt = x} ∣ X0 = x] < ∞

ℤ2 ℤ3

𝒮 ⟹



• Markov chain convergence theorem (Fundamental Theorem of MC): 

If a Markov chain  on state space  is irreducible and ergodic, 
then there is a unique stationary distribution  on  such that 


  for any 

X0, X1, X2… 𝒮
π 𝒮

π(x) = lim
t→∞

Pr(Xt = x ∣ X0 = x0) x0 ∈ 𝒮

Convergence Theorem

finiteness

irreducibility


ergodicity

existence

uniqueness

convergence

Perron-Frobenius



• Markov chain convergence theorem (Fundamental Theorem of MC): 

If a Markov chain  on state space  is irreducible and ergodic, 
then there is a unique stationary distribution  on  such that 


  for any 


• Proof: (By coupling)


X0, X1, X2… 𝒮
π 𝒮

π(x) = lim
t→∞

Pr(Xt = x ∣ X0 = x0) x0 ∈ 𝒮

x0 = X0 → X1 → ⋯ → Xn

∥ ∥ ∥ ∥ ↘
π ∼ Y0 → Y1 → ⋯ → Yn → Yn+1 → ⋯ → Yt ∼ π

Convergence Theorem

irreducibility + ergodicity  occurs a.s.⟹



PageRank
• Each webpage  is assigned a rank :

• High-rank pages have greater influence.

• A page has high rank if pointed by many high-rank pages.

• Pages pointing to few others have greater influence.


• Linear system:   where  is the out-degree of page 


• Stationary distribution  for the random walk  (tireless internet surfer) 


x ∈ 𝒮 r(x)

r(x) = ∑
y→x

r(y)
d+(y)

d+(y) y

rP = r

P(x, y) = {
1

d+(x) if x → y

0 o.w.



Convergence Theorem
• Markov chain convergence theorem (Fundamental Theorem of MC): 


If a Markov chain  on state space  is irreducible and ergodic, 
then there is a unique stationary distribution  on  such that 


  for any 


• Finite Markov chain (with finite state space ): 


lazy (i.e. )  and  strongly connected  


  always converge to the unique stationary distribution 

X0, X1, X2… 𝒮
π 𝒮

π(x) = lim
t→∞

Pr(Xt = x ∣ X0 = x0) x0 ∈ 𝒮

𝒮
P(x, x) > 0 P

⟹ π = πP



Time Reversibility
• A Markov chain  is called time-reversible or just reversible if it satisfies the 

detailed balance equation (DBE):




for some distribution  over the state space 


•  is a more refined fixpoint:   must be a stationary distribution





• Time-reversible: assuming 


 is identically distributed as 

P

π(x)P(x, y) = π(y)P(y, x)
π 𝒮

π π

(πP)y = ∑
x

π(x)P(x, y) = ∑
x

π(y)P(y, x) = π(y)

X0 ∼ π
(X0, X1, …, Xn) (Xn, …, X1, X0)



Convergence Theorem
• Markov chain convergence theorem (Fundamental Theorem of MC): 


If a Markov chain  on state space  is irreducible and ergodic, 
then there is a unique stationary distribution  on  such that 


  for any 


• Finite Markov chain (with finite state space ): 


lazy (i.e. )  and  strongly connected  


  always converge to the unique stationary distribution 


• Detail balance equation: 

X0, X1, X2… 𝒮
π 𝒮

π(x) = lim
t→∞

Pr(Xt = x ∣ X0 = x0) x0 ∈ 𝒮

𝒮
P(x, x) > 0 P

⟹ π = πP

π(x)P(x, y) = π(y)P(y, x)



Markov Chains on Proper Colorings
• Let  be a graph of maximum degree  and  a set of  colors. 


• Let  be the set of all proper -colorings of 


• Glauber dynamics:

Initially,  is arbitrary. Transition :

• choose a vertex  uniformly at random;

•  for all ;


• uniform random available color in ;


•   the chain is irreducible and ergodic (aperiodic)


• Symmetric  time-reversible and the stationary distribution  is uniform over 

G = (V, E) Δ [q] q
Ω = {σ ∈ [q]V ∣ ∀uv ∈ E, σu ≠ σv} q G

X0 ∈ Ω Xt → Xt+1
v ∈ V

Xt+1(u) ← Xt(u) u ≠ v
Xt+1(v) ← [q]∖{Xt(u) ∣ uv ∈ E}

q ≥ Δ + 2 ⟹

⟹ π Ω



Counting Constraint Satisfaction Problem

Output:  the number of CSP solutions.

• Counting independent sets:  number of independent 
sets in a graph.

• Counting matchings: number of matchings in a graph.

• Counting graph colorings: number of proper q-
colorings of a graph.

• #SAT: number of satisfying assignments of a CNF.

Examples:

They are all #P-hard!
uniform sampling approximate counting⟹

Input:  a CSP instance I.  



Mixing of Markov Chain
• Markov chain convergence theorem: 


If a Markov chain  on state space  is irreducible and ergodic, 
then there is a unique stationary distribution  on  such that 


  for any 


• How fast is the convergence rate?


• Mixing time:  let 


X0, X1, X2… 𝒮
π 𝒮

π(x) = lim
t→∞

Pr(Xt = x ∣ X0 = x0) x0 ∈ 𝒮

π(t)
x (y) = (1xPt)y = Pr(Xt = y ∣ X0 = x)

τ(ϵ) = max
x∈S

min {t ≥ 1 π(t)
x − π

1
≤ 2ϵ}



Random Processes



Random Processes

• Stationary processes:  


• i.i.d. variables, stationary Markov chains, stationary Gaussian process, …


• Renewal (or counting) processes:  where 
 are i.i.d. nonnegative-valued random variables


• Poisson processes (the only renewal processes that are Markov chains)


• Wiener process (Brownian motion): continuous-time continuous-space 
 with time-homogeneity and independent increments 

 are independent whenever the intervals  are disjoint


(Xt1, Xt2, …, Xtn) ∼ (Xt1+h, Xt2+h, …, Xtn+h)

N(t) = max{n ∣ X1 + ⋯ + Xn ≤ t}
{Xi : i ≥ 1}

{W(t) ∈ ℝ : t ≥ 0}
W(si) − W(ti) (si, ti]
W(s + u) − W(s) ∼ 𝒩(0,u)



Diffusion Processes
(Stochastic processes with continuous sample paths)

• Let  be a probability space. A random process  
with time range  and state space  is called a diffusion process if there is 
an  with  such that for all ,





is a continuous function (between topological spaces). 


• The Wiener processes are one-dimensional diffusions.


• Itô (伊藤) calculus may apply!

(Ω, Σ, Pr) X : 𝒯 × Ω → 𝒮
𝒯 𝒮

A ∈ Σ Pr(A) = 1 ω ∈ A

X(ω) : 𝒯 → 𝒮


