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Doob Sequence
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Doob Sequence
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“Poisson”
clock

Poisson Point Process

(Stochastic counting process with exponential interarrival)

e The Poisson process { N(¢) | t > 0} with rate 4 > 0 is a continuous time
process defined as follows — — imagine we have such a clock:

« N(7) counts the number of times the clock rings up to time ¢, initially N(0) = O;

* The time elapse (interarrival time) between any two consecutive ringings (including the
time elapse before 1st ringing) is independent exponential with parameter A

 Due to memoryless and minimum: The process defined by k independent clocks
with the same rate A is equivalent to the 1-clock process with rate kA

» (Poisson distribution) For any ¢, s > 0 and any integer n > 0,
— At (ﬁt)n

n'

Pr(N(t+ s) — N(s) =n) =Pr(N(t) = n) =e



Random Processes

(Stochastic processes)

» A random process is a family { X, : t € I } of random variables

« T is aset of indices, where each t € I is usually interpreted as time

o discrete-time: countable &, usually & = {0,1,2,...} or I = {1,2,...

» continuous-time: uncountable &, usually & = [0,00)

» X, takes values in a state space &

o discrete-space: countable &, e.q9. & = Z

 continuous-space: uncountable &, e.qg. & = |




Random Processes

(Stochastic processes)

» Bernoulli process: i.i.d. Bernoulli trials X, X;, X5, ... € {0,1}

X

n

Branching (Galton-Watson) process: X, = l and X, L] = 2 fj(”)

j=1
where {5].(”) : n,j > 0} are i.i.d. non-negative integer-valued random variables

» Poisson process: continuous-time counting process { N(¢) | t > 0} such that

N(t) =max{n | X;+ -+ X, <t} foranyt >0

where { X;} are i.i.d. exponential random variables with parameter 4 > 0



Martingales




Martingale ()

» Asequence {Y, : n > 0} of random variables is a martingale with respect to
another sequence (X, : n > 0} if, foralln > 0,

o -[\Yn\] < 0

. [ [Y | Xo, X ,Xn] =Y,  (martingale property)

n

o By definition: ¥, is a function of X, X, ..., X

n

« Current capital Y, in a fair gambling game with outcomes X, X, ..., X,
» Super-martingale (_E#k): [ [YnJrl | X, X, ,Xn] <Y
» Sub-martingale (T $%): & [Yn+1 | X, X, ,Xn] > Y




Martingale ()

» Asequence {Y, : n > 0} of random variables is a martingale with respect to
another sequence (X, : n > 0} if, foralln > 0,

. —[\Y\]<oo

. [ [Y | Xo, X ,Xn] =Y,  (martingale property)

» {X, : n > 0} are defined on the probability space (€2, 2, Pr)
* (XO, Xl’ o Xn) defines a sub-o-field Zn C 2 (the smallest o-field s.t. (Xy, ..., X,) is 2 -measurable)

e 12, :n2>0}isafiltrationof 2,ie. 2, C 2, C --- C 2

« The martingale property is expressed as I [Yn 0] Zn] =Y,




Examples of Martingale
« Doob martingale: Y, = [C [f(Xl, X)) | X, ...,Xi]

l

* vertex/edge exposure martingale for random graph

* Capital in a fair gambling game (arbitrary betting strategy)

. Unbiased 1D random walk: Y, = ) X;with i.i.d. uniform X; € {—1,1}
=1

de Moivre’s martingale: Y, = (p/(1 — p))*n, where X = Z X and
X; € {—1,1} are independent with Pr(X; = 1) = p i=1

 Polya’s urn: The urn contains marbles with different colors. At each turn, a
marble is selected u.a.r., and replaced with kK marbles of that same color.



Studies of Martingale

o] 20 40 50 80 100

e For martingale {Y, : n > 0} with respectto { X :n > 0}:
=Y | X0 Xps o0 X, | =

n

* Concentration of measure (tail inequality): Azuma’s inequality

2t

n

Pr Yn_YO| >1) <2exp| —

= ¢

* Optional stopping theorem (OST): good quitting strategy (i.e. stopping time 7
—L Yl > E[Yy] ?




Fair Gambling Game

o] 20 40 50 80 100

» If {Y, :n > 0} is a martingale with respect to { X : n > 0}, then Vn > 0,

= |Y,| = E Y,

Proof: By total expectation I- [Yn = [ |t [Yn | X, X5 - - n_l]

Xn— n—
X, _

As a martingale, [ [Yn | X, X5 - -

= E|Y, | X0 X, - = (Y]



Stopping Time

« A nonnegative integer-valued random variable 1 is a stopping time with
respect to the sequence (X, : t = 0,1,2,...} if for any n > 0 the occurrence

of the event 1" = n is determined by the evaluation of X, X, ..., X,

» Formally, {X, : 1 =0,1,2,...} defines a filtration of o-fields 2, C 2, C ---
such that (X, X, ..., X,) is 2 _-measurable (and X, is the smallest such o-field).
Then T'is a stopping time if {T =n} € 2 foranyn > 0.

o Intuitively, 1 is a stopping time, if whether stopping at time n is determined
by the outcomes of X, X;, ..., X

n



Stopped Martingale

» Consider a martingale { Y, : n > 0} and a stopping time 7, both with respect to
X, : n > 0}. The stopped martingale {YnT : n > 0} is defined as

Y, iftn<T
Yr ifn>1T

YTA

n

» Stopped martingales are martingale.

Proof: Note event ' > 1 is determined by evaluation of X, ..., X;_; only. Also note
Y/ =Y., + 1y, - (Y;=Y,_)). Let’s calculate E [Ylil \XO...XZ-]:

- [YiT_l_ 1T>i ' (Yi+1 o Yl) ‘XOXZ] — L [YzT‘XOXl] T [1T>i ' (Yi+1 - Yl) ‘XOXI]
= YiT + 1, (E[Y,,]..X] = Y) (175, Y; determined by X_))
(=)




Optional Stopping Theorem (OST)

(Martingale Stopping Theorem)

» Optional Stopping Theorem (OST): Let { Y, : t > 0} be a martingale and T
be a stopping time, both with respect to { X, : 1 > 0}. Then

Y7 =E Y
If any one of the following conditions holds:

* (bounded time) there is a finite NV such that 7' < .

e (bounded range) T < oo a.s., and there is a finite ¢ s.t. | Y| < ¢ for all ¢

» (bounded differences) [E[ 7| < oo and there is a finite ¢ such that
[ Yo =Y, | | Xp, X5 ..., X ] < cforallz >0




Optional Stopping Theorem (OST)

(Martingale Stopping Theorem)

» Optional Stopping Theorem (OST): Let { Y, : t > 0} be a martingale and T
be a stopping time, both with respect to { X, : 1 > 0}. Then

=Y =E X
(general condition) if all the following conditions hold:
e Pr(T < o0) =1

 E[|Y7]] < o0

. IimE|Y,-I[T>n]|=0

n— o0




Gambler’s Ruin N

(Symmetric Random Walk in One-Dimension) ——————————

[
e LetY, = 2 X; where X; € {—1, + 1} arei.i.d. uniform (Rademacher) R.V.s
i=1

» Let T'be the firsttimefthat Y, = —aorY, = b
» {Y,: 1t >0} isamartingale and T'is a stopping time (both w.r.t. {X.:: 1 > 1})
satisfying that | Y | < max{a, b} forall0 <rand T < o a.s.
(0ST) = E[Y;] = E[Y}] = E[Y,] =0

Y | =b-Pr(Y,=b)—a-Pr(Y,#b) — Pr(Y,=0b) =
a+b



Wald’s Equation

(Linearity of expectation with randomly many random variables)

« Wald’s equation: Let X, X5,

... beiid. RV. with u = E[X;] < co. Let T be a

stopping time with respect to X, X,, .... If E[7T] < o0, then

2

= VARY:

« Proof: Fort > 1,letY, =X'_,(X; — p), which is a martingale. Observe that:

By OST:

_[YT] —

(7] <o and E[| Y, =Y, | | X, ..

'9Xt] — _[‘Xt+1 _//t‘] <0

-[Y;] = 0. Note that

Y | = [ZiT:lXi] — E[T] - p




Optional Stopping Theorem (OST)

(Martingale Stopping Theorem)

» Optional Stopping Theorem (OST): Let { Y, : t > 0} be a martingale and T
be a stopping time, both with respect to { X, : 1 > 0}. Then

Y7 =E Y
If any one of the following conditions holds:

* (bounded time) there is a finite NV such that 7' < .

e (bounded range) T < oo a.s., and there is a finite ¢ s.t. | Y| < ¢ for all ¢

» (bounded differences) [E[ 7| < oo and there is a finite ¢ such that
[ Yo =Y, | | Xp, X5 ..., X ] < cforallz >0




Optional Stopping Theorem (OST)

(Martingale Stopping Theorem)

» Optional Stopping Theorem (OST): Let { Y, : ¢t > 0} be a martingale and
n < T < m be a stopping time, both with respectto { X, : t > 0}. Then

* Prooft:

|

1Y, 1T = m) | X, X,

=Yl X, -n X

_[YT|X<n] — L [_[YT‘X<m] ‘X<n] — L [Zke[n,m] _[Yk'I(Tz k)‘X<m]

n—l] — Yn

x|

X<n] + [-[Ym AT =m)|X_,] |X<n]

] [I(T= m) - E[Y,, | X} |X<”]

= ((T=m)-Y,_, | X,




» Let (Y, : 7> 0} beamartingale and n < T < m be a stopping time, both
with respectto { X, : > 0}. Then

=Y X, oo X |

Y

n

* Proof (count.):

_[YT‘X<n]

) Y IT=k|X,|+E[IT=m)-Y, | X,]

k€e[n,m)

- [Ymin{T,m—l} ‘X<n]

- [Ymin{T,n} ‘X<n] — _[Yn‘X<n] — Yn



Optional Stopping Theorem (OST)

(Martingale Stopping Theorem)

» Let {Y,: 1> 0} be amartingale and 7 be a stopping time, both with respect
to (X, :t>0}. FPr(T < o0) =1, [maxt |Yt|] < oo forall t < T, then

= Y| =Y,
¢ PrOOf: llm _ [len{T,n}] — _[YT]

Let 7" = min{7T,n}, then T" € |0,n], so E[Y,] = Y, by bounded time case.

n— o0

Therefore, E[ Y] = lim [ [Y in{T,n}] = Y,

m
n—~oo



Optional Stopping Theorem (OST)

(Martingale Stopping Theorem)

» Let {Y,: 1> 0} be amartingale and 7 be a stopping time, both with respect
to (X, :t>0}. FPr(T < o0) =1, [maxt |Yt|] < oo forall t < T, then

= Y] =Y

. Proof (cont.): Let W £ max, . By assumption, E[ | Y| ] £ E[W] < .

Ymin{T,t}

= Yooz | = B | S E | Yooy = Yo | KT 2 m)| < 2E(W - KT 2 )

Since Pr(T’'< o0o) =1 and E[W] < oo, Iim 2E[W - (T > n)] =0

n— 00




Optional Stopping Theorem (OST)

(Martingale Stopping Theorem)

» Let {Y,: 1> 0} be amartingale and 7 be a stopping time, both with respect
to{X,:12>0}. fPr(T<o0) = LE[T] < o0,andE[]|Y,,; - Y, [X ] <
for all 7, then

— [YT — Yo
. Proof:LetZ =|Y, —Y _|.Zy=|Y)|,W=Zy+ ...Zp. Clearly W > | Y;|.
(W] =2 0EZ - KT = k)] = s 0E |E[Z - [T = k) | X ]

= Zy>0 [I(T > k) -E[1Y =Y,y |X<k]] < Zys0C - Pr(T" 2 k)

(W] < Zpupc - Pr(T > k) < c- (1 + E[T]) < o



Markov Chain




Markov Chain (& /& 7T k& 4&)

e A discrete-time random process X, X, X,, ... is @ Markov chain if
Pr(X,p 1 = x4 | X, =X, ... Xg = X)) = Pr(Xyy = x4 | X, = X)
 The Markov property (memoryless property):

» The next state X, ; depends on the current state X, but is independent of
the history X, X, ..., X,_; of how the process arrived at state X,

 X,,is conditionally independent of X, X, ..., X,_; given X,

) . O



Transition Matrix (3£ 4% 4E[4)

e A discrete-time random process X, X, X,, ... is @ Markov chain if

Pr(Xt+1 — At | X, =X o0y Xog = X)) = Pr(Xt+1 — At | X, = Xx)

(time-homogeneous) = P(x,, X, 1)

P is called the transition matrix: (assuming discrete-space)
P,y)=Pr(X,, =y | X,=x)foranyx,y € &,anyt € N

where & is the discrete state space on which X, X;, X, ... take values.

« P is a (row/right-)stochastic matrix: P >0 and P1 =1



Transition Matrix (3£ 4% 4E[4)

» For a Markov chain X,,, X;, X,, ... with discrete state space &

Pr(X;; =y | X, =x) = P(x,y)

where P € | if)(& Is the transition matrix, which is a (row/right-)stochastic matrix

. Let 70(x) = Pr(X, = x) be the mass function (pmf) of X.. By total probability:
7Dy =Pr(X,, = y) = Z PriX,; =y | X, =x)Pr(X, = x) = (7""P),
XES

L0 Of Lol )L



Random Walk (4 puiis £)

e WLOG: a Markov chain is a random walk
on state space &

» Each state x € & corresponds to a vertex

 Given the current state x € &, the probability of next state being y € & is:
P(x,y) =Pr(X,;, =y | X, =x)

e Initially, 7V (x) = Pr(X, = x), fort > 0:



Stationary Distribution (% & 4%

» A distribution (omf) 7 on state space & is called a stationary distribution of
the Markov chain P if

nP =1

e mis a fixpoint (equilibrium) of the linear dynamic system

o 10 3 3
P=|1/3 0 2/3| n= (—,—,—
1/3 1/3 1/3

0.2500 0.3750 0.3750

P? ~ 10.2500 0.3750 0.3750
0.2500 0.3750 0.3750




Stationary Distribution (% & 4%

» A distribution (omf) 7 on state space & is called a stationary distribution of
the Markov chain P if

nP =1

e mis a fixpoint (equilibrium) of the linear dynamic system

e Perron-Frobenius Theorem:
- stochastic matrix P: P1 =1
- | is also a left eigenvalue of P

- left eigenvector 7P = 7 is nonnegative

» stationary distribution always exists




Examples

. g N P N
¢ S ¢ S P O
¢ component * ¢ component * A
i i i P =
L § A ’ ) B ’ O PB
S 4 & o
- \ N L g

oy m - oy m =

stationary distributions: 7 = Az, + (1 — A)7xp
1

doesn’t always converge: (a,b) — (b,a) — (a,b)...



Convergence Theorem

 Markov chain convergence theorem (Fundamental Theorem of MC):

If a Markov chain X)), X;, X,... on state space & is and ,
then there is a unique stationary distribution 7 on & such that

m(x) = lim Pr(X, = x | X, = x) foranyxy € &

[— 00

 Irreducibility: the chain is irreducible if P is an irreducible matrix (7= =T £ 4E %)

< the state space & is strongly connected under P

 Ergodicity: the chain is ergodic (# ) if all states are aperiodic (X F #A)

and positive recurrent (it 7 iR)



Ergodicity

Let X, X;, X,... be a Markov chain on state space & with transition matrix P.

The period d(x) of astate x € §isd(x) = ged{t > 1| P'(x,x) > 0}
» Astate x € & is called aperiodic if d(x) = 1
e P(x,x) > 0 = xis aperiodic

A state x € & is called recurrent if Pr(d7 > 1, X, =x | X, =x) =1
and further called positive recurrent if E [min{r > 1 : X, = x} | X, = x| < o0

Kakutani Shizuo ( # 2% *<): random walk is recurrent on 72 but non-recurrent on Z-
“A drunk man will find his way home, but a drunk bird may get lost forever.”

On finite state space &: irreducible = all states are positive recurrent



Convergence Theorem

 Markov chain convergence theorem (Fundamental Theorem of MC):

If a Markov chain X, X;, X,... on state space & is irreducible and ergodic,
then there is a unique stationary distribution 7 on & such that

m(x) = lim Pr(X, = x | X, = x) foranyxy € &

[— 00

finiteness ) existence
Perron-Frobenius

rreducibility ) uniqueness

ergodicity ) convergence



Convergence Theorem

 Markov chain convergence theorem (Fundamental Theorem of MC):

If a Markov chain X, X;, X,... on state space & is irreducible and ergodic,
then there is a unique stationary distribution 7 on & such that

m(x) = lim Pr(X, = x | X, = x) foranyxy € &

[— 00

* Proof. (By coupling)

irreducibility + ergodicity — occurs a.s.



PageRank

« Each webpage x € & is assigned a rank r(x):

 High-rank pages have greater influence.
* A page has high rank if pointed by many high-rank pages.
* Pages pointing to few others have greater influence.

where d7(y) is the out-degree of page y

ry)
. Linear system: r(x) = E
_|_
o W)

« Stationary distribution rP = r for the random walk (tireless internet surfer)
1

P(x,y) = < 4®
0 0.W.

fx —> vy



Convergence Theorem

 Markov chain convergence theorem (Fundamental Theorem of MC):
If a Markov chain X, X;, X,... on state space & is irreducible and ergodic,
then there is a unique stationary distribution 7 on & such that

m(x) = lim Pr(X, = x | X, = x) foranyxy € &

[— 00

 Finite Markov chain (with finite state space &):
lazy (i.e. P(x,x) > 0) and strongly connected P

—> always converge to the unique stationary distribution 7 = #P



Time Reversibility

« A Markov chain P is called time-reversible or just reversible if it satisfies the
detailed balance equation (DBE):

n(x)P(x,y) = m(y)P(y, X)
for some distribution 7 over the state space &

e IS a more refined fixpoint: 7 must be a stationary distribution

(xP), = ) n(®)P(x,y) = ) 2Py, x) = ()

 Time-reversible: assuming X, ~ 7

(Xp, Xj, ..., X)) is identically distributed as (X, ..., X;, X))



Convergence Theorem

 Markov chain convergence theorem (Fundamental Theorem of MC):

If a Markov chain X, X;, X,... on state space & is irreducible and ergodic,
then there is a unique stationary distribution 7 on & such that

m(x) = lim Pr(X, = x | X, = x) foranyxy € &

[— 00

 Finite Markov chain (with finite state space &):
lazy (i.e. P(x,x) > 0) and strongly connected P

—> always converge to the unique stationary distribution 7 = #P

» Detail balance equation: 7(x)P(x,y) = n(y)P(y, x)



Markov Chains on Proper Colorings

e Let G = (V, E) be a graph of maximum degree A and [g] a set of g colors.

. LetQ ={o€[q]" | Vuv € E, o, # 0,} be the set of all proper g-colorings of G

* Glauber dynamics:

Initially, X, € €2 is arbitrary. Transition X, = X,_ ;:

« choose a vertex v € V uniformly at random;

e X, (u) « X(u)forall u # v;

+ X,.{(v) « uniform random available color in [g]\{X(u) | uv € E};

» g > A + 2 = the chain is irreducible and ergodic (aperiodic)

» Symmetric = time-reversible and the stationary distribution 7 is uniform over €2



Counting Constraint Satisfaction Problem

Input: a CSP instance 1.
Output: the number of CSP solutions.

Examples:

® Counting independent sets: number of independent
sets in a graph.

® (Counting matchings: number of matchings in a graph.

® Counting graph colorings: number of proper g-
colorings of a graph.

® #SAT:number of satisfying assignments of a CNF

They are all #P-hard!
uniform sampling =—approximate counting



Mixing of Markov Chain &

TR : ‘ N
AN &

 Markov chain convergence theorem:

— R —

If a Markov chain X, X, X,... on state space & is irreducible and ergodic,
then there is a unique stationary distribution 7 on & such that

m(x) = lim Pr(X, = x | Xy = xy) foranyx, € &

[— 00

 How fast is the convergence rate?

+ Mixing time: let 7{"(y) = (1,P"), = Pr(X, =y | X, = x)

7(€) = maxmin{t > 1 ‘ H n}gt)_yz H < 26}

x€S 1



Random Processes

.010
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.000

=0.005

=0.010

0.020—0.005



Random Processes

- Stationary processes: (X,,X,,....,X, ) ~ (X, 1 X 1o -2 X 41)
* |.I.d. variables, stationary Markov chains, stationary Gaussian process, ...

 Renewal (or counting) processes: N(f) = max{n | X; + --- + X, < ¢} where
(X: : 1> 1} arei.i.d. nonnegative-valued random variables

* Poisson processes (the only renewal processes that are Markov chains)

 Wiener process (Brownian motion): continuous-time continuous-space
{W() € R : t > 0} with time-homogeneity and independent increments

W(s;) — W(t;) are independent whenever the intervals (s, #;| are disjoint

W(s +u) — W(s) ~ A(0,u)



Diffusion Processes

(Stochastic processes with continuous sample paths)

e Let (€2, 2, Pr) be a probability space. A random process X : & X Q — &

with time range & and state space & is called a diffusion process if there is
an A € 2 with Pr(A) = 1 such that forall w € A,

Xw): I - &
is a continuous function (between topological spaces).
 The Wiener processes are one-dimensional diffusions.

e Itd (%) calculus may apply!




