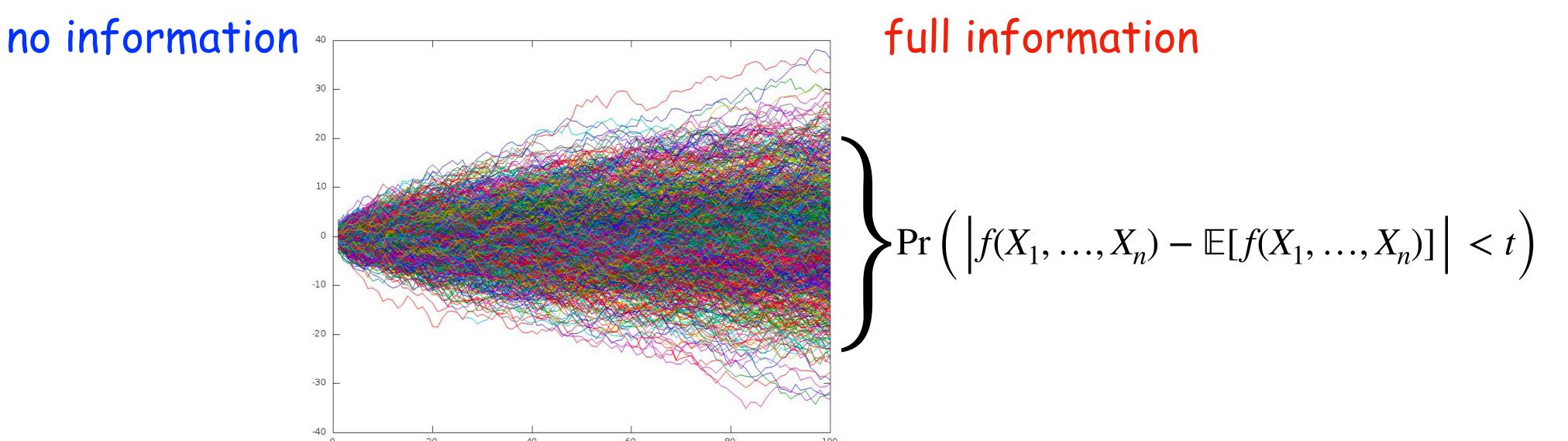
Foundations of Data Science

Random Processes

$$\forall 0 \le i \le n$$
: $Y_i = \mathbb{E} \left[f(X_1, ..., X_n) \mid X_1, ..., X_i \right]$

$$Y_0 = \mathbb{E}\left[f(X_1, ..., X_n)\right] \longrightarrow f(X_1, ..., X_n) = Y_n$$



$$\forall 0 \le i \le n$$
: $Y_i = \mathbb{E} \left[f(X_1, ..., X_n) \mid X_1, ..., X_i \right]$

$$\mathbb{E}[f] = Y_0$$

• The <u>Doob sequence</u> $Y_0, Y_1, ..., Y_n$ of n-variate function $f: \mathbb{R}^n \to \mathbb{R}$ on random variables $X_1, ..., X_n$, is given by

$$\forall 0 \le i \le n$$
: $Y_i = \mathbb{E} \left[f(X_1, ..., X_n) \mid X_1, ..., X_i \right]$

randomized by

$$\mathbb{E}[f] = Y_0 \to Y_1$$

• The <u>Doob sequence</u> $Y_0, Y_1, ..., Y_n$ of n-variate function $f: \mathbb{R}^n \to \mathbb{R}$ on random variables $X_1, ..., X_n$, is given by

$$\forall 0 \le i \le n$$
: $Y_i = \mathbb{E} \left[f(X_1, ..., X_n) \mid X_1, ..., X_i \right]$

randomized by

$$f(1,0),(0),(0),(0),(0)$$
averaged over

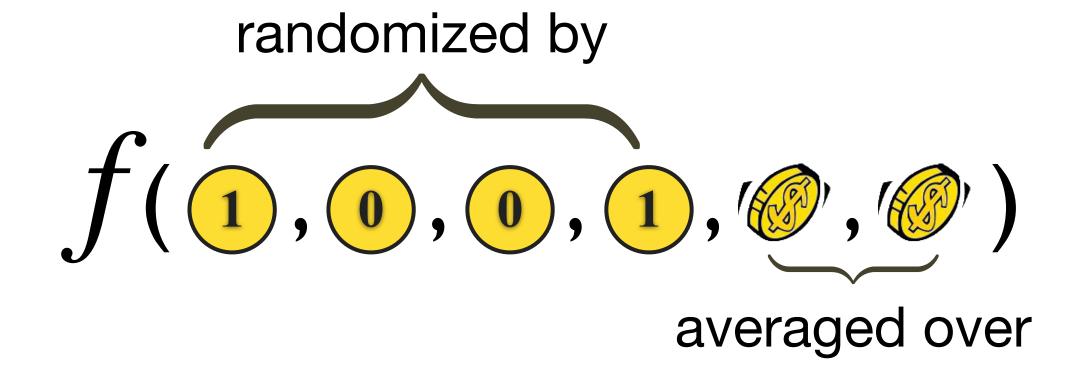
$$\mathbb{E}[f] = Y_0 \to Y_1 \to Y_2$$

$$\forall 0 \le i \le n$$
: $Y_i = \mathbb{E} \left[f(X_1, ..., X_n) \mid X_1, ..., X_i \right]$

randomized by
$$f(1,0,0,0,0), (0,0), (0,0), (0,0)$$
 averaged over

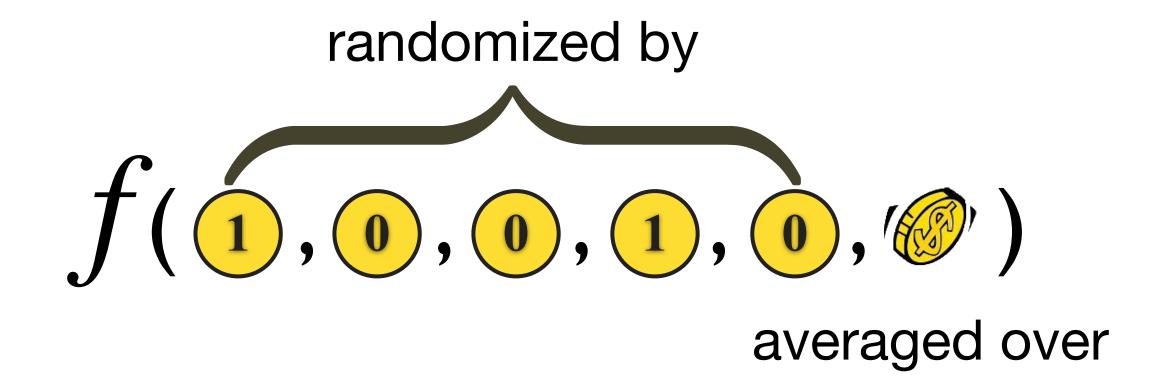
$$\mathbb{E}[f] = Y_0 \to Y_1 \to Y_2 \to Y_3$$

$$\forall 0 \le i \le n$$
: $Y_i = \mathbb{E} \left[f(X_1, ..., X_n) \mid X_1, ..., X_i \right]$



$$\mathbb{E}[f] = Y_0 \to Y_1 \to Y_2 \to Y_3 \to Y_4$$

$$\forall 0 \le i \le n$$
: $Y_i = \mathbb{E} \left[f(X_1, ..., X_n) \mid X_1, ..., X_i \right]$



$$\mathbb{E}[f] = Y_0 \to Y_1 \to Y_2 \to Y_3 \to Y_4 \to Y_5$$

• The <u>Doob sequence</u> $Y_0, Y_1, ..., Y_n$ of n-variate function $f: \mathbb{R}^n \to \mathbb{R}$ on random variables $X_1, ..., X_n$, is given by

$$\forall 0 \le i \le n$$
: $Y_i = \mathbb{E} \left[f(X_1, ..., X_n) \mid X_1, ..., X_i \right]$

randomized by

$$\text{Information} \quad \mathbb{E}[f] = Y_0 \to Y_1 \to Y_2 \to Y_3 \to Y_4 \to Y_5 \to Y_6 = f \quad \text{full information}$$

"Poisson" clock

Poisson Point Process

(Stochastic counting process with exponential interarrival)

- N(t) counts the number of times the clock rings up to time t, initially N(0)=0;
- The time elapse (interarrival time) between any two consecutive ringings (including the time elapse before 1st ringing) is independent exponential with parameter λ
- Due to memoryless and minimum: The process defined by k independent clocks with the same rate λ is equivalent to the 1-clock process with rate $k\lambda$
- (Poisson distribution) For any $t, s \ge 0$ and any integer $n \ge 0$,

$$\Pr(N(t+s) - N(s) = n) = \Pr(N(t) = n) = e^{-\lambda t} \frac{(\lambda t)^n}{n!}$$

Random Processes

(Stochastic processes)

- A <u>random process</u> is a family $\{X_t:t\in\mathcal{T}\}$ of random variables
- \mathscr{T} is a set of indices, where each $t \in \mathscr{T}$ is usually interpreted as <u>time</u>
 - discrete-time: countable \mathcal{T} , usually $\mathcal{T} = \{0,1,2,\ldots\}$ or $\mathcal{T} = \{1,2,\ldots\}$
 - continuous-time: uncountable \mathcal{T} , usually $\mathcal{T} = [0, \infty)$
- X_t takes values in a <u>state space</u> \mathcal{S}
 - discrete-space: countable \mathcal{S} , e.g. $\mathcal{S} = \mathbb{Z}$
 - continuous-space: uncountable \mathcal{S} , e.g. $\mathcal{S} = \mathbb{R}$

Random Processes

(Stochastic processes)

- Bernoulli process: i.i.d. Bernoulli trials $X_0, X_1, X_2, \ldots \in \{0, 1\}$
- Branching (Galton-Watson) process: $X_0=1$ and $X_{n+1}=\sum_{j=1}^{\Lambda_n}\xi_j^{(n)}$ where $\{\xi_j^{(n)}:n,j\geq 0\}$ are i.i.d. non-negative integer-valued random variables
- Poisson process: continuous-time counting process $\{N(t)\mid t\geq 0\}$ such that $N(t)=\max\{n\mid X_1+\cdots+X_n\leq t\} \text{ for any } t\geq 0$
 - where $\{X_i\}$ are i.i.d. exponential random variables with parameter $\lambda>0$

Martingales

Martingale (鞅)

- A sequence $\{Y_n : n \ge 0\}$ of random variables is a martingale with respect to another sequence $\{X_n : n \ge 0\}$ if, for all $n \ge 0$,
 - $\mathbb{E}\left[|Y_n|\right] < \infty$
 - $\mathbb{E}\left[Y_{n+1} \mid X_0, X_1, \dots, X_n\right] = Y_n$ (martingale property)
- By definition: Y_n is a function of X_0, X_1, \ldots, X_n
- Current capital Y_n in a fair gambling game with outcomes X_0, X_1, \ldots, X_n
 - Super-martingale (上鞅): $\mathbb{E}\left[Y_{n+1} \mid X_0, X_1, ..., X_n\right] \leq Y_n$
 - Sub-martingale (下鞅): $\mathbb{E}\left[Y_{n+1} \mid X_0, X_1, ..., X_n\right] \geq Y_n$

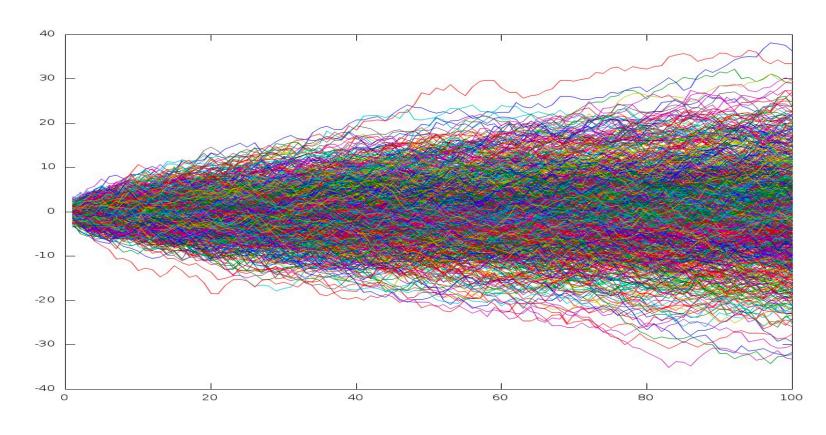
Martingale (鞅)

- A sequence $\{Y_n : n \ge 0\}$ of random variables is a martingale with respect to another sequence $\{X_n : n \ge 0\}$ if, for all $n \ge 0$,
 - $\mathbb{E}\left[|Y_n|\right] < \infty$
 - $\mathbb{E}\left[Y_{n+1} \mid X_0, X_1, \dots, X_n\right] = Y_n$ (martingale property)
- $\{X_n: n \geq 0\}$ are defined on the probability space (Ω, Σ, \Pr)
 - (X_0, X_1, \ldots, X_n) defines a sub- σ -field $\Sigma_n \subseteq \Sigma$ (the smallest σ -field s.t. (X_0, \ldots, X_n) is Σ_n -measurable)
 - $\{\Sigma_n: n \geq 0\}$ is a <u>filtration</u> of Σ , i.e. $\Sigma_0 \subseteq \Sigma_1 \subseteq \cdots \subseteq \Sigma$
 - The martingale property is expressed as $\mathbb{E}\left[\left. Y_{n+1} \mid \Sigma_n \right. \right] = Y_n$

Examples of Martingale

- Doob martingale: $Y_i = \mathbb{E}\left[f(X_1, ..., X_n) \mid X_1, ..., X_i\right]$
 - vertex/edge exposure martingale for random graph
- Capital in a fair gambling game (arbitrary betting strategy)
- Unbiased 1D random walk: $Y_n = \sum_{i=1}^n X_i$ with *i.i.d.* uniform $X_i \in \{-1,1\}$
- de Moivre's martingale: $Y_n=(p/(1-p))^{X_n}$, where $X_n=\sum_{i=1}^n X_i$ and $X_i\in\{-1,1\}$ are independent with $\Pr(X_i=1)=p$
- Polya's urn: The urn contains marbles with different colors. At each turn, a marble is selected u.a.r., and replaced with k marbles of that same color.

Studies of Martingale



• For martingale $\{Y_n : n \ge 0\}$ with respect to $\{X_n : n \ge 0\}$:

$$\mathbb{E}\left[Y_{n+1} \mid X_0, X_1, ..., X_n \right] = Y_n$$

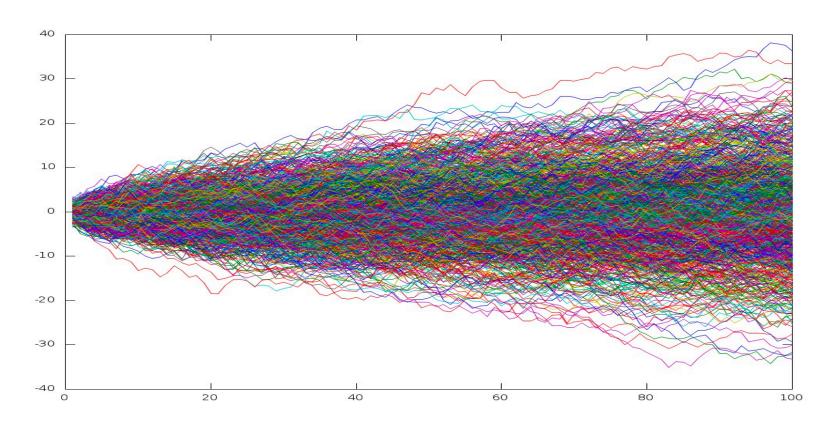
Concentration of measure (tail inequality): Azuma's inequality

$$\Pr\left(\left|Y_n - Y_0\right| \ge t\right) \le 2\exp\left(-\frac{2t^2}{\sum_{i=1}^n c_i^2}\right)$$

• Optional stopping theorem (OST): good quitting strategy (i.e. stopping time τ)

$$\mathbb{E}[Y_{\tau}] > \mathbb{E}[Y_0]?$$

Fair Gambling Game



• If $\{Y_n : n \ge 0\}$ is a martingale with respect to $\{X_n : n \ge 0\}$, then $\forall n \ge 0$,

$$\mathbb{E}\left[Y_n\right] = \mathbb{E}\left[Y_0\right]$$

Proof: By total expectation $\mathbb{E}\left[Y_n\right] = \mathbb{E}\left[\mathbb{E}\left[Y_n \mid X_0, X_1, ..., X_{n-1}\right]\right]$

As a martingale, $\mathbb{E}\left[Y_n \mid X_0, X_1, \dots, X_{n-1}\right] = Y_{n-1}$

$$\Longrightarrow \mathbb{E}\left[Y_n\right] = \mathbb{E}\left[\mathbb{E}\left[Y_n \mid X_0, X_1, \dots, X_{n-1}\right]\right] = \mathbb{E}\left[Y_{n-1}\right]$$

Stopping Time

- A nonnegative integer-valued random variable T is a <u>stopping time</u> with respect to the sequence $\{X_t: t=0,1,2,\dots\}$ if for any $n\geq 0$ the occurrence of the event T=n is determined by the evaluation of X_0,X_1,\dots,X_n
 - Formally, $\{X_t: t=0,1,2,\ldots\}$ defines a filtration of σ -fields $\Sigma_0\subseteq \Sigma_1\subseteq \cdots$ such that (X_0,X_1,\ldots,X_n) is Σ_n -measurable (and Σ_n is the smallest such σ -field). Then T is a stopping time if $\{T=n\}\in \Sigma_n$ for any $n\geq 0$.
 - Intuitively, T is a stopping time, if whether stopping at time n is determined by the outcomes of X_0, X_1, \ldots, X_n

Stopped Martingale

• Consider a martingale $\{Y_n : n \ge 0\}$ and a stopping time T, both with respect to $\{X_n : n \ge 0\}$. The stopped martingale $\{Y_n^T : n \ge 0\}$ is defined as

$$Y_n^T \triangleq \begin{cases} Y_n & \text{if } n \leq T \\ Y_T & \text{if } n > T \end{cases}$$

• Stopped martingales are martingale.

Proof: Note event $T \geq i$ is determined by evaluation of X_0, \ldots, X_{i-1} only. Also note $Y_i^T = Y_{i-1}^T + \mathbf{1}_{T \geq i} \cdot (Y_i - Y_{i-1})$. Let's calculate $\mathbb{E}\left[Y_{i+1}^T \mid X_0 \ldots X_i\right]$:

$$\mathbb{E}\left[Y_i^T + \mathbf{1}_{T>i} \cdot (Y_{i+1} - Y_i) \mid X_0 \dots X_i\right] = \mathbb{E}\left[Y_i^T \mid X_0 \dots X_i\right] + \mathbb{E}\left[\mathbf{1}_{T>i} \cdot (Y_{i+1} - Y_i) \mid X_0 \dots X_i\right]$$

$$= Y_i^T + \mathbf{1}_{T>i} (\mathbb{E}[Y_{i+1} \mid \dots X_i] - Y_i) \quad (\mathbf{1}_{T>i}, Y_i \text{ determined by } X_{\leq i})$$

$$(=Y_i)$$

(Martingale Stopping Theorem)

• Optional Stopping Theorem (OST): Let $\{Y_t : t \ge 0\}$ be a martingale and T be a stopping time, both with respect to $\{X_t : t \ge 0\}$. Then

$$\mathbb{E}\left[Y_T\right] = \mathbb{E}\left[Y_0\right]$$

if any one of the following conditions holds:

- (bounded time) there is a finite N such that T < N.
- (bounded range) $T<\infty$ a.s., and there is a finite c s.t. $\mid Y_t\mid < c$ for all t
- (bounded differences) $\mathbb{E}[T] < \infty$ and there is a finite c such that

$$\mathbb{E}[|Y_{t+1} - Y_t| | X_0, X_1, ..., X_t] < c \text{ for all } t \ge 0$$

(Martingale Stopping Theorem)

• Optional Stopping Theorem (OST): Let $\{Y_t : t \ge 0\}$ be a martingale and T be a stopping time, both with respect to $\{X_t : t \ge 0\}$. Then

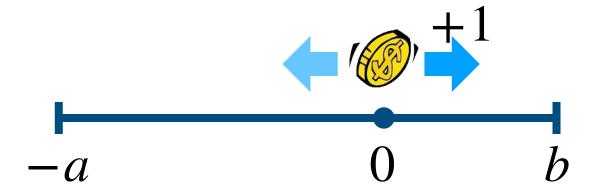
$$\mathbb{E}\left[Y_T\right] = \mathbb{E}\left[Y_0\right]$$

(general condition) if all the following conditions hold:

- $Pr(T < \infty) = 1$
- $\mathbb{E}[|Y_T|] < \infty$
- $\lim_{n\to\infty} \mathbb{E}\left[Y_n \cdot I[T>n]\right] = 0$

Gambler's Ruin

(Symmetric Random Walk in One-Dimension)



- Let $Y_t = \sum_{i=1}^t X_i$ where $X_i \in \{-1, +1\}$ are i.i.d. uniform (Rademacher) R.V.s
- Let T be the first time t that $Y_t = -a$ or $Y_t = b$
- $\{Y_t: t\geq 0\}$ is a martingale and T is a stopping time (both w.r.t. $\{X_i: i\geq 1\}$) satisfying that $|Y_t^T|\leq \max\{a,b\}$ for all $0\leq t$ and $T<\infty$ a.s.

$$(\mathbf{OST}) \Longrightarrow \mathbb{E}[Y_T] = \mathbb{E}[Y_T^T] = \mathbb{E}[Y_0] = 0$$

$$\mathbb{E}[Y_T] = b \cdot \Pr(Y_T = b) - a \cdot \Pr(Y_T \neq b) \implies \Pr(Y_T = b) = \frac{a}{a + b}$$

Wald's Equation

(Linearity of expectation with randomly many random variables)

• <u>Wald's equation</u>: Let X_1, X_2, \ldots be i.i.d. R.V. with $\mu = \mathbb{E}[X_i] < \infty$. Let T be a **stopping time** with respect to X_1, X_2, \ldots If $\mathbb{E}[T] < \infty$, then

$$\mathbb{E}\left[\sum_{i=1}^{T} X_i\right] = \mathbb{E}[T] \cdot \mu$$

• **Proof**: For $t \ge 1$, let $Y_t = \sum_{i=1}^t (X_i - \mu)$, which is a martingale. Observe that:

$$\mathbb{E}[T] < \infty \text{ and } \mathbb{E}[|Y_{t+1} - Y_t| | X_1, ..., X_t] = \mathbb{E}[|X_{t+1} - \mu|] < \infty$$

By OST:
$$\mathbb{E}[Y_T] = \mathbb{E}[Y_1] = 0$$
. Note that $\mathbb{E}[Y_T] = \mathbb{E}\left[\Sigma_{i=1}^T X_i\right] - \mathbb{E}[T] \cdot \mu$

(Martingale Stopping Theorem)

• Optional Stopping Theorem (OST): Let $\{Y_t : t \ge 0\}$ be a martingale and T be a stopping time, both with respect to $\{X_t : t \ge 0\}$. Then

$$\mathbb{E}\left[Y_T\right] = \mathbb{E}\left[Y_0\right]$$

if any one of the following conditions holds:

- (bounded time) there is a finite N such that T < N.
- (bounded range) $T<\infty$ a.s., and there is a finite c s.t. $\mid Y_t\mid < c$ for all t
- (bounded differences) $\mathbb{E}[T] < \infty$ and there is a finite c such that

$$\mathbb{E}[|Y_{t+1} - Y_t| | X_0, X_1, ..., X_t] < c \text{ for all } t \ge 0$$

(Martingale Stopping Theorem)

• Optional Stopping Theorem (OST): Let $\{Y_t : t \ge 0\}$ be a martingale and $n \le T \le m$ be a stopping time, both with respect to $\{X_t : t \ge 0\}$. Then

$$\mathbb{E}\left[Y_T | X_0, ..., X_{n-1}\right] = Y_n$$

Proof:

$$\begin{split} \mathbb{E}[Y_T|X_{< n}] &= \mathbb{E}\left[\mathbb{E}[Y_T|X_{< m}] \,|\, X_{< n}\right] = \mathbb{E}\left[\Sigma_{k \in [n,m]} \mathbb{E}[Y_k \cdot I(T=k) \,|\, X_{< m}] \,|\, X_{< n}\right] \\ &= \mathbb{E}\left[\Sigma_{k \in [n,m)} Y_k \cdot I(T=k) \,|\, X_{< n}\right] + \mathbb{E}\left[\mathbb{E}[Y_m \cdot I(T=m) \,|\, X_{< m}] \,|\, X_{< n}\right] \\ \mathbb{E}\left[\mathbb{E}[Y_m \cdot I(T=m) \,|\, X_{< m}] \,|\, X_{< n}\right] = \mathbb{E}\left[I(T=m) \cdot \mathbb{E}[Y_m \,|\, X_{< m}] \,|\, X_{< n}\right] \\ &= \mathbb{E}\left[I(T=m) \cdot Y_{m-1} \,|\, X_{< n}\right] \end{split}$$

• Let $\{Y_t: t \geq 0\}$ be a martingale and $n \leq T \leq m$ be a stopping time, both with respect to $\{X_t: t \geq 0\}$. Then

$$\mathbb{E}\left[Y_T | X_0, ..., X_{n-1}\right] = Y_n$$

• Proof (count.):
$$\mathbb{E}[Y_T|X_{< n}] = \mathbb{E}\left[\sum_{k \in [n,m)} Y_k \cdot I(T=k) \left| X_{< n} \right| + \mathbb{E}\left[I(T=m) \cdot Y_{m-1} \mid X_{< n}\right] \right]$$
$$= \mathbb{E}\left[Y_{\min\{T,m-1\}} \mid X_{< n}\right]$$

$$= \mathbb{E}\left[Y_{\min\{T,n\}} \mid X_{< n}\right] = \mathbb{E}[Y_n \mid X_{< n}] = Y_n$$

(Martingale Stopping Theorem)

- Let $\{Y_t: t \geq 0\}$ be a martingale and T be a stopping time, both with respect to $\{X_t: t \geq 0\}$. If $\Pr(T < \infty) = 1$, $\mathbb{E}\left[\max_t \left|Y_t\right|\right] < \infty$ for all $t \leq T$, then $\mathbb{E}\left[Y_T\right] = Y_0$
- Proof: $\lim_{n \to \infty} \left| \mathbb{E} \left[Y_{\min\{T,n\}} \right] \mathbb{E}[Y_T] \right| = 0 \implies \mathbb{E}[Y_T] = \lim_{n \to \infty} \mathbb{E} \left[Y_{\min\{T,n\}} \right]$

Let $T' = \min\{T, n\}$, then $T' \in [0,n]$, so $\mathbb{E}[Y_{T'}] = Y_0$ by bounded time case.

Therefore,
$$\mathbb{E}[Y_T] = \lim_{n \to \infty} \mathbb{E}\left[Y_{\min\{T,n\}}\right] = Y_0$$

(Martingale Stopping Theorem)

- Let $\{Y_t: t \geq 0\}$ be a martingale and T be a stopping time, both with respect to $\{X_t: t \geq 0\}$. If $\Pr(T < \infty) = 1$, $\mathbb{E}\left[\max_t \left|Y_t\right|\right] < \infty$ for all $t \leq T$, then $\mathbb{E}\left[Y_T\right] = Y_0$
- **Proof** (cont.): Let $W \triangleq \max_t \left| Y_{\min\{T,t\}} \right|$. By assumption, $\mathbb{E}[|Y_T|] \leq \mathbb{E}[W] < \infty$.

$$\left| \mathbb{E}\left[Y_{\min\{T,n\}} \right] - \mathbb{E}[Y_T] \right| \le \mathbb{E}\left[\left| Y_{\min\{T,n\}} - Y_T \right| I(T \ge n) \right] \le 2\mathbb{E}[W \cdot I(T \ge n)]$$

Since
$$\Pr(T < \infty) = 1$$
 and $\mathbb{E}[W] < \infty$, $\lim_{n \to \infty} 2\mathbb{E}[W \cdot I(T \ge n)] = 0$

(Martingale Stopping Theorem)

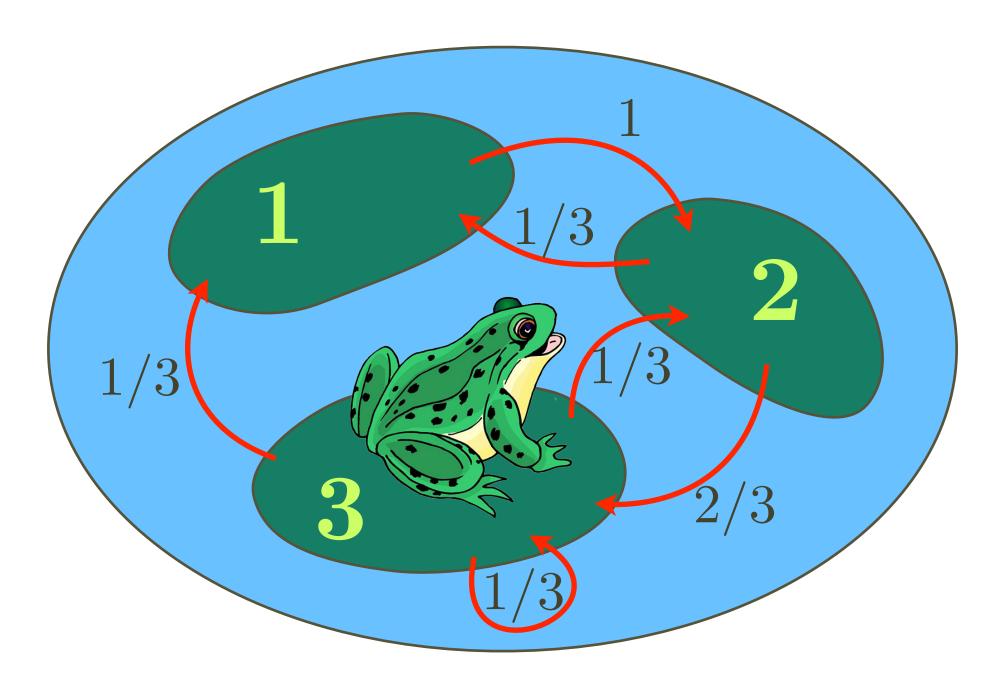
• Let $\{Y_t: t \geq 0\}$ be a martingale and T be a stopping time, both with respect to $\{X_t: t \geq 0\}$. If $\Pr(T < \infty) = 1, \mathbb{E}[T] < \infty$, and $\mathbb{E}[|Y_{t+1} - Y_t|X_{\leq t}] \leq c$ for all t, then

$$\mathbb{E}\left[Y_T\right] = Y_0$$

 $\begin{array}{l} \bullet \ \, \mathbf{Proof} \colon \mathrm{Let}\, Z_n \triangleq \|Y_n - Y_{n-1}\|, Z_0 \triangleq \|Y_0\|, W \triangleq Z_0 + \ldots Z_T. \ \, \mathrm{Clearly}\,\, W \geq \|Y_T\|. \\ \mathbb{E}[W] = \Sigma_{k \geq 0} \mathbb{E}[Z_k \cdot I(T \geq k)] = \Sigma_{k \geq 0} \mathbb{E}\left[\mathbb{E}[Z_k \cdot I(T \geq k) \mid X_{< k}]\right] \\ = \Sigma_{k \geq 0} \mathbb{E}\left[I(T \geq k) \cdot \mathbb{E}[\|Y_k - Y_{k-1}\| \mid X_{< k}]\right] \leq \Sigma_{k \geq 0} c \cdot \Pr(T \geq k) \\ \end{array}$

$$\mathbb{E}[W] \le \sum_{k \ge 0} c \cdot \Pr(T \ge k) \le c \cdot (1 + \mathbb{E}[T]) < \infty$$

Markov Chain



Markov Chain (马尔可夫链)

• A discrete-time random process X_0, X_1, X_2, \ldots is a Markov chain if

$$Pr(X_{t+1} = x_{t+1} \mid X_t = x_t, ..., X_0 = x_0) = Pr(X_{t+1} = x_{t+1} \mid X_t = x_t)$$

- The Markov property (memoryless property):
 - The next state X_{t+1} depends on the current state X_t but is independent of the history $X_0, X_1, \ldots, X_{t-1}$ of how the process arrived at state X_t
 - X_{t+1} is conditionally independent of $X_0, X_1, \ldots, X_{t-1}$ given X_t

$$X_0 \rightarrow X_1 \rightarrow \cdots \rightarrow X_{t-1} \rightarrow X_t \rightarrow X_{t+1}$$

Transition Matrix (转移矩阵)

• A discrete-time random process X_0, X_1, X_2, \ldots is a Markov chain if

$$\Pr(X_{t+1} = x_{t+1} \mid X_t = x_t, ..., X_0 = x_0) = \Pr(X_{t+1} = x_{t+1} \mid X_t = x_t)$$
(time-homogeneous)
$$= P(x_t, x_{t+1}) = P^{(t)}(x_t, x_{t+1})$$

• P is called the <u>transition matrix</u>: (assuming discrete-space)

$$P(x,y) = \Pr(X_{t+1} = y \mid X_t = x) \text{ for any } x, y \in \mathcal{S}, \text{ any } t \in \mathbb{N}$$

where \mathcal{S} is the discrete state space on which X_0, X_1, X_2, \ldots take values.

• P is a (row/right-)stochastic matrix: $P \ge 0$ and P1 = 1

Transition Matrix (转移矩阵)

• For a Markov chain X_0, X_1, X_2, \ldots with discrete state space \mathcal{S}

$$Pr(X_{t+1} = y \mid X_t = x) = P(x, y)$$

where $P \in \mathbb{R}^{S \times S}_{>0}$ is the transition matrix, which is a (row/right-)stochastic matrix

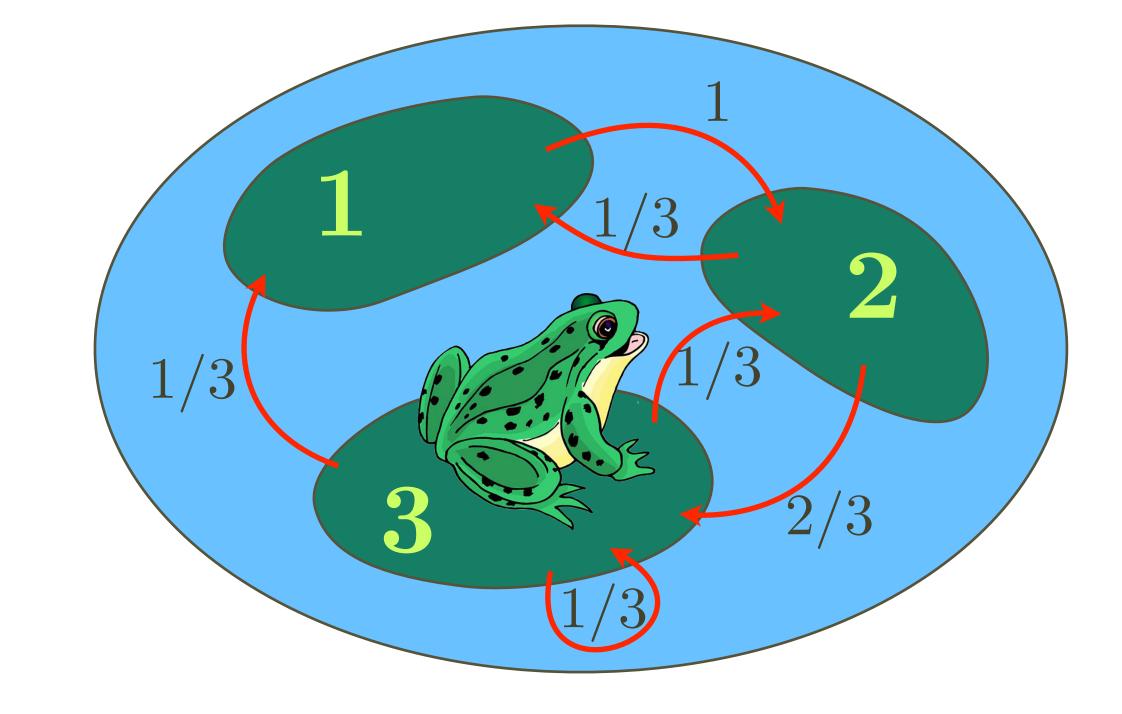
• Let $\pi^{(t)}(x) = \Pr(X_t = x)$ be the mass function (pmf) of X_t . By total probability:

$$\pi^{(t+1)}(y) = \Pr(X_{t+1} = y) = \sum_{x \in S} \Pr(X_{t+1} = y \mid X_t = x) \Pr(X_t = x) = (\pi^{(t)}P)_y$$

$$\pi^{(0)} \xrightarrow{P} \pi^{(1)} \xrightarrow{P} \cdots \xrightarrow{P} \pi^{(t)} \xrightarrow{P} \pi^{(t+1)} \xrightarrow{P} \cdots$$

Random Walk (随机游走)

- WLOG: a Markov chain is a $\underline{\text{random walk}}$ on state space $\mathcal S$
- Each state $x \in \mathcal{S}$ corresponds to a vertex



• Given the current state $x \in \mathcal{S}$, the probability of next state being $y \in \mathcal{S}$ is:

$$P(x, y) = \Pr(X_{t+1} = y \mid X_t = x)$$

• Initially, $\pi^{(0)}(x) = \Pr(X_0 = x)$, for $t \ge 0$:

$$\pi^{(t+1)} = \pi^{(t)} P$$

Stationary Distribution (稳态分布)

• A distribution (pmf) π on state space $\mathcal S$ is called a <u>stationary distribution</u> of the Markov chain P if

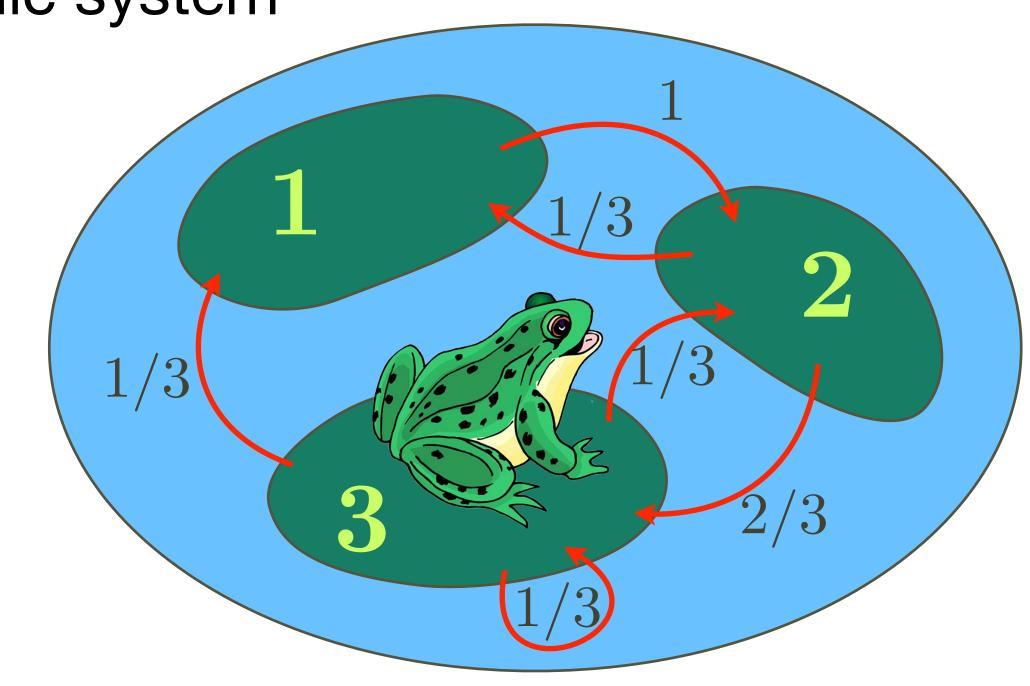
$$\pi P = \pi$$

• π is a fixpoint (equilibrium) of the linear dynamic system

$$P = \begin{bmatrix} 0 & 1 & 0 \\ 1/3 & 0 & 2/3 \\ 1/3 & 1/3 & 1/3 \end{bmatrix} \quad \pi = \left(\frac{1}{4}, \frac{3}{8}, \frac{3}{8}\right)$$

$$\begin{bmatrix} 0.2500 & 0.3750 & 0.3750 \\ 0.2500 & 0.2750 & 0.2750 \end{bmatrix}$$

$$P^{20} \approx \begin{bmatrix} 0.2500 & 0.3750 & 0.3750 \\ 0.2500 & 0.3750 & 0.3750 \\ 0.2500 & 0.3750 & 0.3750 \end{bmatrix}$$



Stationary Distribution (稳态分布)

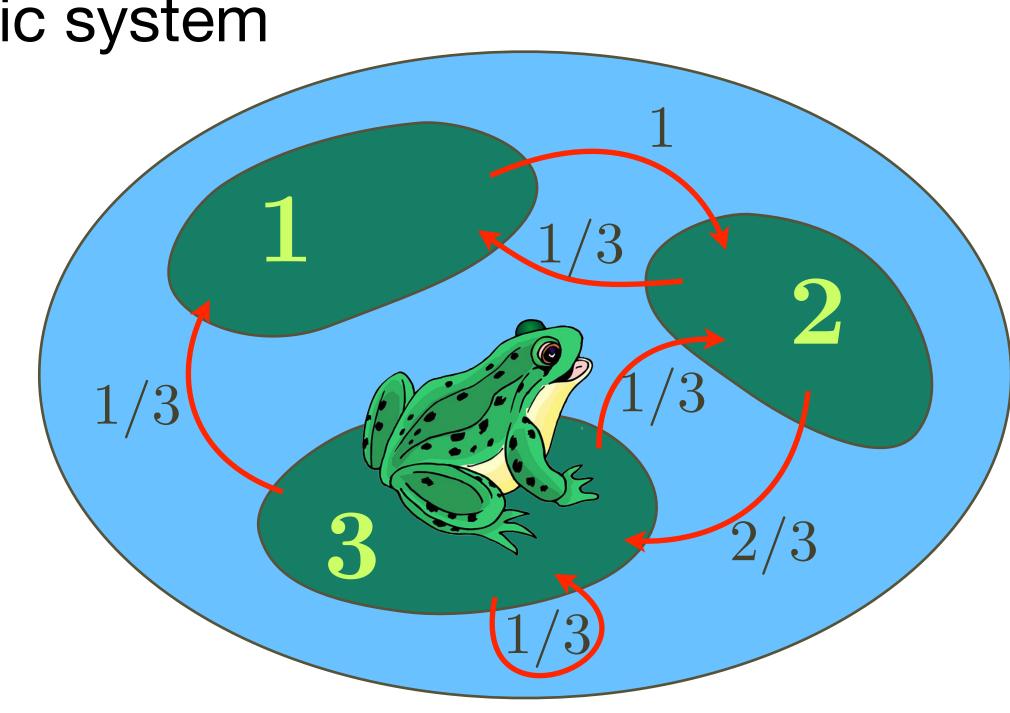
• A distribution (pmf) π on state space $\mathcal S$ is called a <u>stationary distribution</u> of the Markov chain P if

$$\pi P = \pi$$

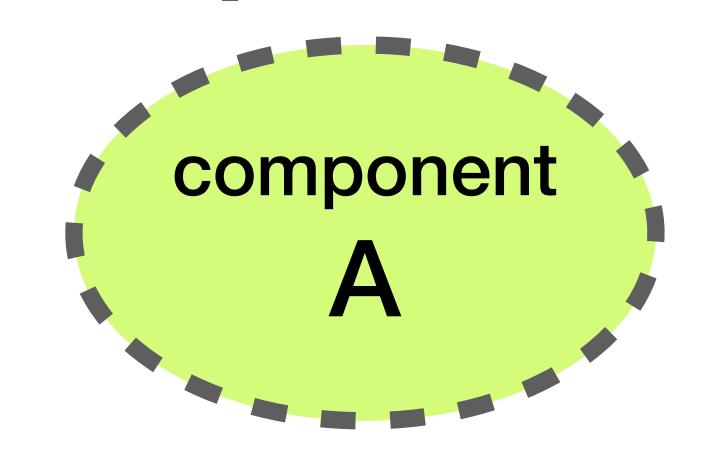
• π is a fixpoint (equilibrium) of the linear dynamic system

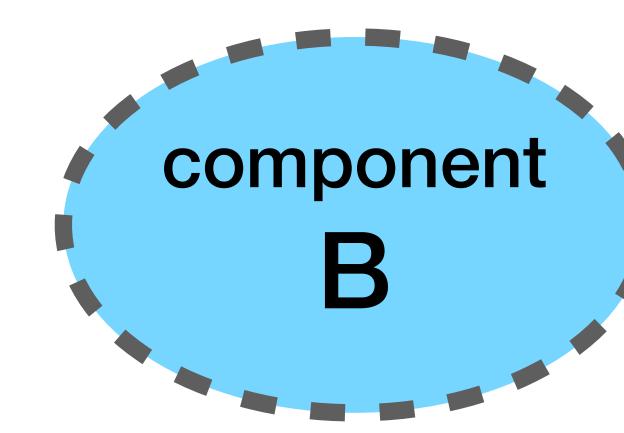
Perron-Frobenius Theorem:

- stochastic matrix P: P1 = 1
- 1 is also a **left eigenvalue** of P
- left eigenvector $\pi P = \pi$ is nonnegative
- stationary distribution always exists



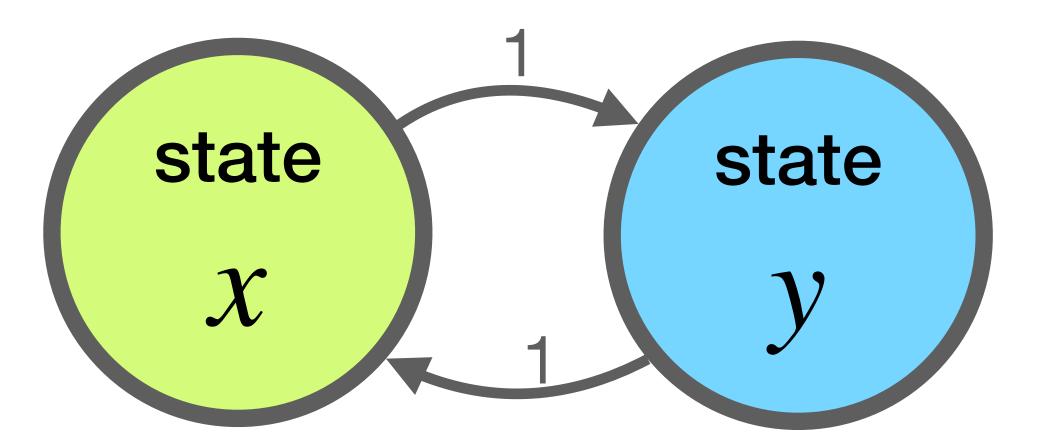
Examples





$$P = \begin{bmatrix} P_A & 0 \\ 0 & P_B \end{bmatrix}$$

stationary distributions: $\pi = \lambda \pi_A + (1 - \lambda)\pi_B$



doesn't always converge: $(a,b) \rightarrow (b,a) \rightarrow (a,b)...$

• Markov chain convergence theorem (Fundamental Theorem of MC): If a Markov chain $X_0, X_1, X_2...$ on state space $\mathcal S$ is *irreducible* and *ergodic*, then there is a unique stationary distribution π on $\mathcal S$ such that

$$\pi(x) = \lim_{t \to \infty} \Pr(X_t = x \mid X_0 = x_0) \text{ for any } x_0 \in \mathcal{S}$$

- Irreducibility: the chain is $\underline{irreducible}$ if P is an irreducible matrix (不可约矩阵) \iff the state space $\mathcal S$ is $\underline{strongly}$ connected under P
- Ergodicity: the chain is <u>ergodic</u> (遍历) if all states are *aperiodic* (无周期) and *positive recurrent* (正常返)

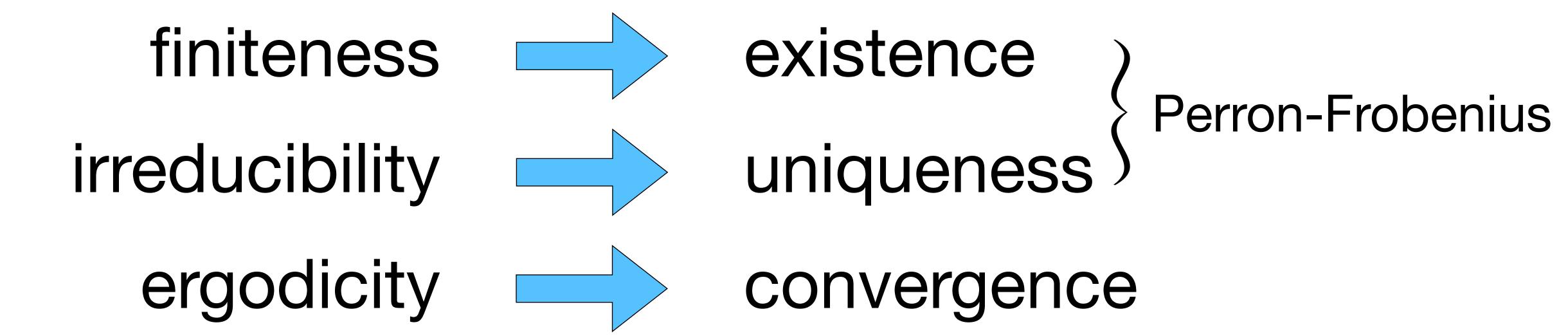
Ergodicity

- Let $X_0, X_1, X_2...$ be a Markov chain on state space \mathcal{S} with transition matrix P.
- The <u>period</u> d(x) of a state $x \in \mathcal{S}$ is $d(x) = \gcd\{t \ge 1 \mid P^t(x, x) > 0\}$
 - A state $x \in \mathcal{S}$ is called <u>aperiodic</u> if d(x) = 1
 - $P(x,x) > 0 \Longrightarrow x$ is aperiodic
- A state $x \in \mathcal{S}$ is called <u>recurrent</u> if $\Pr(\exists t \geq 1, X_t = x \mid X_0 = x) = 1$ and further called <u>positive recurrent</u> if $\mathbb{E}\left[\min\{t \geq 1 : X_t = x\} \mid X_0 = x\right] < \infty$
- Kakutani Shizuo (角谷静夫): random walk is recurrent on \mathbb{Z}^2 but non-recurrent on \mathbb{Z}^3 "A drunk man will find his way home, but a drunk bird may get lost forever."
- On finite state space \mathcal{S} : irreducible \Longrightarrow all states are positive recurrent

Markov chain convergence theorem (Fundamental Theorem of MC):

If a Markov chain $X_0, X_1, X_2...$ on state space $\mathcal S$ is *irreducible* and *ergodic*, then there is a unique stationary distribution π on $\mathcal S$ such that

$$\pi(x) = \lim_{t \to \infty} \Pr(X_t = x \mid X_0 = x_0) \text{ for any } x_0 \in \mathcal{S}$$



• Markov chain convergence theorem (Fundamental Theorem of MC):

If a Markov chain $X_0, X_1, X_2...$ on state space \mathcal{S} is *irreducible* and *ergodic*, then there is a unique stationary distribution π on \mathcal{S} such that

$$\pi(x) = \lim_{t \to \infty} \Pr(X_t = x \mid X_0 = x_0) \text{ for any } x_0 \in \mathcal{S}$$

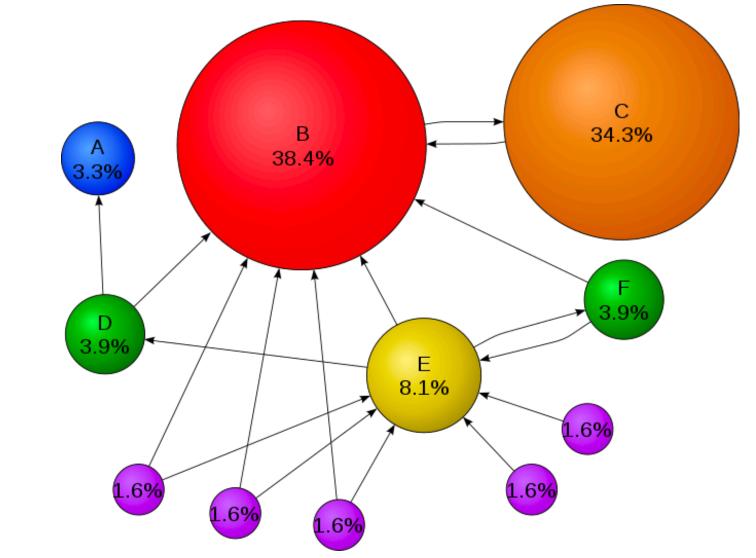
Proof: (By coupling)

irreducibility + ergodicity \Longrightarrow occurs a.s.

PageRank

- Each webpage $x \in \mathcal{S}$ is assigned a rank r(x):
 - High-rank pages have greater influence.
 - A page has high rank if pointed by many high-rank pages.
 - Pages pointing to few others have greater influence.
- Linear system: $r(x) = \sum_{y \to x} \frac{r(y)}{d^+(y)}$ where $d^+(y)$ is the **out-degree** of page y
- Stationary distribution rP = r for the random walk (tireless internet surfer)

$$P(x,y) = \begin{cases} \frac{1}{d^{+}(x)} & \text{if } x \to y \\ 0 & \text{o.w.} \end{cases}$$



• Markov chain convergence theorem (Fundamental Theorem of MC):

If a Markov chain $X_0, X_1, X_2...$ on state space \mathcal{S} is *irreducible* and *ergodic*, then there is a unique stationary distribution π on \mathcal{S} such that

$$\pi(x) = \lim_{t \to \infty} \Pr(X_t = x \mid X_0 = x_0) \text{ for any } x_0 \in \mathcal{S}$$

• Finite Markov chain (with finite state space \mathcal{S}):

lazy (i.e. P(x, x) > 0) and strongly connected P

 \implies always converge to the unique stationary distribution $\pi=\pi P$

Time Reversibility

• A Markov chain P is called <u>time-reversible</u> or just <u>reversible</u> if it satisfies the detailed balance equation (DBE):

$$\pi(x)P(x,y) = \pi(y)P(y,x)$$

for some distribution π over the state space ${\mathcal S}$

• π is a more refined fixpoint: π must be a stationary distribution

$$(\pi P)_y = \sum_x \pi(x) P(x, y) = \sum_x \pi(y) P(y, x) = \pi(y)$$

• Time-reversible: assuming $X_0 \sim \pi$

$$(X_0, X_1, \ldots, X_n)$$
 is identically distributed as (X_n, \ldots, X_1, X_0)

• Markov chain convergence theorem (Fundamental Theorem of MC):

If a Markov chain $X_0, X_1, X_2...$ on state space \mathcal{S} is *irreducible* and *ergodic*, then there is a unique stationary distribution π on \mathcal{S} such that

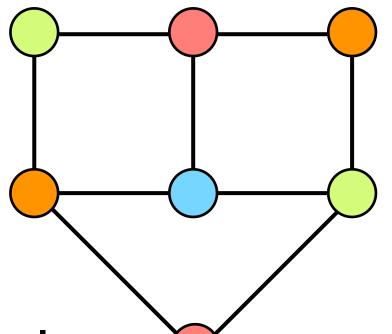
$$\pi(x) = \lim_{t \to \infty} \Pr(X_t = x \mid X_0 = x_0) \text{ for any } x_0 \in \mathcal{S}$$

• Finite Markov chain (with finite state space \mathcal{S}):

lazy (i.e. P(x, x) > 0) and strongly connected P

- \implies always converge to the unique stationary distribution $\pi = \pi P$
- Detail balance equation: $\pi(x)P(x,y) = \pi(y)P(y,x)$

Markov Chains on Proper Colorings



- Let G = (V, E) be a graph of maximum degree Δ and [q] a set of q colors.
- Let $\Omega = \{ \sigma \in [q]^V \mid \forall uv \in E, \sigma_u \neq \sigma_v \}$ be the set of all <u>proper q-colorings</u> of G

• Glauber dynamics:

Initially, $X_0 \in \Omega$ is arbitrary. Transition $X_t \to X_{t+1}$:

- choose a vertex $v \in V$ uniformly at random;
- $X_{t+1}(u) \leftarrow X_t(u)$ for all $u \neq v$;
- $X_{t+1}(v) \leftarrow \text{uniform random available color in } [q] \setminus \{X_t(u) \mid uv \in E\};$
- $q \ge \Delta + 2 \Longrightarrow$ the chain is irreducible and ergodic (aperiodic)
- Symmetric \Longrightarrow time-reversible and the stationary distribution π is uniform over Ω

Counting Constraint Satisfaction Problem

Input: a CSP instance I.

Output: the number of CSP solutions.

Examples:

- Counting independent sets: number of independent sets in a graph.
- Counting matchings: number of matchings in a graph.
- Counting graph colorings: number of proper qcolorings of a graph.
- #SAT: number of satisfying assignments of a CNF.

They are all **#P**-hard! uniform sampling \Longrightarrow approximate counting

Mixing of Markov Chain

• Markov chain convergence theorem:

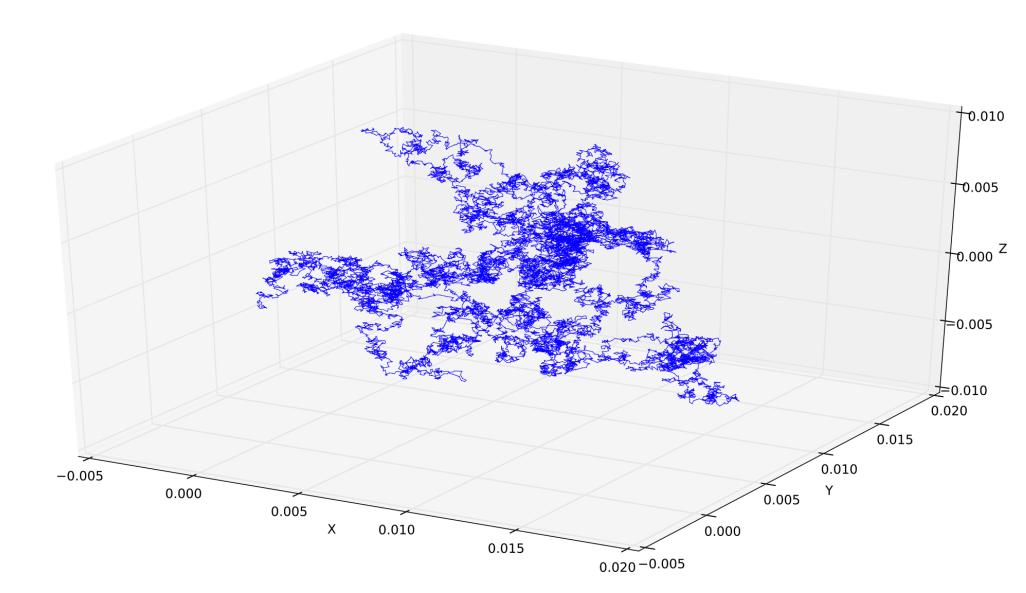
If a Markov chain $X_0, X_1, X_2...$ on state space \mathcal{S} is *irreducible* and *ergodic*, then there is a unique stationary distribution π on \mathcal{S} such that

$$\pi(x) = \lim_{t \to \infty} \Pr(X_t = x \mid X_0 = x_0) \text{ for any } x_0 \in \mathcal{S}$$

- How fast is the convergence rate?
- Mixing time: let $\pi_x^{(t)}(y) = (\mathbf{1}_x P^t)_y = \Pr(X_t = y \mid X_0 = x)$

$$\tau(\epsilon) = \max_{x \in S} \min \left\{ t \ge 1 \mid \left\| \pi_x^{(t)} - \pi \right\|_1 \le 2\epsilon \right\}$$

Random Processes



Random Processes

- Stationary processes: $(X_{t_1}, X_{t_2}, ..., X_{t_n}) \sim (X_{t_1+h}, X_{t_2+h}, ..., X_{t_n+h})$
 - i.i.d. variables, stationary Markov chains, stationary Gaussian process, ...
- Renewal (or counting) processes: $N(t) = \max\{n \mid X_1 + \dots + X_n \le t\}$ where $\{X_i : i \ge 1\}$ are i.i.d. nonnegative-valued random variables
 - Poisson processes (the only renewal processes that are Markov chains)
- Wiener process (Brownian motion): continuous-time continuous-space $\{W(t) \in \mathbb{R} : t \geq 0\}$ with time-homogeneity and independent increments $W(s_i) W(t_i)$ are independent whenever the intervals $(s_i, t_i]$ are disjoint $W(s+u) W(s) \sim \mathcal{N}(0,u)$

Diffusion Processes

(Stochastic processes with continuous sample paths)

• Let (Ω, Σ, \Pr) be a probability space. A random process $X : \mathcal{T} \times \Omega \to \mathcal{S}$ with time range \mathcal{T} and state space \mathcal{S} is called a <u>diffusion process</u> if there is an $A \in \Sigma$ with $\Pr(A) = 1$ such that for all $\omega \in A$,

$$X(\omega): \mathcal{T} \to \mathcal{S}$$

is a continuous function (between topological spaces).

- The Wiener processes are one-dimensional diffusions.
- Itô (伊藤) calculus may apply!

