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Recap

What next? 
Random walks on undirected graphs

• From sampling to counting and MCMC

• Expander graphs and random walks

Previous lecture:
Random walks on undirected graphs

• Fundamental theorem of Markov chains

• Spectral analysis

• Mixing time

• Random sampling



Coupling for Graph Coloring

• Start with any 𝑘-coloring 𝜎
• Pick a vertex 𝑣 and a color 𝑐 uniformly at random, recolor 𝑣 with 𝑐 if it is 

legal; otherwise do nothing

Say we have two arbitrary copies of the Markov chain, 𝑋𝑡  and 𝑌𝑡

At each step, we let them choose the same vertex 𝑣 and same color 𝑐
Let 𝑑𝑡 = number of vertices 𝑋𝑡 disagree with 𝑌𝑡

Unlike the previous example, 𝑑𝑡 can increase now
We need to consider Good Moves that decrease 𝑑𝑡, and balance them with 
Bad Moves that increase 𝑑𝑡

 



Coupling for Graph Coloring

Say we have two arbitrary copies of the Markov chain, 𝑋𝑡  and 𝑌𝑡

At each step, we let them choose the same vertex 𝑣 and same color 𝑐

Let 𝑑𝑡 = number of vertices 𝑋𝑡 disagree with 𝑌𝑡

Good Moves that decrease 𝑑𝑡:

If we chose a disagreeing vertex 𝑣, and color 𝑐 does not appear in the neighborhood of 𝑣 in 𝑋𝑡 or 𝑌𝑡, 
this is a good move

Because we can safely recolor a disagreeing vertex 𝑣 with color 𝑐, and they agree from then on

Let 𝑔𝑡 be the number of good moves (among all possible 𝑘𝑛 choices)

There are 𝑑𝑡 vertices to choose from, and each disagreeing vertex has a neighborhood of at most Δ 
colors in either process, so each disagreeing vertex has 𝑘 − 2Δ “safe colors”

𝑔𝑡 ≥ 𝑑𝑡(𝑘 − 2Δ)

Start with any 𝑘-coloring 𝜎
Pick a vertex 𝑣 and a color 𝑐 u.a.r., 
recolor 𝑣 with 𝑐 if legal



Coupling for Graph Coloring

Say we have two arbitrary copies of the Markov chain, 𝑋𝑡  and 𝑌𝑡

At each step, we let them choose the same vertex 𝑣 and same color 𝑐

Let 𝑑𝑡 = number of vertices 𝑋𝑡  disagree with 𝑌𝑡

Bad Moves that increase 𝑑𝑡:  a legal move in one process but not the other

This happens when (and only when) the chosen color 𝑐 is already the color of some 
neighbor of 𝑣 in one process but not the other

In other words, 𝑣 must be a neighbor of some disagreeing vertex 𝑢, and 𝑐 must be the 
color of 𝑢 in either 𝑋𝑡  or 𝑌𝑡

Let 𝑏𝑡  be the number of bad moves (among all possible 𝑘𝑛 choices)

There are 𝑑𝑡  choices of disagreeing vertex 𝑢, then Δ choices for 𝑣, then 2 for 𝑋𝑡  or 𝑌𝑡
𝑏𝑡 ≤ 2Δ𝑑𝑡

Start with any 𝑘-coloring 𝜎
Pick a vertex 𝑣 and a color 𝑐 u.a.r., 
recolor 𝑣 with 𝑐 if legal



Coupling for Graph Coloring

Say we have two arbitrary copies of the Markov chain, 𝑋𝑡  and 𝑌𝑡

At each step, we let them choose the same vertex 𝑣 and same color 𝑐

Let 𝑑𝑡 = number of vertices 𝑋𝑡 disagree with 𝑌𝑡

Combined: 𝔼 𝑑𝑡+1 𝑑𝑡 = 𝑑𝑡 +
𝑏𝑡−𝑔𝑡

𝑘𝑛
≤ 𝑑𝑡 + 𝑑𝑡

4Δ−𝑘

𝑘𝑛
≤ 𝑑𝑡 1 −

1

𝑘𝑛

Since 𝑑0 ≤ 𝑛, we have 𝔼 𝑑𝑡 𝑑0 ≤ 1/𝑒 for 𝑡 = 2𝑘 𝑛 ln 𝑛. Thus,

𝑑𝑇𝑉 𝑝𝑡, 𝜋 ≤ Pr
𝑋𝑡,𝑌𝑡 ∼𝜇

𝑋𝑡 ≠ 𝑌𝑡 ≤ Pr 𝑑𝑡 > 0 𝑋0, 𝑌0 = Pr 𝑑𝑡 ≥ 1 𝑋0, 𝑌0 ≤ 𝔼 𝑑𝑡 𝑑0 ≤ 1/𝑒

This concludes that the 𝜖-mixing time is O 𝑛𝑘 log
𝑛

𝜖

To improve this to 𝑘 ≥ 2Δ + 1, one tries to pair bad moves in 𝑋𝑡  but blocked in 𝑌𝑡 , with bad moves in 𝑌𝑡  
but blocked in 𝑋𝑡

Start with any 𝑘-coloring 𝜎
Pick a vertex 𝑣 and a color 𝑐 u.a.r., 
recolor 𝑣 with 𝑐 if legal



From sampling to counting

Now that we have a Markov chain that outputs a 𝑘-coloring 𝜎 almost 

uniformly at random from all proper colorings after O 𝑛𝑘 log
𝑛

𝜖
 steps

Can we estimate the total number of proper colorings?

This task is known as approximate counting
 
For many natural concrete problems 

ApproxCount ≡ ApproxSample ≡ UniformSample ⊂ ExactCount

The first three are in BPPNP, while ExactCount is #P



From sampling to counting

Denote the number of proper colorings of a graph 𝐺 by 𝑍𝐺

We start by finding an arbitrary proper coloring 𝜎 in 𝐺

Then, we reveal the colors in 𝜎 one by one
We count how many proper colorings are consistent with the revealed colors

Let 𝑍𝑖  be the number of proper colorings 𝜏 such that
    in the first 𝑖 coordinates, 𝜏 agrees with 𝜎

Notice that 𝑍0 = 𝑍𝐺 , 𝑍𝑛 = 1, and

𝑍𝐺 =
𝑍0

𝑍1
⋅

𝑍1

𝑍2
⋯

𝑍𝑛−1

𝑍𝑛



From sampling to counting

Let 𝑍𝑖 be the number of proper colorings 𝜏 such that

    in the first 𝑖 coordinates, 𝜏 agrees with 𝜎

Notice that 𝑍0 = 𝑍𝐺, 𝑍𝑛 = 1, and

𝑍𝐺 =
𝑍0

𝑍1
⋅

𝑍1

𝑍2
⋯

𝑍𝑛−1

𝑍𝑛

Suppose we estimate each ratio within 1 ±
𝜖

2𝑛
⋅

𝑍𝑖+1

𝑍𝑖
      except with prob. 

𝛿

𝑛

Then multiplying them all together gives 1 ± 𝜖 ⋅ 𝑍𝐺        except with prob. 𝛿



From sampling to counting

Let 𝑍𝑖  be the number of proper colorings 𝜏 such that: in the first 𝑖 coordinates, 𝜏 agrees with 𝜎

Let 𝜋𝑖  be the uniform distribution of proper colorings 𝜏 such that: in the first 𝑖 coordinates, 𝜏 agrees with 𝜎

Recall that 𝑍0 = 𝑍𝐺 , 𝑍𝑛 = 1, and

𝑍𝐺 =
𝑍0

𝑍1

⋅
𝑍1

𝑍2

⋯
𝑍𝑛−1

𝑍𝑛

How do we estimate each ratio 
𝑍𝑖+1

𝑍𝑖
?

We run a Markov chain that samples from 𝜋𝑖 , and use Monte Carlo method to estimate how many are counted in 𝑍𝑖+1

Markov chain: in the first 𝑖 coordinates, we fix the colorings as in 𝜎, and only update the remaining 𝑛 − 𝑖 coordinates

Monte Carlo: given a sample 𝜏, we check if 𝜏𝑖+1 = 𝜎𝑖+1 

Sampling from 𝜋𝑖  is an unbiased estimator for the ratio:  

𝐸𝜏∼𝜋𝑖
 [[𝜏𝑖+1 = 𝜎𝑖+1]] =

𝑍𝑖+1

𝑍𝑖

Sampling from a rapidly mixing Markov chain 𝑝𝑡  only introduces a small bias (recall the def. of TV distance):
𝐸𝜏∼𝑝𝑡

 [[𝜏𝑖+1 = 𝜎𝑖+1]] − 𝐸𝜏∼𝜋𝑖
 [[𝜏𝑖+1 = 𝜎𝑖+1]] ≤ 𝑑𝑇𝑉 𝑝𝑡 , 𝜋𝑖

𝑑𝑇𝑉 𝑝𝑡, 𝜋 = max
𝑆⊆ 𝑛

𝑝𝑡 𝑆 − 𝜋(𝑆)



From sampling to counting

LPW

We run a Markov chain that samples from 𝜋𝑖, and use Monte Carlo method to estimate how many 
are counted in 𝑍𝑖+1

Markov chain: in the first 𝑖 coordinates, we fix the colorings as in 𝜎, and only update the remaining

Monte Carlo: given a sample 𝜏, we check if 𝜏𝑖+1 = 𝜎𝑖+1 

Sampling from 𝜋𝑖 is an unbiased estimator for the ratio:  

𝐸𝜏∼𝜋𝑖
 [[𝜏𝑖+1 = 𝜎𝑖+1]] =

𝑍𝑖+1

𝑍𝑖

Variance can also be bounded because 
𝑍𝑖+1

𝑍𝑖
 is strictly between (0,1): 

Δ

𝑘(𝑘−Δ)
≤

𝑍𝑖+1

𝑍𝑖
≤

1

𝑘−Δ

It suffices to take the average over poly 𝑛,
1

𝜖
,

1

𝛿
 samples 

Then apply Chebyshev’s inequality

See Chapter 14.4 of LPW book
Upperbound for the ratio follows from having many colors available

lowerbound from bounding the prob. that any neighbors take the same color

https://pages.uoregon.edu/dlevin/MARKOV/markovmixing.pdf


Expander Graphs

• Combinatorial: graphs with good expansion

• Probabilistic: graphs in which random walks mix rapidly

• Algebraic: graphs with large spectral gap

Let 𝐺 be a 𝑑-regular graph, and let 𝑑 = 𝛼1 ≥ 𝛼2 ≥ ⋯ ≥ 𝛼𝑛 ≥ −𝑑 be the spectrum of its adjacency 
matrix. 

We will be interested in the spectral radius, given by 
𝛼 ≔ max{𝛼2, |𝛼𝑛|}

If 𝛼 is much smaller than 𝑑, we have good spectral expansion.

There are many nice properties associated with expander graphs

Among others, say if we want more than one sample in MCMC, do we have to resample entirely?



Expander Mixing lemma

Intuitively, an expander can be seen as an approximation to the complete graph, because edges are distributed evenly

Induced edges: 𝐸 𝑆, 𝑇 ≔ { 𝑢, 𝑣 : 𝑢 ∈ 𝑆, 𝑣 ∈ 𝑇, 𝑢𝑣 ∈ 𝐸}

We also allow non-disjoint 𝑆, 𝑇, in which case an edge can be counted twice.

Expander Mixing lemma

Let 𝐺 be a 𝑑-regular graph with 𝑛 vertices. If the spectral radius of G is 𝛼, then for every 𝑆 ⊆ 𝑛 , 𝑇 ⊆ [𝑛], we have 

𝐸 𝑆, 𝑇 −
𝑑 𝑆 𝑇

𝑛
≤ 𝛼 𝑆 𝑇 .

Proof: Note that 𝐸 𝑆, 𝑇 = 𝜒𝑆
𝑇𝐴𝜒𝑇 . Let 𝜒𝑆 = σ𝑖 𝑎𝑖𝑣𝑖 , 𝜒𝑇 = σ𝑖 𝑏𝑖𝑣𝑖, where {𝑣𝑖} is an orthonormal basis for 𝐴, with eigenvalues {𝛼𝑖}.

𝐸 𝑆, 𝑇 =
𝑑 𝑆 𝑇

𝑛
+ 

𝑖≥2

𝛼𝑖𝑎𝑖𝑏𝑖 .

By Cauchy-Schwarz,

𝐸 𝑆, 𝑇 −
𝑑 𝑆 𝑇

𝑛
≤ 𝛼 𝑎 2 𝑏 2 = 𝛼 𝜒𝑆 2 𝜒𝑇 2 = 𝛼 𝑆 𝑇

Cauchy-Schwarz inequality:

𝑢, 𝑣 ≤ 𝑢, 𝑢 ⋅ 𝑣, 𝑣



Expander Mixing lemma

Intuition: Expander mixing lemma tells us that a spectral expander 
looks like a random graph.

Exercise: Let G be a 𝑑-regular graph with spectral radius 𝛼. Show that 

the size of the maximum independent set of G is at most 
𝛼𝑛

𝑑
.

Use this result to conclude that the chromatic number is at least 
𝑑

𝛼
 .



Converse to Expander Mixing lemma

(By Bilu and Linial)

Suppose that for every 𝑆 ⊆ 𝑛 , 𝑇 ⊆ [𝑛] with 𝑆 ∩ 𝑇 = ∅, we have 

𝐸 𝑆, 𝑇 −
𝑑 𝑆 𝑇

𝑛
≤ 𝛼 𝑆 𝑇 .

Then all but the largest eigenvalue of 𝐴 in absolute value is at most

𝑂 𝛼 1 + log
𝑑

𝑎

• Proof is based on LP duality

• Would be nice to see an analog of Trevisan’s Cheeger’s rounding proof



Existence of expanders

• Complete graphs are obviously the best expanders in terms of 
“expansion” (in all three notions of “expansion”)

• What’s interesting is the existence of sparse expanders: e.g. 𝑑-regular 
expanders for constant 𝑑

• A random 𝑑-regular graph is a (combinatorial) expander with high 
probability

• However, deterministic and explicit construction of expanders seems 
to be much harder to come up with



Alon-Boppana Bound

• For 𝑑-regular graphs, how small can the spectral radius be?

• Ramanujan graphs: graphs whose spectral radius are at most 
2 𝑑 − 1

Alon-Boppana Bound

Let G be a 𝑑-regular graph with n vertices, and 𝛼2 be the second largest 
eigenvalue of its adjacency matrix. Then

𝛼2 ≥ 2 𝑑 − 1 −
2 𝑑 − 1 − 1

diam G /2



Alon-Boppana Bound

An easy lower bound on spectral radius

Let G be a 𝑑-regular graph with n vertices, and 𝛼 be its spectral radius. Then 
𝛼 ≥ 𝑑 ⋅

𝑛−𝑑

𝑛−1
.

Proof: Consider Tr 𝐴2 . Counting length-2 walks we have
Tr 𝐴2 ≥ 𝑛𝑑

On the other hand, Tr 𝐴2 = σ𝑖 𝛼𝑖
2 ≤ 𝑑2 + 𝑛 − 1 𝛼2.

Combined, we have 𝛼 ≥ 𝑑 ⋅
𝑛−𝑑

𝑛−1
.

For the Alon-Boppana bound, one may consider Tr 𝐴2𝑘 . 

Trace method/trick



Random walks in expanders

• We knew that it mixes rapidly, in time 𝑂
log 𝑛

1−𝜖
 for 𝛼 = 𝜖𝑑.

• Perhaps surprisingly, not just the final vertex is close to the uniform 
distribution, but the entire sequence of walks looks like a sequence of 
independent samples for many applications.

• In fact, expander random walks can fool many test functions:
Expander random walks: a Fourier-analytic approach, by Cohen, Peri and Ta-
Shma



Probability amplification

Say you have a randomized algorithm that fails with probability 𝛽

To boost success probability, we can run it multiple times until it succeed

Run independently for t rounds, the failure probability becomes 𝛽𝑡

Q: Can we save randomness while still achieving the same probability amplification?

Imagine a random walk on the 𝑁 = 2𝑛 random bits

There is a set 𝐵 of size 𝛽𝑁 that we try to escape from (or avoid)

We want that the escape probability close to 𝛽𝑡

Q: Can we use a sparse expander instead of a complete graph for the random walk?



Hitting property of expander walks

Let G be a 𝑑-regular graph with n vertices, 𝛼 = 𝜖𝑑 be its spectral radius and 𝐵 be a set of 
size at most 𝛽𝑛. 

Then, starting from a uniformly random vertex, the probability that a t-step random walk 
has never escaped from 𝐵, denoted by 𝑃(𝐵, 𝑡), is at most 𝛽 + 𝜖 𝑡.

Remarks before a proof: 

• Compare this to a sequence of independent samples.

• Expander mixing lemma is like 𝑡 = 2: Note that 𝜑 𝑆 = Pr 𝑋2 ∉ 𝑆 𝑋1 ∼ 𝜋𝑆) 

• Bound can be strengthened → see Chapter 4 of Pseudorandomness, by Vadhan

• Applications to error reduction for randomized algorithms
• Instead of using 𝑘𝑡 bits of randomness, only need 𝑘 + 𝑂(𝑡 log 𝑑)
• for one-sided error, escaping the bad set of “random bits”
• for two-sided error, a Chernoff type bound can also be shown → then take the majority of the 

answers

Pr 𝑋0 ∈ 𝐵, 𝑋1 ∈ 𝐵, 𝑋2 ∈ 𝐵, … , 𝑋𝑡 ∈ 𝐵



Hitting property of expander walks

Proof. Observe that 𝑃 𝐵, 𝑡 = Π𝐵𝑊 𝑡Π𝐵𝑢 1

To see this, notice that Pr 𝑋0 ∈ 𝐵 = Π𝐵𝑢 1
Pr 𝑋0 ∈ 𝐵, 𝑋1 ∈ 𝐵 = Π𝐵𝑊Π𝐵𝑢 1

And so on and so forth.
Suppose that we can show ∀𝑓: 𝑓 is a probability distribution, we have 

Π𝐵𝑊Π𝐵𝑓 2 ≤ (𝛽 + 𝜖) 𝑓 2

Then,
Π𝐵𝑊 𝑡Π𝐵𝑢 1 ≤ 𝑛 Π𝐵𝑊 𝑡Π𝐵𝑢 2 

   = 𝑛 Π𝐵𝑊Π𝐵
𝑡𝑢 2 

   ≤ 𝑛 𝛽 + 𝜖 𝑡 𝑢 2

   = 𝛽 + 𝜖 𝑡
Cauchy-Schwarz inequality:

𝑢, 𝑣 ≤ 𝑢, 𝑢 ⋅ 𝑣, 𝑣

𝐵 𝑉\𝐵

Π𝐵 =
𝐵

𝑉\𝐵
𝐼𝐵 0
0 0

𝑢 =
1

𝑛
1𝑊 =

1

𝑑
𝐴

Π𝐵Π𝐵 = Π𝐵



Hitting property of expander walks

Proof (cont’d):It remains to show ∀𝑓: 𝑓 is a probability distribution,
Π𝐵𝑊Π𝐵𝑓 2 ≤ (𝛽 + 𝜖) 𝑓 2

Without loss of generality, we can assume 𝑓 is supported only on 𝐵.
Π𝐵𝑊Π𝐵𝑓 2 = Π𝐵𝑊𝑓 2 = Π𝐵𝑊(𝑢 + 𝑣) 2 ≤ Π𝐵𝑢 2 + Π𝐵𝑊𝑣 2

Next, Π𝐵𝑊𝑣 2 ≤ 𝑊𝑣 2 ≤ 𝜖 𝑣 2 ≤ 𝜖 𝑓 2.

On the other hand, Π𝐵𝑢 2 =
𝛽

𝑛
≤ 𝛽 𝑓 2,

 where last inequality follows from Cauchy-Schwarz:
1 = 𝑓 1 = 1𝐵, 𝑓 ≤ 𝛽𝑛 𝑓 2

Combined together, we have Π𝐵𝑊Π𝐵𝑓 2 ≤ (𝛽 + 𝜖) 𝑓 2 as desired.

Cauchy-Schwarz inequality:

𝑢, 𝑣 ≤ 𝑢, 𝑢 ⋅ 𝑣, 𝑣

𝐵 𝑉\𝐵

Π𝐵 =
𝐵

𝑉\𝐵
𝐼𝐵 0
0 0

𝑊 =
1

𝑑
𝐴   has  𝜆2(𝑊⊤𝑊) = 𝜖2

𝑢 =
1

𝑛
1,  so  

𝑓,𝑢

𝑢,𝑢
𝑢 = 𝑢,  then 𝑣 ⊥ 1



Hitting property of expander walks

Proof. Observe that 𝑃 𝐵, 𝑡 = Π𝐵𝑊 𝑡Π𝐵𝑢 1

Suppose that we can show ∀𝑓: 𝑓 is a probability distribution, we have Π𝐵𝑊Π𝐵𝑓 2 ≤ (𝛽 + 𝜖) 𝑓 2. Then,
Π𝐵𝑊 𝑡Π𝐵𝑢 1 ≤ 𝑛 Π𝐵𝑊 𝑡Π𝐵𝑢 2 = 𝑛 Π𝐵𝑊Π𝐵

𝑡𝑢 2 ≤ 𝑛 𝛽 + 𝜖 𝑡 𝑢 2 = 𝛽 + 𝜖 𝑡

It remains to show ∀𝑓: 𝑓 is a probability distribution,
Π𝐵𝑊Π𝐵𝑓 2 ≤ (𝛽 + 𝜖) 𝑓 2

Without loss of generality, we can assume 𝑓 is supported only on 𝐵.
Π𝐵𝑊Π𝐵𝑓 2 = Π𝐵𝑊𝑓 2 = Π𝐵𝑊(𝑢 + 𝑣) 2 ≤ Π𝐵𝑢 2 + Π𝐵𝑊𝑣 2

Next, Π𝐵𝑊𝑣 2 ≤ 𝑊𝑣 2 ≤ 𝜖 𝑣 2 ≤ 𝜖 𝑓 2.

On the other hand, Π𝐵𝑢 2 =
𝛽

𝑛
≤ 𝛽 𝑓 2,

The last inequality follows from Cauchy-Schwarz:
1 = 𝑓 1 = 1𝐵, 𝑓 ≤ 𝛽𝑛 𝑓 2

Combined together, we have Π𝐵𝑊Π𝐵𝑓 2 ≤ (𝛽 + 𝜖) 𝑓 2 as desired.

To get a tail bound, consider
𝑃 𝑆, 𝑡 = Π𝑍𝑡

𝑊Π𝑍𝑡−1
𝑊 … Π𝑍1

𝑢
1

where 𝑆 = (𝑍𝑡 , 𝑍𝑡−1,…, 𝑍1) 
indicates whether 𝑍𝑖 ∈ {𝐵, ത𝐵}
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