Foundations of Data Science Random Processes

尹一通、刘明谋 Nanjing University, 2024 Fall

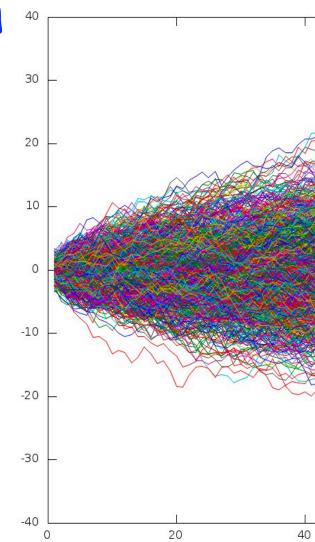
• The <u>Doob sequence</u> Y_0, Y_1, \dots, Y_n of *n*-variate function $f : \mathbb{R}^n \to \mathbb{R}$ on random variables X_1, \ldots, X_n , is given by

$$\forall 0 \le i \le n: \quad Y_i = \mathbb{E}\left[f(X_1, \dots, X_n) \mid X_1, \dots, X_i\right]$$
$$Y_0 = \mathbb{E}\left[f(X_1, \dots, X_n)\right] \quad \dots \quad f(X_1, \dots, X_n) = Y_n$$

$$\forall 0 \le i \le n : \qquad Y_i = \mathbb{E} \left[f(X_1, \dots, X_n) \mid X_1, \dots, X_i \right]$$
$$Y_0 = \mathbb{E} \left[f(X_1, \dots, X_n) \right] \quad \dots \quad f(X_1, \dots, X_n) = Y_n$$

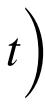
60

100



full information

 $\left| \operatorname{Pr}\left(\left| f(X_1, \dots, X_n) - \mathbb{E}[f(X_1, \dots, X_n)] \right| < t \right) \right| \le t \right)$



- The <u>Doob sequence</u> $Y_0, Y_1, ..., Y_n$ of *n*-variate function $f : \mathbb{R}^n \to \mathbb{R}$ on random variables $X_1, ..., X_n$, is given by
 - $\forall 0 \le i \le n: \quad Y_i = \mathbb{E}$

aver

 $\mathbb{E}[f] = Y_0$

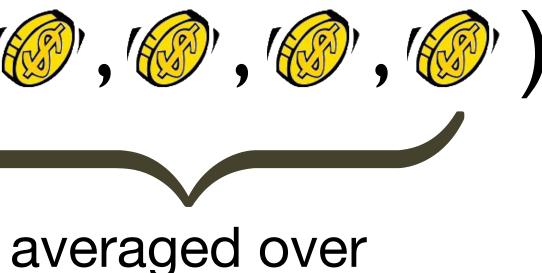
$$E\left[f(X_1, ..., X_n) \mid X_1, ..., X_i\right]$$

- The <u>Doob sequence</u> Y_0, Y_1, \dots, Y_n of *n*-variate function $f : \mathbb{R}^n \to \mathbb{R}$ on random variables X_1, \ldots, X_n , is given by
 - $\forall 0 \leq i \leq n$: $Y_i = \mathbb{E}$

randomized by $f(1), (\mathcal{O}', (\mathcal{O}'$

 $\mathbb{E}[f] = Y_0 \to Y_1$

$$E\left[f(X_1, ..., X_n) \mid X_1, ..., X_i\right]$$

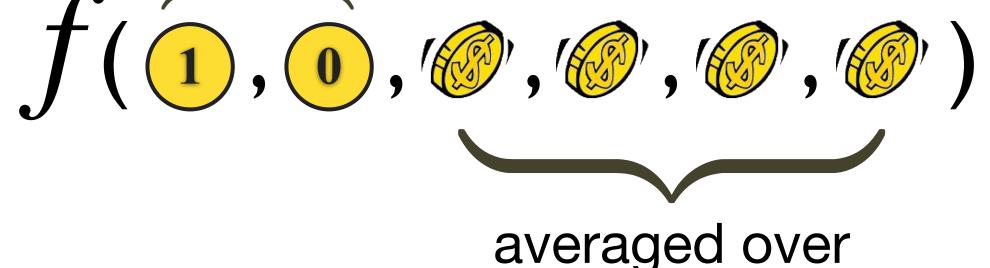


- The <u>Doob sequence</u> Y_0, Y_1, \dots, Y_n of *n*-variate function $f : \mathbb{R}^n \to \mathbb{R}$ on random variables X_1, \ldots, X_n , is given by
 - $\forall 0 \leq i \leq n$: $Y_i = \mathbb{E}$

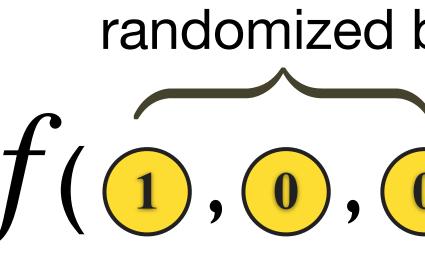
randomized by

 $\mathbb{E}[f] = Y_0 \to Y_1 \to Y_2$

$$E\left[f(X_1, ..., X_n) \mid X_1, ..., X_i\right]$$



- The <u>Doob sequence</u> $Y_0, Y_1, ..., Y_n$ of *n*-variate function $f : \mathbb{R}^n \to \mathbb{R}$ on random variables $X_1, ..., X_n$, is given by
 - $\forall 0 \le i \le n: \quad Y_i = \mathbb{E}$



$\mathbb{E}[f] = Y_0 \to Y_1 \to Y_2 \to Y_3$

$$E\left[f(X_1, ..., X_n) \mid X_1, ..., X_i\right]$$

• The <u>Doob sequence</u> Y_0, Y_1, \dots, Y_n of *n*-variate function $f : \mathbb{R}^n \to \mathbb{R}$ on random variables X_1, \ldots, X_n , is given by

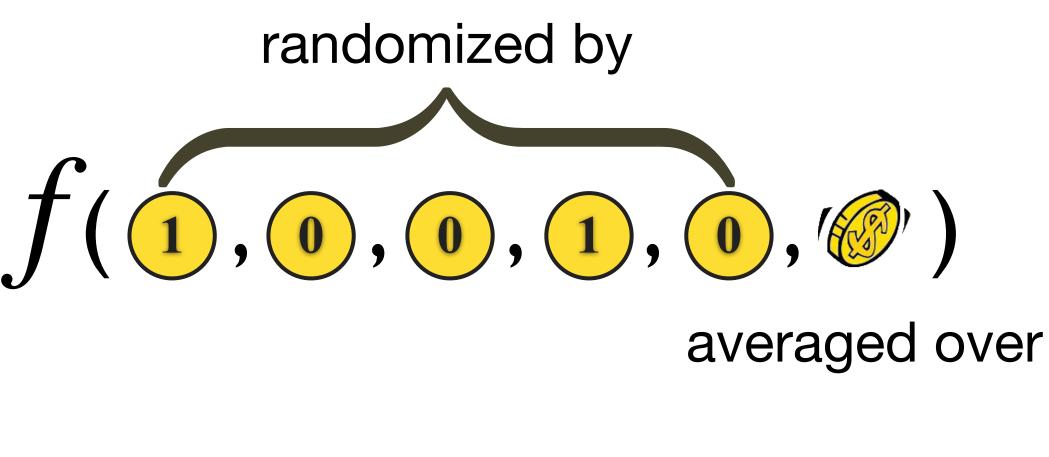
$$\forall 0 \le i \le n: \qquad Y_i = \mathbb{E}\left[f(X_1, \dots, X_n) \mid X_1, \dots, X_i\right]$$

randomized by

$$\mathbb{E}[f] = Y_0 \to Y_1 \to Y_2$$

 $\rightarrow Y_3 \rightarrow Y_4$

- The <u>Doob sequence</u> Y_0, Y_1, \dots, Y_n of *n*-variate function $f : \mathbb{R}^n \to \mathbb{R}$ on random variables X_1, \ldots, X_n , is given by
 - $\forall 0 \leq i \leq n$: $Y_i = \mathbb{E}$

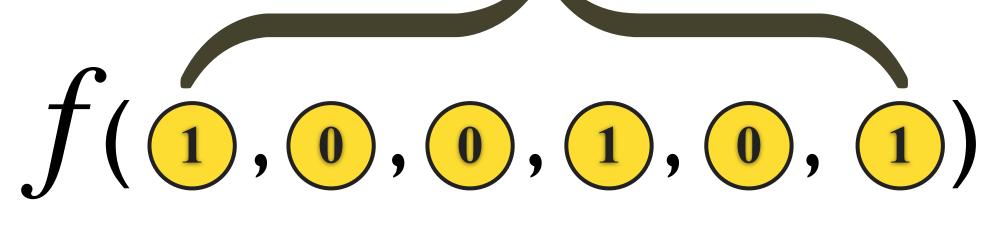


$\mathbb{E}[f] = Y_0 \to Y_1 \to Y_2 \to Y_3 \to Y_4 \to Y_5$

$$E\left[f(X_1, ..., X_n) \mid X_1, ..., X_i\right]$$

- The <u>Doob sequence</u> Y_0, Y_1, \dots, Y_n of *n*-variate function $f : \mathbb{R}^n \to \mathbb{R}$ on random variables X_1, \ldots, X_n , is given by
 - $\forall 0 \leq i \leq n$: $Y_i = \mathbb{E}$

randomized by



 $\overset{\text{no}}{\text{information}} \mathbb{E}[f] = Y_0 \to Y_1 \to Y_2 \to Y_3 \to Y_4 \to Y_5 \to Y_6 = f \quad \begin{array}{c} \text{full} \\ \text{information} \end{array}$

$$E\left[f(X_1, ..., X_n) \mid X_1, ..., X_i\right]$$

cloc **Poisson Point Process** (Stochastic counting process with exponential interarrival)

- The Poisson process $\{N(t) \mid t \ge 0\}$ with rate $\lambda > 0$ is a continuous time process defined as follows -- imagine we have such a clock:
 - N(t) counts the number of times the clock rings up to time t, initially N(0) = 0;
 - The time elapse (interarrival time) between any two consecutive ringings (including the time elapse before 1st ringing) is independent exponential with parameter λ
- Due to memoryless and minimum: The process defined by k independent clocks with the same rate λ is equivalent to the 1-clock process with rate $k\lambda$
- (Poisson distribution) For any $t, s \ge 0$ and any integer $n \ge 0$,

$$\Pr(N(t+s) - N(s) = n) = \Pr(N(t) = n) = e^{-\lambda t} \frac{(\lambda t)^n}{n!}$$

"Poissor

Random Processes (Stochastic processes)

- A <u>random process</u> is a family $\{X_t : t \in \mathcal{T}\}$ of random variables
- \mathcal{T} is a set of indices, where each $t \in \mathcal{T}$ is usually interpreted as <u>time</u>

 - <u>continuous-time</u>: uncountable \mathcal{T} , usually $\mathcal{T} = [0,\infty)$
- X_t takes values in a state space \mathcal{S}
 - discrete-space: countable \mathcal{S} , e.
 - <u>continuous-space</u>: uncountable

• <u>discrete-time</u>: countable \mathcal{T} , usually $\mathcal{T} = \{0, 1, 2, ...\}$ or $\mathcal{T} = \{1, 2, ...\}$

g.
$$\mathcal{S} = \mathbb{Z}$$

 \mathcal{S} , e.g. $\mathcal{S} = \mathbb{R}$

Random Processes (Stochastic processes)

• Bernoulli process: i.i.d. Bernoulli trials $X_0, X_1, X_2, \ldots \in \{0, 1\}$

• Branching (Galton-Watson) process: $X_0 = 1$ and $X_{n+1} = \sum_{i=1}^{N} \xi_i^{(n)}$ i=1where $\{\xi_i^{(n)}: n, j \ge 0\}$ are i.i.d. non-negative integer-valued random variables

Poisson process: continuous-time counting process $\{N(t) \mid t \ge 0\}$ such that

 $N(t) = \max\{n \mid X_1 + \dots + X_n \le t\}$ for any $t \ge 0$

where $\{X_i\}$ are i.i.d. exponential random variables with parameter $\lambda > 0$

Martingales

Martingale (鞅)

- A sequence $\{Y_n : n \ge 0\}$ of random variables is a martingale with respect to another sequence $\{X_n : n \ge 0\}$ if, for all $n \ge 0$,
 - $\mathbb{E} ||Y_n|| < \infty$
 - $\mathbb{E}\left[Y_{n+1} \mid X_0, X_1, \dots, X_n\right] = Y_n$ (martingale property)
- By definition: Y_n is a function of X_0 ,
- Current capital Y_n in a fair gambling game with outcomes X_0, X_1, \ldots, X_n • <u>Super-martingale</u> (上鞅): $\mathbb{E}\left[Y_{n+1} \mid X_0, X_1, ..., X_n\right] \leq Y_n$ • <u>Sub-martingale</u> (下鞅): $\mathbb{E} | Y_{n+1} | X_0, X_1, \dots, X_n | \ge Y_n$

$$X_1, \ldots, X_n$$

Martingale (鞅)

- A sequence $\{Y_n : n \ge 0\}$ of random variables is a martingale with respect to another sequence $\{X_n : n \ge 0\}$ if, for all $n \ge 0$,
 - $\mathbb{E} ||Y_n|| < \infty$
 - $\mathbb{E}\left[Y_{n+1} \mid X_0, X_1, \dots, X_n\right] = Y_n$ (martingale property)
- $\{X_n : n \ge 0\}$ are defined on the probability space (Ω, Σ, Pr)
 - (X_0, X_1, \dots, X_n) defines a sub- σ -field $\Sigma_n \subseteq \Sigma$ (the smallest σ -field s.t. (X_0, \dots, X_n) is Σ_n -measurable) • $\{\Sigma_n : n \ge 0\}$ is a <u>filtration</u> of Σ , i.e. $\Sigma_0 \subseteq \Sigma_1 \subseteq \cdots \subseteq \Sigma$ • The martingale property is expressed as $\mathbb{E} |Y_{n+1} | \Sigma_n| = Y_n$

Examples of Martingale

- Doob martingale: $Y_i = \mathbb{E} \left[f(X_1, \ldots X_i) \right]$
 - vertex/edge exposure martingale for random graph
- Capital in a fair gambling game (arbitrary betting strategy)
- Unbiased 1D random walk: $Y_n =$
- de Moivre's martingale: $Y_n = (p/($ $X_i \in \{-1,1\}$ are independent with

$$(X_n) | X_1, \dots, X_i]$$

$$\sum_{i=1}^{n} X_i \text{ with } i.i.d. \text{ uniform } X_i \in \{-1,1\}$$

$$(1-p)^{X_n} \text{, where } X_n = \sum_{i=1}^{n} X_i \text{ and}$$

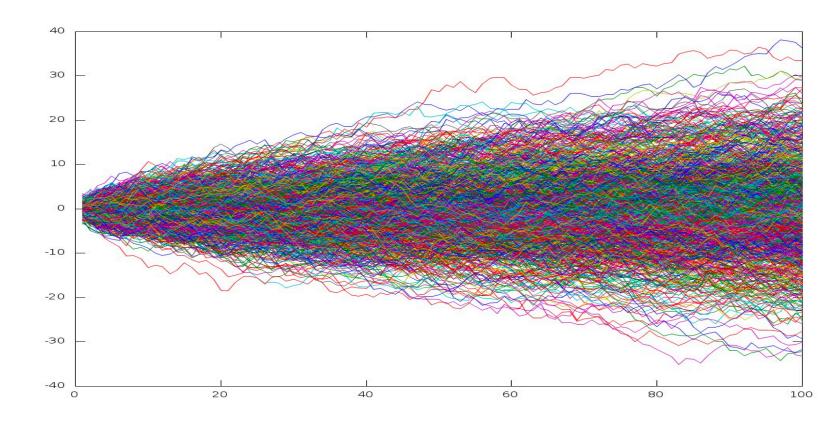
$$\Pr(X_i = 1) = p$$

 Polya's urn: The urn contains marbles with different colors. At each turn, a marble is selected *u.a.r.*, and replaced with k marbles of that same color.

Studies of Martingale

- For martingale $\{Y_n : n \ge 0\}$ with respect to $\{X_n : n \ge 0\}$:
- Concentration of measure (tail inequality): Azuma's inequality

$$\Pr\left(\left|\left|Y_n - Y_0\right|\right| \ge t\right)$$



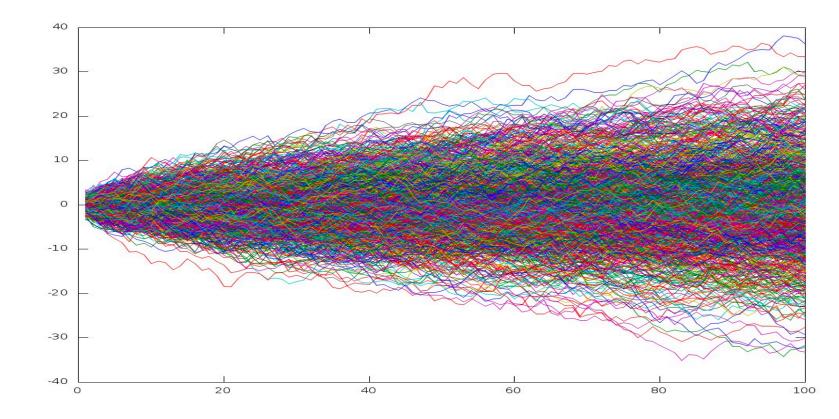
 $\mathbb{E}\left[Y_{n+1} \mid X_0, X_1, \dots, X_n\right] = Y_n$ $\int \leq 2 \exp\left(-\frac{2t^2}{\sum_{i=1}^n c_i^2}\right)$

• Optional stopping theorem (OST): good quitting strategy (i.e. stopping time τ)

 $\mathbb{E}[Y_{\tau}] > \mathbb{E}[Y_{0}] ?$

Fair Gambling Game

Proof: By total expectation $\mathbb{E}[Y_n] = \mathbb{E}\left[\mathbb{E}[Y_n \mid X_0, X_1, \dots, X_{n-1}]\right]$ As a martingale, $\mathbb{E}[Y_n | X_0, X_1, ..., X_{n-1}] = Y_{n-1}$ $\implies \mathbb{E}\left[Y_n\right] = \mathbb{E}\left[\mathbb{E}\left[Y_n \mid X_0, X_1, \dots, X_{n-1}\right]\right] = \mathbb{E}\left[Y_{n-1}\right]$



• If $\{Y_n : n \ge 0\}$ is a martingale with respect to $\{X_n : n \ge 0\}$, then $\forall n \ge 0$, $\mathbb{E}\left[Y_n\right] = \mathbb{E}\left[Y_0\right]$

Stopping Time

- A nonnegative integer-valued random variable T is a stopping time with of the event T = n is determined by the evaluation of X_0, X_1, \dots, X_n
 - Then T is a stopping time if $\{T = n\} \in \Sigma_n$ for any $n \ge 0$.
 - by the outcomes of X_0, X_1, \ldots, X_n

respect to the sequence $\{X_t : t = 0, 1, 2, ...\}$ if for any $n \ge 0$ the occurrence

• Formally, $\{X_t : t = 0, 1, 2, ...\}$ defines a filtration of σ -fields $\Sigma_0 \subseteq \Sigma_1 \subseteq \cdots$ such that (X_0, X_1, \ldots, X_n) is Σ_n -measurable (and Σ_n is the smallest such σ -field).

Intuitively, T is a stopping time, if whether stopping at time n is determined

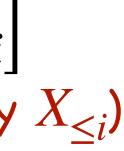
Stopped Martingale

- Consider a martingale $\{Y_n : n \ge 0\}$ and a stopping time T, both with respect to $\{X_n : n \ge 0\}$. The stopped martingale $\{Y_n^T : n \ge 0\}$ is defined as
 - $Y_n^T \triangleq \begin{cases} I \\ I \\ I \end{cases}$
- Stopped martingales are martingale.

$$Y_n \quad \text{if } n \leq T$$

$$Y_T$$
 if $n > T$

- **Proof**: Note event $T \ge i$ is determined by evaluation of X_0, \ldots, X_{i-1} only. Also note $Y_i^T = Y_{i-1}^T + \mathbf{1}_{T>i} \cdot (Y_i Y_{i-1})$. Let's calculate $\mathbb{E}\left[Y_{i+1}^T | X_0 \ldots X_i\right]$:
- $\mathbb{E}\left[Y_{i}^{T} + \mathbf{1}_{T>i} \cdot (Y_{i+1} Y_{i}) | X_{0} \dots X_{i}\right] = \mathbb{E}\left[Y_{i}^{T} | X_{0} \dots X_{i}\right] + \mathbb{E}\left[\mathbf{1}_{T>i} \cdot (Y_{i+1} Y_{i}) | X_{0} \dots X_{i}\right]$ $= Y_{i}^{T} + \mathbf{1}_{T>i}(\mathbb{E}[Y_{i+1} | ..., X_{i}] - Y_{i}) \quad (\mathbf{1}_{T>i'} \; Y_{i} \text{ determined by } X_{\leq i})$ $(=Y_i)$



- Optional Stopping Theorem (OST): Let $\{Y_t : t \ge 0\}$ be a martingale and T be a stopping time, both with respect to $\{X_t : t \ge 0\}$. Then $\mathbb{E}\left[Y_{\mathcal{T}}\right] = \mathbb{E}\left[Y_{0}\right]$
 - if any one of the following conditions holds:
 - (bounded time) there is a finite N such that T < N.
 - (bounded range) $T < \infty$ a.s., and there is a finite c s.t. $|Y_t| < c$ for all t
 - (bounded differences) $\mathbb{E}[T] < \infty$ and there is a finite c such that

 $\mathbb{E}[|Y_{t+1} - Y_t| | X_0, X_1, \dots, X_t] < c \text{ for all } t \ge 0$

• Optional Stopping Theorem (OST): Let $\{Y_t : t \ge 0\}$ be a martingale and T be a stopping time, both with respect to $\{X_t : t \ge 0\}$. Then $\mathbb{E}\left[Y_{T}\right] = \mathbb{E}\left[Y_{0}\right]$

(general condition) if all the following conditions hold:

- $\Pr(T < \infty) = 1$
- $\mathbb{E}[|Y_T|] < \infty$
- $\lim \mathbb{E}\left[Y_n \cdot I[T > n]\right] = 0$ $n \rightarrow \infty$

Gambler's Ruin (Symmetric Random Walk in One-Dimension)

• Let
$$Y_t = \sum_{i=1}^t X_i$$
 where $X_i \in \{-1, -1\}$

• Let T be the first time t that $Y_t = -$

- $\{Y_t : t \ge 0\}$ is a martingale and T is a stopping time (both w.r.t. $\{X_i : i \ge 1\}$) satisfying that $|Y_t^T| \le \max\{a, b\}$ for all $0 \le t$ and $T < \infty$ a.s. $(\mathsf{OST}) \Longrightarrow \mathbb{E}[Y_T]$
 - $\mathbb{E}[Y_T] = b \cdot \Pr(Y_T = b) a \cdot \Pr(Y_T \neq b) \implies \Pr(Y_T = b) = \frac{a}{a + b}$

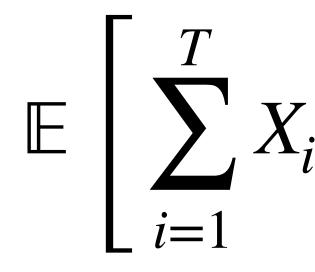
+ 1 } are i.i.d. uniform (Rademacher) R.V.s

$$a \text{ or } Y_t = b$$

$$= \mathbb{E}[Y_T^T] = \mathbb{E}[Y_0] = 0$$

Wald's Equation (Linearity of expectation with randomly many random variables)

• <u>Wald's equation</u>: Let X_1, X_2, \ldots be stopping time with respect to X_1, X_2



i.i.d. R.V. with
$$\mu = \mathbb{E}[X_i] < \infty$$
. Let T be a X_2, \dots If $\mathbb{E}[T] < \infty$, then
 $X_i = \mathbb{E}[T] \cdot \mu$

• **Proof**: For $t \ge 1$, let $Y_t = \sum_{i=1}^t (X_i - \mu)$, which is a martingale. Observe that: $\mathbb{E}[T] < \infty$ and $\mathbb{E}[|Y_{t+1} - Y_t| | X_1, \dots, X_t] = \mathbb{E}[|X_{t+1} - \mu|] < \infty$ By OST: $\mathbb{E}[Y_T] = \mathbb{E}[Y_1] = 0$. Note that $\mathbb{E}[Y_T] = \mathbb{E}\left[\sum_{i=1}^T X_i\right] - \mathbb{E}[T] \cdot \mu$

- Optional Stopping Theorem (OST): Let $\{Y_t : t \ge 0\}$ be a martingale and T be a stopping time, both with respect to $\{X_t : t \ge 0\}$. Then $\mathbb{E}\left[Y_{\mathcal{T}}\right] = \mathbb{E}\left[Y_{0}\right]$
 - if any one of the following conditions holds:
 - (bounded time) there is a finite N such that T < N.
 - (bounded range) $T < \infty$ a.s., and there is a finite c s.t. $|Y_t| < c$ for all t
 - (bounded differences) $\mathbb{E}[T] < \infty$ and there is a finite c such that

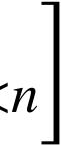
 $\mathbb{E}[|Y_{t+1} - Y_t| | X_0, X_1, \dots, X_t] < c \text{ for all } t \ge 0$

- $\mathbb{E}\left[Y_T | X_0,\right]$
- **Proof**: $\mathbb{E}[Y_T | X_{< n}] = \mathbb{E}\left[\mathbb{E}[Y_T | X_{< m}] | X_{< n}\right] =$ $= \mathbb{E} \left[\sum_{k \in [n,m)} Y_k \cdot I(T = k) \right]$ $\mathbb{E}\left[\mathbb{E}[Y_m \cdot I(T=m) | X_{< m}] | X_{< n}\right] = \mathbb{E}$

• Optional Stopping Theorem (OST): Let $\{Y_t : t \ge 0\}$ be a martingale and $n \leq T \leq m$ be a stopping time, both with respect to $\{X_t : t \geq 0\}$. Then

$$[\ldots, X_{n-1}] = Y_n$$

$$\begin{aligned} & = \mathbb{E}\left[\Sigma_{k\in[n,m]}\mathbb{E}[Y_k \cdot I(T=k) \mid X_{< m}] \mid X_{< n}\right] \\ & = k)\left[X_{< n}\right] + \mathbb{E}\left[\mathbb{E}[Y_m \cdot I(T=m) \mid X_{< m}] \mid X_{< m}\right] \right] \\ & = \mathbb{E}\left[I(T=m) \cdot \mathbb{E}[Y_m \mid X_{< m}] \mid X_{< n}\right] \\ & = \mathbb{E}\left[I(T=m) \cdot Y_{m-1} \mid X_{< n}\right] \end{aligned}$$



with respect to $\{X_t : t \ge 0\}$. Then $\mathbb{E} |Y_T| X_{0}$ • Proof (count.): $\mathbb{E}[Y_T | X_{< n}] = \mathbb{E}\left[\sum_{k \in [n,m)} Y_k \cdot I(T = k)\right]$ $= \mathbb{E} \left| Y_{\min\{T,m-1\}} \right| X_{< n}$ • • • $= \mathbb{E}\left[Y_{\min\{T,n\}} \mid X_{< n}\right] = \mathbb{E}[Y_n \mid X_{< n}] = Y_n$

• Let $\{Y_t : t \ge 0\}$ be a martingale and $n \le T \le m$ be a stopping time, both

$$(X, ..., X_{n-1}] = Y_n$$

$$(X, X_{< n}] + \mathbb{E} \left[I(T = m) \cdot Y_{m-1} \right]$$

 $X_{< n}$

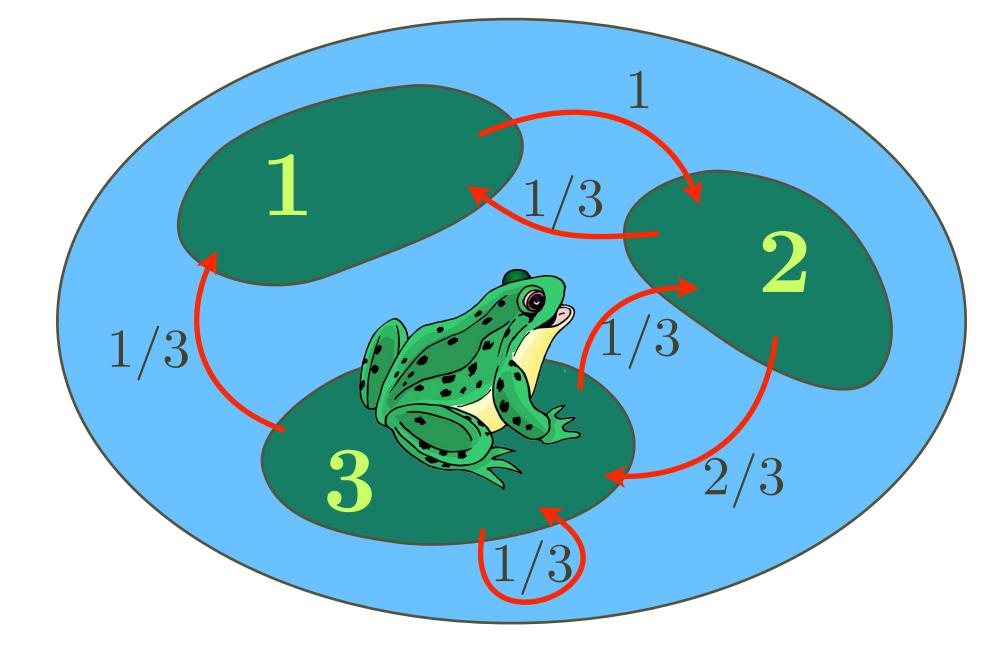
- Let $\{Y_t : t \ge 0\}$ be a martingale and T be a stopping time, both with respect to $\{X_t : t \ge 0\}$. If $\Pr(T < \infty) = 1$, $\mathbb{E}\left[\max_t |Y_t|\right] < \infty$ for all $t \le T$, then $\mathbb{E}\left[Y_{T}\right] = Y_{0}$
- **Proof:** $\lim_{n \to \infty} \left| \mathbb{E} \left[Y_{\min\{T,n\}} \right] \mathbb{E}[Y_T] \right| = 0 \implies \mathbb{E}[Y_T] = \lim_{n \to \infty} \mathbb{E} \left[Y_{\min\{T,n\}} \right]$

Let $T' = \min\{T, n\}$, then $T' \in [0, n]$, so $\mathbb{E}[Y_{T'}] = Y_0$ by bounded time case. Therefore, $\mathbb{E}[Y_T] = \lim_{n \to \infty} \mathbb{E}\left[Y_{\min\{T,n\}}\right] = Y_0$

- Let $\{Y_t : t \ge 0\}$ be a martingale and T be a stopping time, both with respect to $\{X_t : t \ge 0\}$. If $\Pr(T < \infty) = 1$, $\mathbb{E}\left[\max_t |Y_t|\right] < \infty$ for all $t \le T$, then $\mathbb{E}\left[Y_{T}\right] = Y_{0}$
- **Proof** (cont.): Let $W \triangleq \max_t |Y_{\min\{T,t\}}|$. By assumption, $\mathbb{E}[|Y_T|] \leq \mathbb{E}[W] < \infty$. $\left| \mathbb{E} \left[Y_{\min\{T,n\}} \right] - \mathbb{E}[Y_T] \right| \le \mathbb{E} \left[\left| Y_{\min\{T,n\}} - Y_T \right| I(T \ge n) \right] \le 2\mathbb{E}[W \cdot I(T \ge n)]$ Since $Pr(T < \infty) = 1$ and $\mathbb{E}[W] < \infty$, $\lim 2\mathbb{E}[W \cdot I(T \ge n)] = 0$ $n \rightarrow \infty$

- Let $\{Y_t : t \ge 0\}$ be a martingale and T be a stopping time, both with respect to $\{X_t : t \ge 0\}$. If $\Pr(T < \infty) = 1, \mathbb{E}[T] < \infty$, and $\mathbb{E}[|Y_{t+1} - Y_t|X_{< t}] \le c$ for all *t*, then
- $\mathbb{E}\left[Y_{T}\right] = Y_{0}$ • **Proof**: Let $Z_n \triangleq |Y_n - Y_{n-1}|, Z_0 \triangleq |Y_0|, W \triangleq Z_0 + ..., Z_T$. Clearly $W \ge |Y_T|$. $\mathbb{E}[W] = \sum_{k>0} \mathbb{E}[Z_k \cdot I(T \ge k)] = \sum_{k>0} \mathbb{E}\left[\mathbb{E}[Z_k \cdot I(T \ge k) | X_{< k}]\right]$ $= \sum_{k \ge 0} \mathbb{E} \left[I(T \ge k) \cdot \mathbb{E}[|Y_k - Y_{k-1}| | X_{< k}] \right] \le \sum_{k \ge 0} c \cdot \Pr(T \ge k)$ $\mathbb{E}[W] \le \Sigma_{k \ge 0} c \cdot \Pr(T \ge k) \le c \cdot (1 + \mathbb{E}[T]) < \infty$

Markov Chain



Markov Chain (马尔可夫链)

• A discrete-time random process X_0, X_1, X_2, \dots is a <u>Markov chain</u> if

$$\Pr(X_{t+1} = x_{t+1} \mid X_t = x_t, \dots, X_{t+1})$$

- The Markov property (memoryless property):
 - the history $X_0, X_1, \ldots, X_{t-1}$ of how the process arrived at state X_t
 - X_{t+1} is conditionally independent

$$X_0 \to X_1 \to \cdots$$

$X_0 = x_0$ = Pr($X_{t+1} = x_{t+1} | X_t = x_t$)

• The next state X_{t+1} depends on the current state X_t but is independent of

it of
$$X_0, X_1, ..., X_{t-1}$$
 given X_t

 $\rightarrow X_{t-1} \rightarrow X_t \rightarrow X_{t+1}$

Transition Matrix (转移矩阵)

• A discrete-time random process X_0, X_1, X_2, \dots is a Markov chain if $X_0 = x_0 = \Pr(X_{t+1} = x_{t+1} \mid X_t = x_t)$ (time-homogeneous) = $P(x_t, x_{t+1}) = P^{(t)}(x_t, x_{t+1})$

$$\Pr(X_{t+1} = x_{t+1} \mid X_t = x_t, \dots, X_{t+1})$$

• P is called the transition matrix: (assuming discrete-space)

$$P(x, y) = \Pr(X_{t+1} = y \mid X_t)$$

• P is a (row/right-)stochastic matrix: $P \ge 0$ and P1 = 1

- (= x) for any $x, y \in \mathcal{S}$, any $t \in \mathbb{N}$
- where S is the discrete state space on which X_0, X_1, X_2, \ldots take values.

Transition Matrix (转移矩阵)

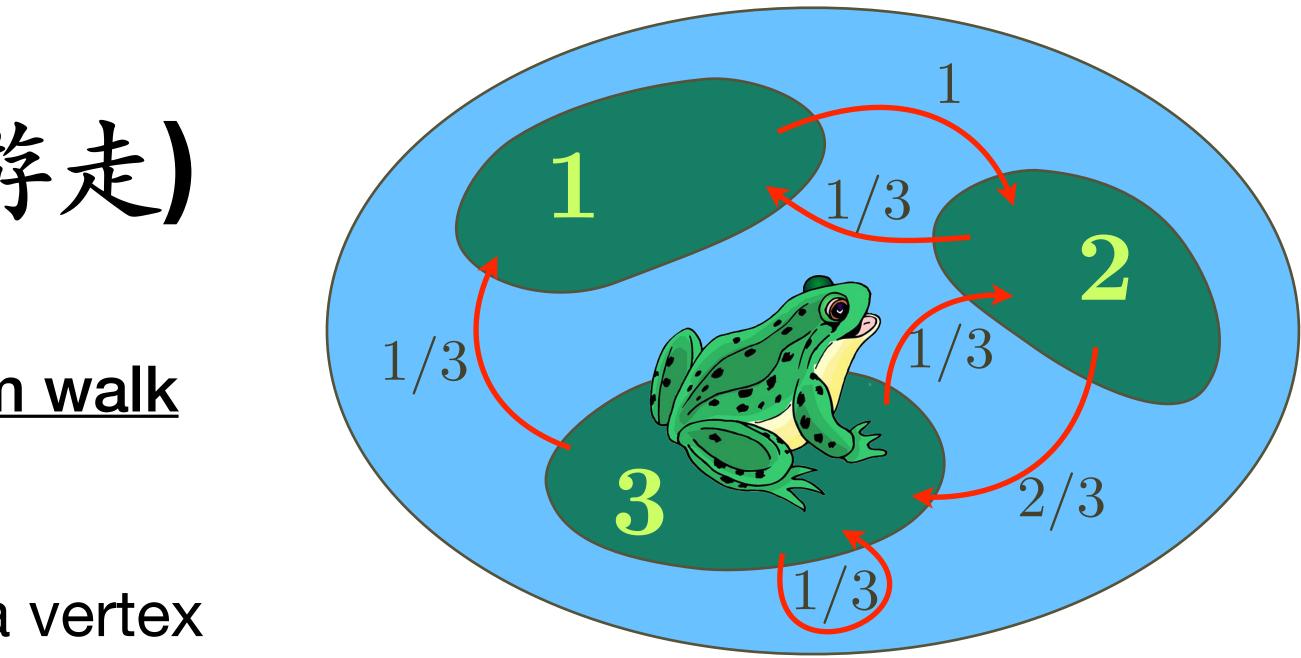
- For a Markov chain X_0, X_1, X_2, \ldots with discrete state space S $\Pr(X_{t+1} = y \mid$
 - where $P \in \mathbb{R}_{>0}^{\delta \times \delta}$ is the transition matrix, which is a (row/right-)stochastic matrix
- Let $\pi^{(t)}(x) = \Pr(X_t = x)$ be the mass function (*pmf*) of X_t . By total probability:

$$\pi^{(t+1)}(y) = \Pr(X_{t+1} = y) = \sum_{x \in S} \Pr(X_{t+1} = y \mid X_t = x) \Pr(X_t = x) = (\pi^{(t)}P)$$
$$\pi^{(0)} \xrightarrow{P} \pi^{(1)} \xrightarrow{P} \cdots \xrightarrow{P} \pi^{(t)} \xrightarrow{P} \pi^{(t+1)} \xrightarrow{P} \cdots$$

$$X_t = x) = P(x, y)$$

Random Walk (随机游走)

- WLOG: a Markov chain is a <u>random walk</u> on state space \mathcal{S}
- Each state $x \in \mathcal{S}$ corresponds to a vertex
- - $P(x, y) = \Pr(x)$
- Initially, $\pi^{(0)}(x) = \Pr(X_0 = x)$, for *t*



• Given the current state $x \in \mathcal{S}$, the probability of next state being $y \in \mathcal{S}$ is:

$$X_{t+1} = y \mid X_t = x$$

$$\geq 0$$
:

 $\pi^{(t+1)} = \pi^{(t)}P$

Stationary Distribution (稳态分布)

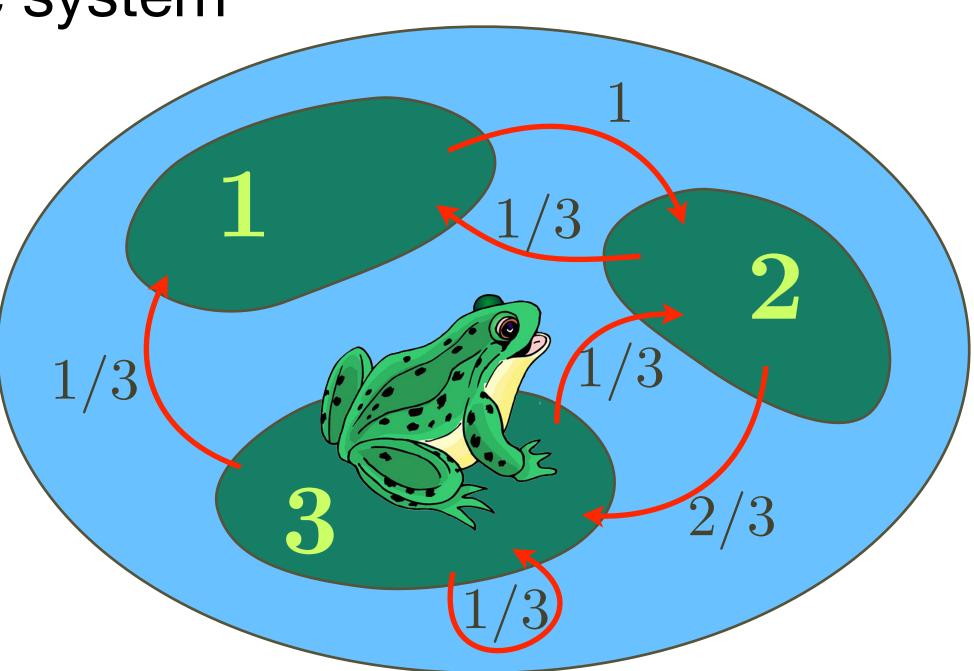
the Markov chain P if

• π is a fixpoint (equilibrium) of the linear dynamic system

 $P = \begin{bmatrix} 0 & 1 & 0 \\ 1/3 & 0 & 2/3 \\ 1/3 & 1/3 & 1/3 \end{bmatrix} \pi = \left(\frac{1}{4}, \frac{3}{8}, \frac{3}{8}\right)$ $\begin{bmatrix} 0.2500 & 0.3750 & 0.3750 \\ 0.2500 & 0.3750 & 0.3750 \end{bmatrix}$ $P^{20} \approx \begin{bmatrix} 0.2500 & 0.3750 & 0.3750 \\ 0.2500 & 0.3750 & 0.3750 \end{bmatrix}$

• A distribution (*pmf*) π on state space δ is called a <u>stationary distribution</u> of

 $\pi P = \pi$



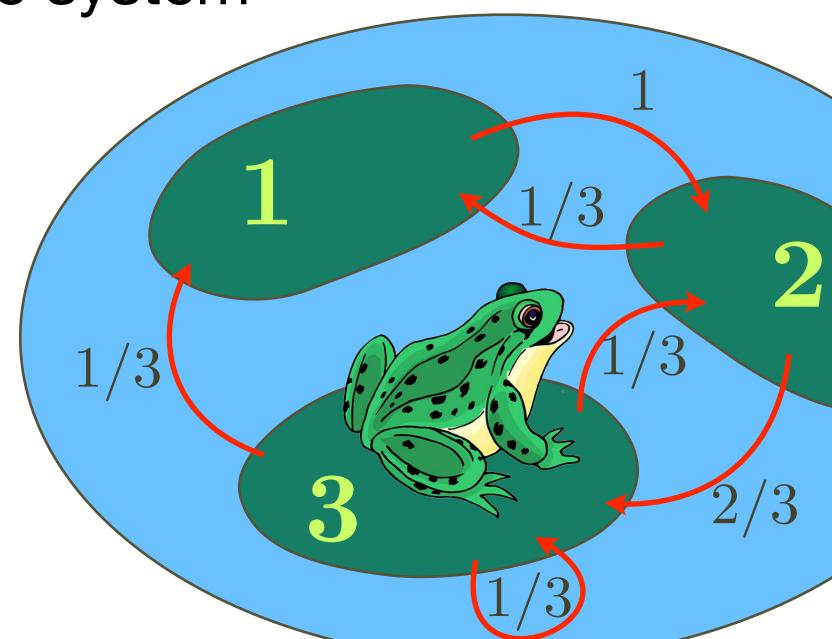
Stationary Distribution (稳态分布)

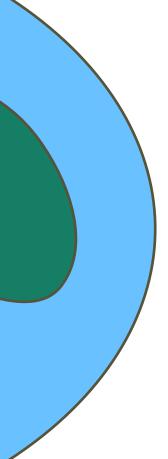
the Markov chain P if

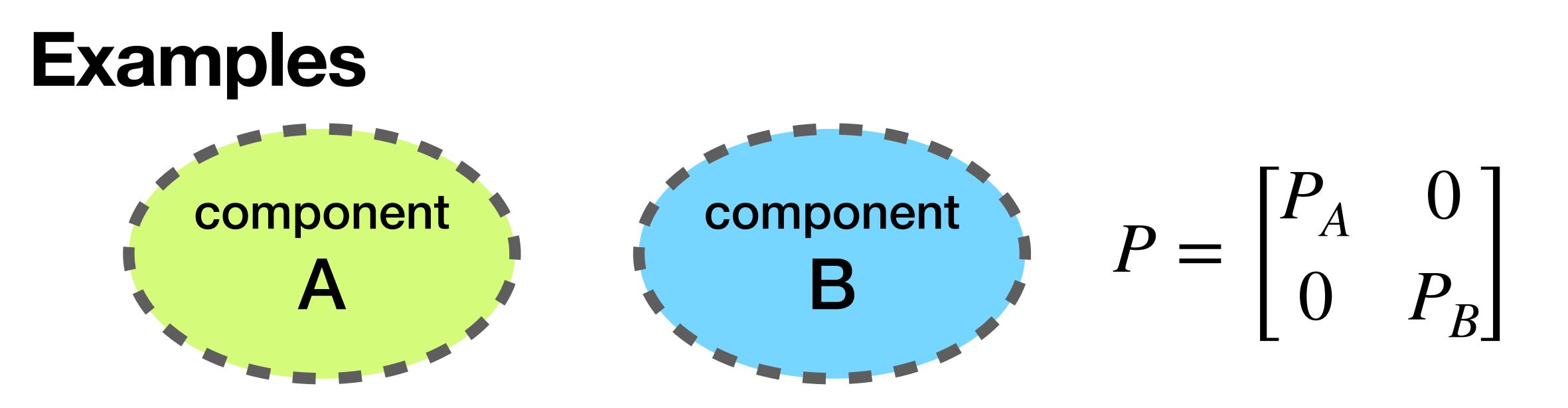
- π is a fixpoint (equilibrium) of the linear dynamic system
- Perron-Frobenius Theorem:
 - stochastic matrix P: P1 = 1
 - 1 is also a **left eigenvalue** of P
 - left eigenvector $\pi P = \pi$ is nonnegative
- stationary distribution always exists

• A distribution (*pmf*) π on state space δ is called a <u>stationary distribution</u> of

 $\pi P = \pi$

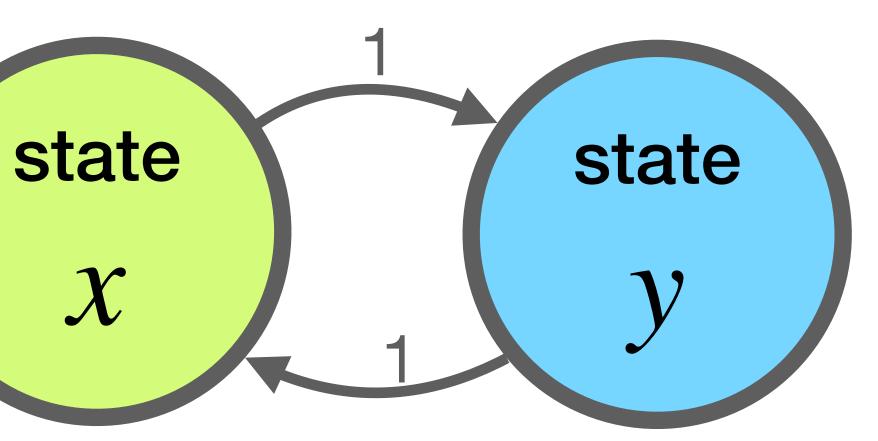






stationary distributions: $\pi = \lambda \pi_A + (1 - \lambda) \pi_B$

doesn't always converge: $(a, b) \rightarrow (b, a) \rightarrow (a, b)...$



- Irreducibility: the chain is irreducible if P is an irreducible matrix (不可约矩阵)
 - \iff the state space \mathcal{S} is strongly connected under P
- Ergodicity: the chain is ergodic (遍历) if all states are aperiodic (无周期) and positive recurrent (正常返)

Markov chain convergence theorem (Fundamental Theorem of MC):

then there is a unique stationary distribution π on \mathcal{S} such that

$$\pi(x) = \lim_{t \to \infty} \Pr(X_t = x \mid X_0 = x_0) \text{ for any } x_0 \in \mathcal{S}$$

• Irreducibility: the chain is irreducible if P is an irreducible matrix (不可约矩阵)

Ergodicity: the chain is ergodic (遍历) if all states are aperiodic (无周期) and positive recurrent (正常返)

If a Markov chain X_0, X_1, X_2, \ldots on state space \mathcal{S} is *irreducible* and *ergodic*,

 \iff the state space \mathcal{S} is strongly connected under P

Ergodicity

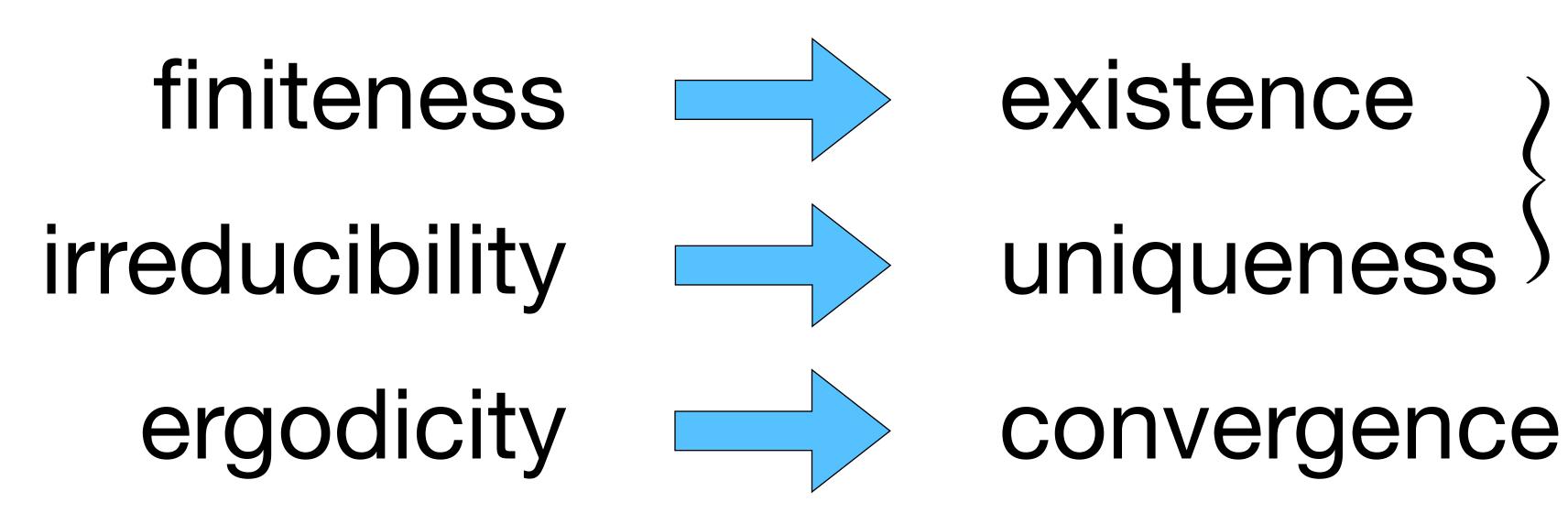
- Let X_0, X_1, X_2, \ldots be a Markov chain on state space S with transition matrix P.
- The <u>period</u> d(x) of a state $x \in \mathcal{S}$ is $d(x) = gcd\{t \ge 1 \mid P^t(x, x) > 0\}$ • A state $x \in \mathcal{S}$ is called <u>aperiodic</u> if d(x) = 1

 - $P(x, x) > 0 \Longrightarrow x$ is aperiodic
- A state $x \in \mathcal{S}$ is called <u>recurrent</u> if $\Pr(\exists t \ge 1, X_t = x \mid X_0 = x) = 1$ and further called positive recurrent if $\mathbb{E}\left[\min\{t \ge 1 : X_t = x\} \mid X_0 = x\right] < \infty$
- *Kakutani Shizuo* (角谷静夫): random walk is recurrent on \mathbb{Z}^2 but non-recurrent on \mathbb{Z}^3 "A drunk man will find his way home, but a drunk bird may get lost forever."
- On finite state space \mathcal{S} : irreducible \implies all states are positive recurrent

Markov chain convergence theorem (Fundamental Theorem of MC):

then there is a unique stationary distribution π on \mathcal{S} such that

$$\pi(x) = \lim_{t \to \infty} \Pr(X_t = x \mid X_0 = x_0) \text{ for any } x_0 \in \mathcal{S}$$



If a Markov chain X_0, X_1, X_2 ... on state space \mathcal{S} is *irreducible* and *ergodic*,

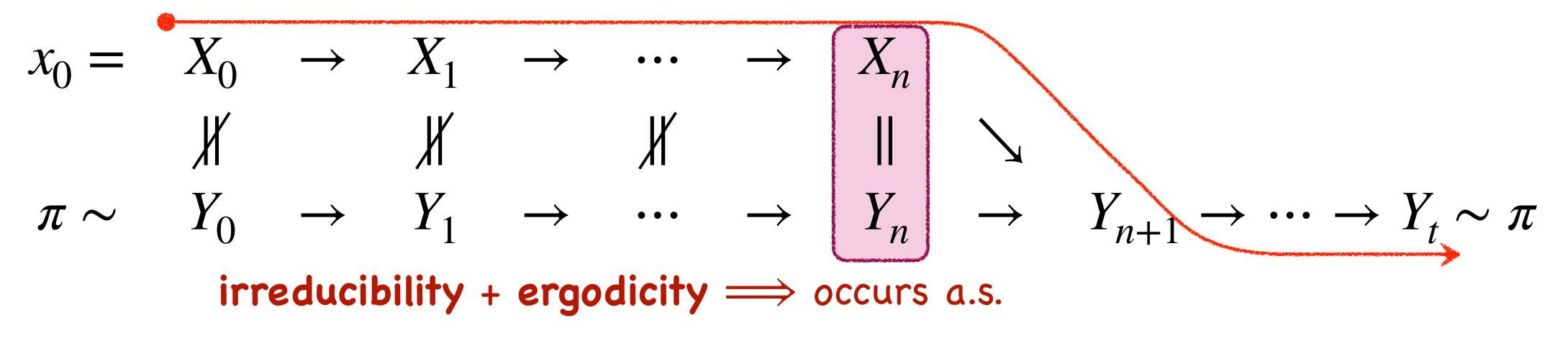
- finiteness existence Perron-Frobenius irreducibility uniqueness

Markov chain convergence theorem (Fundamental Theorem of MC):

then there is a unique stationary distribution π on \mathcal{S} such that

$$\pi(x) = \lim_{t \to \infty} \Pr(X_t = x \mid X_0 = x_0) \text{ for any } x_0 \in \mathcal{S}$$

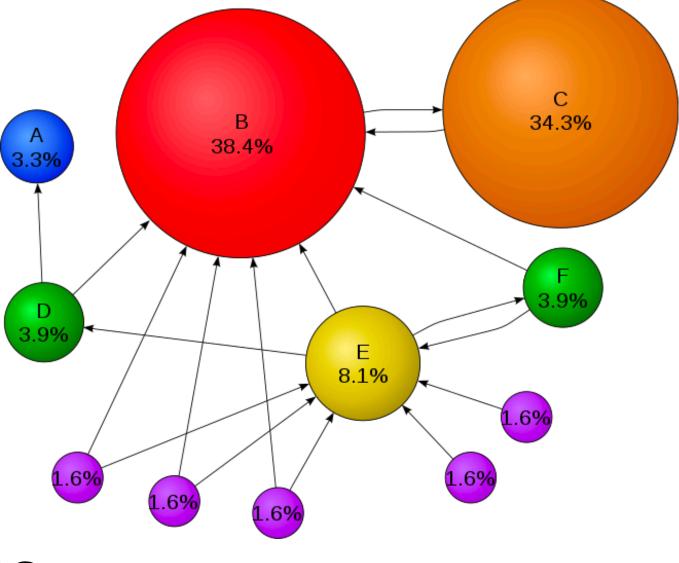
• **Proof**: (By coupling)



If a Markov chain X_0, X_1, X_2 ... on state space \mathcal{S} is *irreducible* and *ergodic*,

PageRank

- Each webpage $x \in \mathcal{S}$ is assigned a rank r(x):
 - High-rank pages have greater influence.
 - A page has high rank if pointed by many high-rank pages.
 - Pages pointing to few others have greater influence.
- Linear system: $r(x) = \sum_{y \to x} \frac{r(y)}{d^+(y)}$ where $d^+(y)$ is the **out-degree** of page y
- - $P(x, y) = \mathbf{\zeta}$



Stationary distribution rP = r for the random walk (tireless internet surfer)

$$\begin{cases} \frac{1}{d^+(x)} & \text{if } x \to y \\ 0 & \text{o.w.} \end{cases}$$

<u>Markov chain convergence theorem</u> (Fundamental Theorem of MC):

then there is a unique stationary distribution π on \mathcal{S} such that

$$\pi(x) = \lim_{t \to \infty} \Pr(X_t = x \mid X_0 = x_0) \text{ for any } x_0 \in \mathcal{S}$$

• Finite Markov chain (with finite state space δ): lazy (i.e. P(x, x) > 0) and strongly connected P

If a Markov chain X_0, X_1, X_2, \ldots on state space \mathcal{S} is *irreducible* and *ergodic*,

always converge to the unique stationary distribution $\pi = \pi P$

Time Reversibility

detailed balance equation (DBE):

 $\pi(x)P(x,y)$

for some distribution π over the state space \mathcal{S}

• π is a more refined fixpoint: π must be a stationary distribution

$$(\pi P)_y = \sum_x \pi(x) P(x, y) = \sum_x \pi(y) P(y, x) = \pi(y)$$

Time-reversible: assuming $X_0 \sim \pi$

A Markov chain P is called <u>time-reversible</u> or just <u>reversible</u> if it satisfies the

$$P(y) = \pi(y)P(y,x)$$

 (X_0, X_1, \ldots, X_n) is identically distributed as (X_n, \ldots, X_1, X_0)

<u>Markov chain convergence theorem</u> (Fundamental Theorem of MC):

then there is a unique stationary distribution π on \mathcal{S} such that

$$\pi(x) = \lim_{t \to \infty} \Pr(X_t = x \mid X_0 = x_0) \text{ for any } x_0 \in \mathcal{S}$$

• Finite Markov chain (with finite state space δ): lazy (i.e. P(x, x) > 0) and strongly connected P

• Detail balance equation: $\pi(x)P(x, y)$

If a Markov chain X_0, X_1, X_2, \ldots on state space \mathcal{S} is *irreducible* and *ergodic*,

always converge to the unique stationary distribution $\pi = \pi P$

$$P(y) = \pi(y)P(y,x)$$

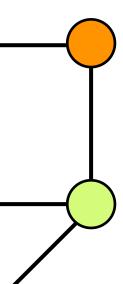
Markov Chains on Proper Colorings

- <u>Glauber dynamics</u>: Initially, $X_0 \in \Omega$ is arbitrary. Transition $X_t \to X_{t+1}$:
 - choose a vertex $v \in V$ uniformly at random;
 - $X_{t+1}(u) \leftarrow X_t(u)$ for all $u \neq v$;

• $X_{t+1}(v) \leftarrow \text{uniform random available color in } [q] \setminus \{X_t(u) \mid uv \in E\};$

- $q \ge \Delta + 2 \Longrightarrow$ the chain is irreducible and ergodic (aperiodic)
- Symmetric \Longrightarrow time-reversible and the stationary distribution π is uniform over Ω

• Let $\Omega = \{ \sigma \in [q]^V \mid \forall uv \in E, \sigma_u \neq \sigma_v \}$ be the set of all <u>proper q-colorings</u> of G



Counting Constraint Satisfaction Problem

Input: a CSP instance *I*. **Output**: the number of CSP solutions.

Examples:

- sets in a graph.
- colorings of a graph.

They are all **#P**-hard!

• Counting independent sets: number of independent

• Counting matchings: number of matchings in a graph. • Counting graph colorings: number of proper q-

• **#SAT**: number of satisfying assignments of a CNF.

uniform sampling \implies approximate counting

Mixing of Markov Chain

• Markov chain convergence theorem:

then there is a unique stationary distribution π on \mathcal{S} such that

$$\pi(x) = \lim_{t \to \infty} \Pr(X_t = x \mid X_0 = x_0) \text{ for any } x_0 \in \mathcal{S}$$

How fast is the convergence rate?

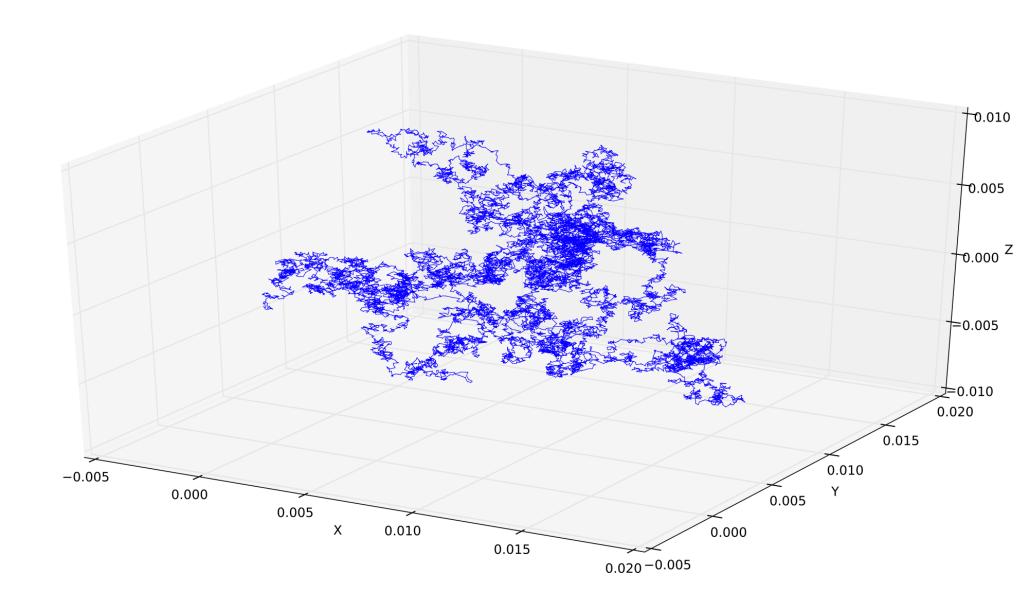
()Mixing time:

let
$$\pi_x^{(t)}(y) = (\mathbf{1}_x P^t)_y = \Pr(X_t = y \mid X_0 = x)$$

 $\tau(\epsilon) = \max_{x \in S} \min\left\{ t \ge 1 \mid \| \pi_x^{(t)} - \pi \|_1 \le 2\epsilon \right\}$

If a Markov chain $X_0, X_1, X_2...$ on state space \mathcal{S} is *irreducible* and *ergodic*,

Random Processes



Random Processes

- Stationary processes: $(X_{t_1}, X_{t_2}, \ldots)$
- Renewal (or counting) processes: $N(t) = \max\{n \mid X_1 + \dots + X_n \le t\}$ where $\{X_i : i \ge 1\}$ are i.i.d. nonnegative-valued random variables
 - Poisson processes (the only renewal processes that are Markov chains)
- Wiener process (Brownian motion): continuous-time continuous-space $\{W(t) \in \mathbb{R} : t \ge 0\}$ with time-homogeneity and independent increments $W(s_i) - W(t_i)$ are independent whenever the intervals $(s_i, t_i]$ are disjoint $W(s+u) - W(s) \sim \mathcal{N}(0,u)$

$$(X_{t_n}) \sim (X_{t_1+h}, X_{t_2+h}, \dots, X_{t_n+h})$$

• i.i.d. variables, stationary Markov chains, stationary Gaussian process, ...

Diffusion Processes (Stochastic processes with continuous sample paths)

an $A \in \Sigma$ with Pr(A) = 1 such that for all $\omega \in A$,

$$X(\omega)$$

is a continuous function (between topological spaces).

- The Wiener processes are one-dimensional diffusions.
- Itô (伊藤) calculus may apply!

• Let (Ω, Σ, \Pr) be a probability space. A random process $X : \mathcal{T} \times \Omega \to \mathcal{S}$ with time range \mathcal{T} and state space \mathcal{S} is called a <u>diffusion process</u> if there is

$$: \mathcal{T} \to \mathcal{S}$$

