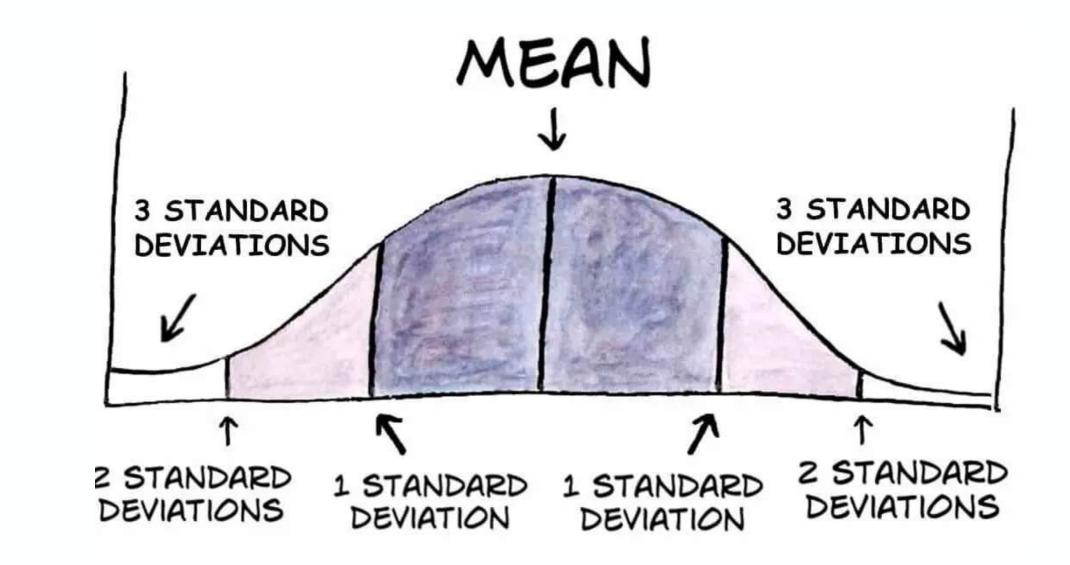
Foundations of Data Science Moment and Deviation

尹一通,刘明谋 Nanjing University, 2024 Fall

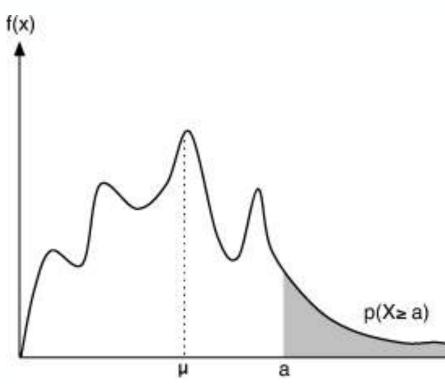
Noments and Deviations

 $\Pr[|X - \mathbb{E}[X]| > a] = ?$ $= \Pr[X < \mathbb{E}[X] - a] + \Pr[X > \mathbb{E}[X] + a]$ $= F(\mathbb{E}[X] - a) + (1 - F(\mathbb{E}[X] + a))$

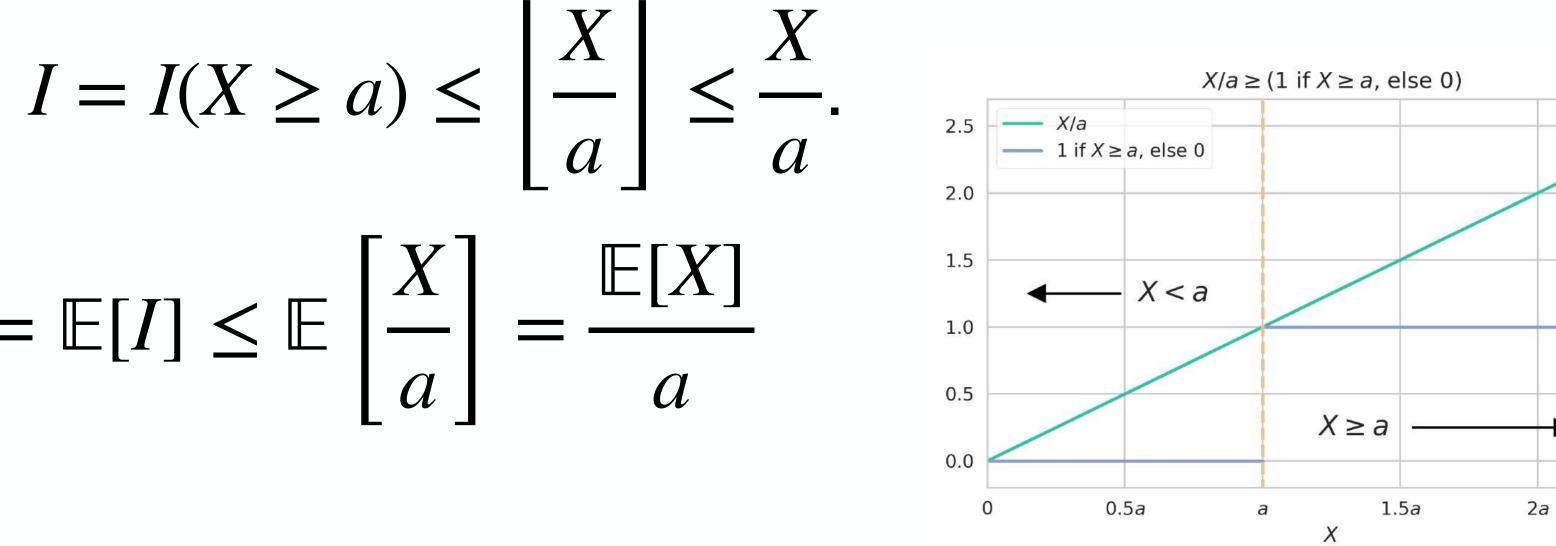


Markov's Inequality (马尔可夫不等式, the first Chebyshev inequality)

- **Proof** (by indicator): Let $I = I(X \ge a)$. Since $X \ge 0$ and a > 0, we have
 - Therefore, $\Pr(X \ge a) = \mathbb{E}[I] \le \mathbb{E}\left|\frac{X}{-1}\right| = \frac{\mathbb{E}[X]}{-1}$

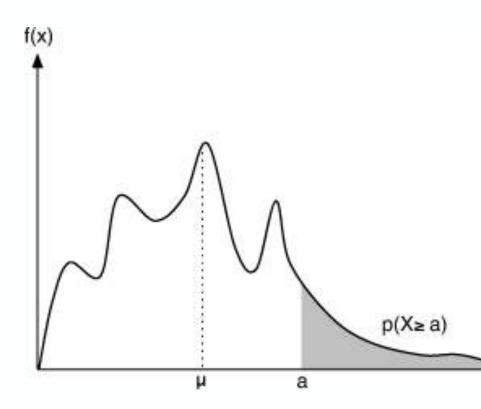


<u>Markov's inequality</u>: Let X be a nonnegative-valued random variable. Then, for any a > 0, $\Pr(X \ge a) \le \frac{\lfloor \lfloor X \rfloor}{----}$



Markov's Inequality (马尔可夫不等式)

• **Proof** (by total expectation): $(X \ge a \text{ is possible})$ $\mathbb{E}[X] = \mathbb{E}[X \mid X \ge a] \cdot \Pr(X \ge a) + \mathbb{E}[X \mid X < a] \cdot \Pr(X < a)$ $\geq a \cdot \Pr(X \geq a) + 0 \cdot \Pr(X < a) = a \cdot \Pr(X \geq a)$ $\implies \Pr(X \ge a) \le \frac{\mathbb{E}[X]}{a}$

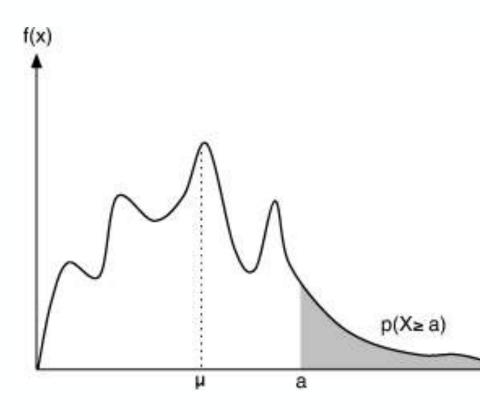


<u>Markov's inequality</u>: Let X be a nonnegative-valued random variable. Then, for any a > 0, $\Pr(X \ge a) \le \frac{\lfloor X \rfloor}{-}$

(X is nonnegative)

Markov's Inequality (马尔可夫不等式)

- <u>Markov's inequality</u>: Let *X* be a *nonnegative-valued* random variable. Then, for any a > 0, $\Pr(X \ge a) \le \frac{\mathbb{E}[X]}{a}$
- **Corollary**: for any c > 1, $Pr(X \ge c\mathbb{E}[X]) \le 1/c$
- Tight in the worst case: $\forall c > 1, \forall \mu \in \mathbb{R}$, \exists nonnegative X with $\mathbb{E}[X] = \mu$, such that $\Pr(X \ge c\mu) = 1/c$
- Lower tail variant (sometimes called <u>reverse Markov's inequality</u>): $Pr(X \le a) \le (u - \mathbb{E}[X])/(u - a)$ requires X to have bounded range $X \le u$



From Las Vegas to Monte Carlo

- Las Vegas algorithm: randomized algorithms that always give correct result upon termination (but may run for a random period of time before termination)
- If there is a Las Vegas algorithm \mathscr{A} with expected running time at most t(n)for any input of size n (A has worst-case expected time complexity t(n)):

Algorithm \mathscr{B} :

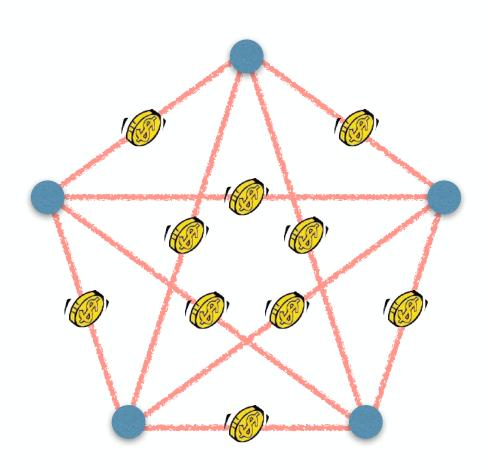
simulate algorithm \mathscr{A} up to $\lceil t(n)/\epsilon \rceil$ steps; if algorithm \mathscr{A} terminates return the output of \mathscr{A} ; else return an arbitrary answer;

Monte Carlo algorithm: randomized algorithms that are correct by chance

- Algorithm \mathscr{B} is a Monte Carlo algorithm s.t.
 - \mathscr{B} has worst-case running time $\leq [t(n)/\epsilon]$
 - \mathscr{B} is correct with probability at least 1ϵ (by Markov inequality)

Cliques in Random Graph

- G(n,p): between every pair u, v among n vertices, an edge is added i.i.d. with prob. p
- Fix a constant integer $k \ge 3$. Let X be the number of k-cliques (K_k) in $G \sim G(n, p)$.
- For every distinct $S \subseteq [n]$ of size |S| = k, let $I_S = I(K_S \subseteq G)$. Then:
 - $\mathbb{E}[I_S] = \Pr(K_S \subseteq G) = p^{\binom{k}{2}}$ $X = \sum_{S \in \binom{[n]}{k}} I_S$
- Linearity of expectation: $\mathbb{E}[X] = \binom{n}{k}$
- Markov's inequality: $\Pr(X \ge 1) \le \mathbb{E}[X] = o(1) \Longrightarrow \Pr(X = 0) = 1 o(1)$ $\implies \text{If } p = o(n^{-2/(k-1)}), \text{ then } G(n,p) \text{ is } K_k \text{-free a.a.s.} (asymptotically almost surely)}$



$$p^{\binom{k}{2}} \le n^k p^{k(k-1)/2} = o(1) \text{ for } p = o(n^{-2/(k-1)})$$

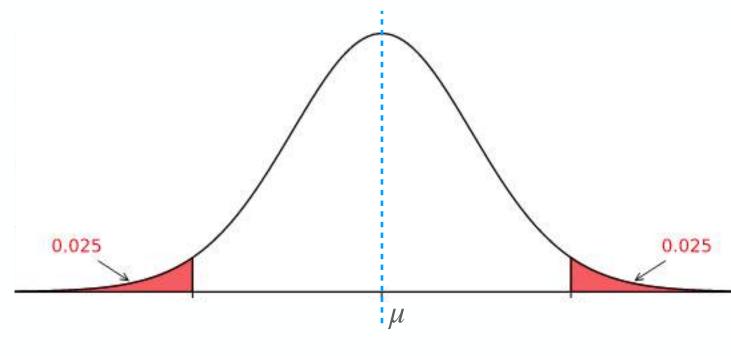
Generalized Markov's Inequality

- Let X be a random variable and $f : \mathbb{R} \to \mathbb{R}_{>0}$ a nonnegative-valued function. For any a > 0, $\Pr(f(X) \ge a) \le \frac{\lfloor f(X) \rfloor}{-1}$
- **Proof**: Apply the Markov's inequality to the random variable Y = f(X).
- Applications: useful if f(X) can "extract" useful information about X
 - Chebyshev's inequality, kth moment method: f(X) extracts the kth moment
 - Chernoff-Hoeffding bounds, Bernstein inequalities: f(X) extracts all moments

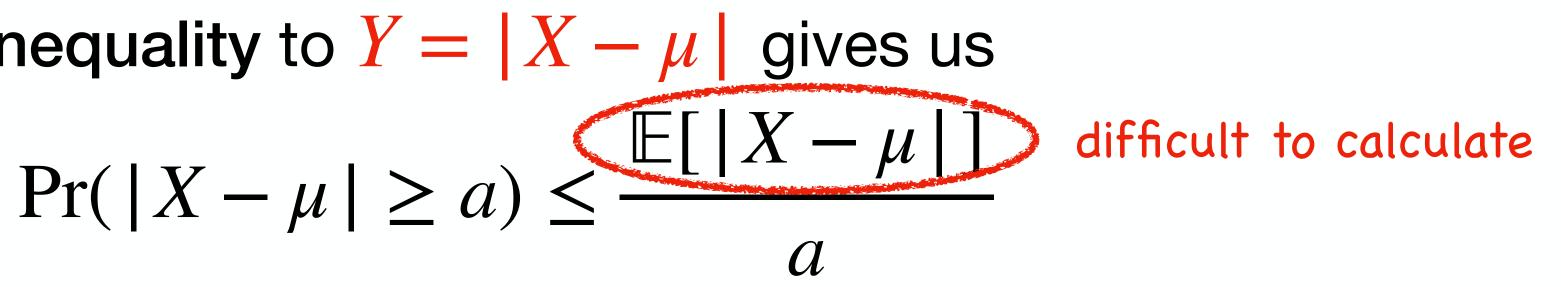
Deviation Inequality

- Let X be a random variable with mean $\mu = \mathbb{E}[X]$. For a > 0
- Applying Markov's inequality to $Y = |X \mu|$ gives us

• Alternatively, we may apply Markov's inequality to $Y = (X - \mu)^2$ $\Pr(|X - \mu| \ge a) = \Pr((X - \mu)^2 \ge a^2) \le \frac{\mathbb{E}[(X - \mu)^2]}{2}$



 $\Pr(|X - \mu| \ge a) \le ?$



Variance

(2nd central moment)

Variance (方差) and Moments (矩)

- and the <u>kth central moment</u> (k阶中心矩) of X is $\mathbb{E}[(X \mathbb{E}[X])^k]$.
- A random variable X can be centralized by $Y = X \mathbb{E}[X]$.
- The <u>variance</u> (方差) of a random variable X is its 2nd central moment: Var[X] =

• For integer k > 0, the <u>kth moment</u> (k阶矩) of a random variable X is $\mathbb{E}[X^k]$,

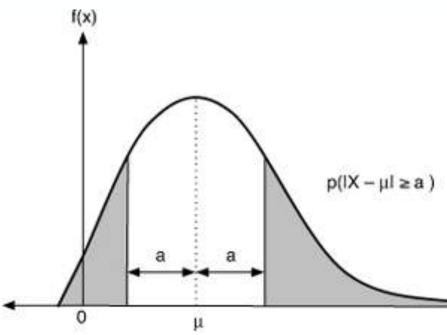
• Sometimes, a random variable X is called centralized (中心化的) if $\mathbb{E}[X] = 0$.

$$\mathbb{E}\left[(X - \mathbb{E}[X])^2\right]$$

and the standard deviation (标准差) of X is $\sigma = \sigma[X] = \sqrt{Var[X]}$

Chebyshev's Inequality (切比雪夫不等式, the second Chebyshev inequality)

- <u>Chebyshev's inequality</u>: Let X be a random variable. For any a > 0, $\Pr(|X - \mathbb{E}[X]| \ge a) \le \frac{\operatorname{Var}[X]}{a^2}$ **Proof**: Apply Markov's inequality to $Y = (X - \mathbb{E}[X])^2$.
- Corollary: For standard deviation $\sigma = \sqrt{Var[X]}$, for any $k \ge 1$,
 - $\Pr(|X \mathbb{E}|)$



$$[X]| \ge k\sigma) \le \frac{1}{k^2}$$

Median and Mean

- The median (中位数) of random variable X is defined to be any value m s.t.: $Pr(X \le m) \ge 1/2$ and $Pr(X \ge m) \ge 1/2$
- The expectation $\mu = \mathbb{E}[X]$ is the value that minimizes **E**(
- **Proof**: $f(x) = \mathbb{E}[(X x)^2] = \mathbb{E}[X^2] 2x\mathbb{E}[X] + x^2$ is convex and has $f'(\mu) = 0$
- The median *m* is the value that minimizes
- **Proof**: By symmetry, suppose non-median y > m so that $Pr(X \ge y) < 1/2$. $\mathbb{E}[|X - y| - |X - m|] = (m - y)\Pr(X \ge y) + \sum (m + y - 2x)\Pr(X = x) + (y - m)\Pr(X \le m)$

$$(X-\mu)^2]$$

 $\mathbb{E}[|X-m|]$

> (m - y)/2 + (y - m)/2 = 0

Median and Mean

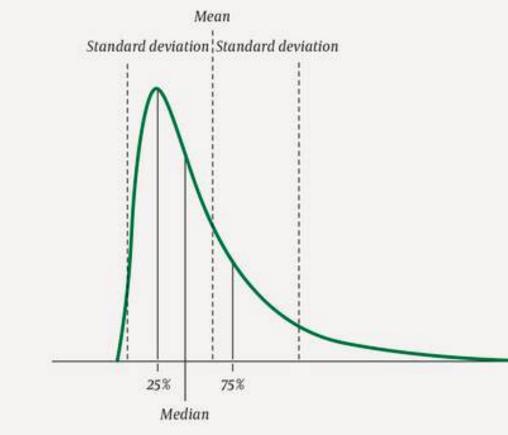
then

• **Proof**: $|\mu - m| = |\mathbb{E}[X] - m| = |\mathbb{E}[X - m]|$

 $\leq \mathbb{E}[|X - m|]$ (Jensen's inequality)

 $\leq \mathbb{E}[|X - \mu|]$ (the median *m* minimizes $\mathbb{E}[|X - m|]$)

$$= \mathbb{E}\left[\sqrt{(X-\mu)^2}\right] \le \sqrt{(X-\mu)^2}$$



• If X is a random variable with finite expectation μ , median m, and standard deviation σ ,

 $|\mu - m| \leq \sigma$

 $\sqrt{\mathbb{E}\left[(X-\mu)^2\right]} = \sigma$ (Jensen's inequality)

Variance

Calculation of Variance $\operatorname{Var}[X] = \mathbb{E}\left[(X - \mathbb{E}[X])^2\right] = \mathbb{E}[X^2] - \mathbb{E}[X]^2$ • **Proof:** $\operatorname{Var}[X] = \mathbb{E}\left[(X - \mathbb{E}[X])^2\right]$ $= \mathbb{E} \left[X^2 - 2\mathbb{E}[X]X + \mathbb{E}[X]^2 \right]$ $= \mathbb{E}[X^2] - 2\mathbb{E}[X]\mathbb{E}[X] + \mathbb{E}[X]^2$ $= \mathbb{E}[X^2] - \mathbb{E}[X]^2$

• *X* is constant *a.s.* ($Pr(X = \mathbb{E}[X]) = 1$) $\iff \mathbb{E}[X^2] = \mathbb{E}[X]^2 \iff \mathbf{Var}[X] = 0$

Variance of Linear Function

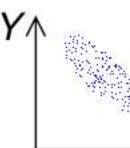
- For random variables X, Y and real number $a \in \mathbb{R}$:
 - $\mathbf{Var}[a] = 0$
 - Var[X + a] = Var[X] (variance is a central moment)
 - $Var[aX] = a^2 Var[X]$ (variance is quadratic)
 - $\operatorname{Var}[X + Y] = \operatorname{Var}[X] + \operatorname{Var}[Y] + 2(\mathbb{E}[XY] \mathbb{E}[X]\mathbb{E}[Y])$
- **Proof**: All can be verified through $\mathbf{Var}[X] = \mathbb{E}[X^2] \mathbb{E}[X]^2$.

Covariance (协方差)

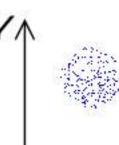
• The <u>covariance</u> (协方差) of two random variables X and Y is

 $\mathbf{Cov}(X, Y) = \mathbb{E}\left[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])\right] = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]$

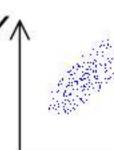
- Properties: Var[X] = Cov(X, X)
 - Symmetric: Cov(X, Y) = Cov(Y, X)
 - Distributive: Cov(X + Y, Z) = Cov(X, Z) + Cov(Y, Z) $\mathbf{Cov}(aX, Y) = a\mathbf{Cov}(X, Y)$
- If X and Y are independent then



 $\operatorname{cov}(X,Y) < 0$



$\operatorname{cov}(X,Y) \approx 0$



cov(X,Y) > 0

$Cov(X, Y) = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y] = 0$

Covariance of Independent Variables

• If random variables X and Y are independent, then

- If random variables X_1, X_2, \ldots, X_n are mutually independent, then $\mathbb{E}\left|\prod_{i=1}^{n} X_{i}\right| = \mathbb{E}\left|\prod_{i=1}^{n-1} X_{i}\right|$
 - **Proof:** By change of variable (LOTL $\mathbb{E}[XY] = \sum xy \Pr(X = x \cap Y = y)$ X, Y $= \left(\sum_{x} x \Pr(X = x)\right) \left(\sum_{y} y \Pr(Y = x)\right)$

 $\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y]$

$$\begin{bmatrix} -1 \\ \mathbf{I} \\ \mathbf{I} \\ \mathbf{I} \end{bmatrix} \cdot \mathbb{E}[X_n] = \prod_{i=1}^n \mathbb{E}[X_i]$$

$$\begin{aligned} JS \\ y) &= \sum_{x,y} xy \Pr(X = x) \Pr(Y = y) \\ y) \end{aligned} \\ = \mathbb{E}[X] \mathbb{E}[Y] \end{aligned}$$

Expectation of Product

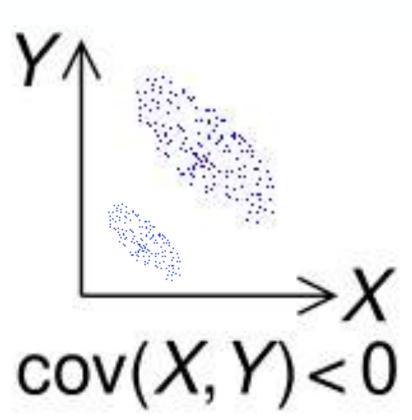
- For random variables X and Y:
- (Cauchy-Schwarz)

- $\mathbb{E}[XY]^2 \le \mathbb{E}[X^2]\mathbb{E}[Y^2]$
- (Hölder) for any p, q > 0 satisfying $\frac{1}{n} + \frac{1}{q} = 1$
 - $\mathbb{E}[XY] \leq \mathbb{E}[|X|^p]^{1/p} \mathbb{E}[|Y|^q]^{1/q}$

if X and Y independent, then $\mathbb{E}[XY] = \mathbb{E}[X|\mathbb{E}[Y]]$

Correlation (相关性)

- The <u>covariance</u> (协方差) of two random variables X and Y is
 - $\mathbf{Cov}(X, Y) = \mathbb{E}\left[(X \mathbb{E}[X])(Y \mathbb{E}[Y])\right] = \mathbb{E}[XY] \mathbb{E}[X]\mathbb{E}[Y]$
- The <u>correlation coefficient</u> (相关系数) of X and Y is
 - $\rho(X, Y) = \frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}[X] \cdot \operatorname{Var}[Y]}} \quad \begin{array}{l} \in [-1, 1] \\ \text{by Cauchy-Schwarz} \end{array}$
- Two random variables X and Y are called <u>uncorrelated</u> if Cov(X, Y) = 0
- X and Y are uncorrelated means:
 - $\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y]$
 - Var[X + Y] = Var[X] + Var[Y]



Variance of Sum

- For random variables X, Y:
- For random variables X_1, X_2, \ldots, X_n :
- For pairwise independent X_1, X_2, \ldots, X_n :

$\operatorname{Var}[X + Y] = \operatorname{Var}[X] + \operatorname{Var}[Y] + 2\operatorname{Cov}(X, Y)$

 $\operatorname{Var}\left|\sum_{i=1}^{n} X_{i}\right| = \sum_{i=1}^{n} \operatorname{Var}[X_{i}] + \sum_{i \neq i} \operatorname{Cov}(X_{i}, X_{j})$

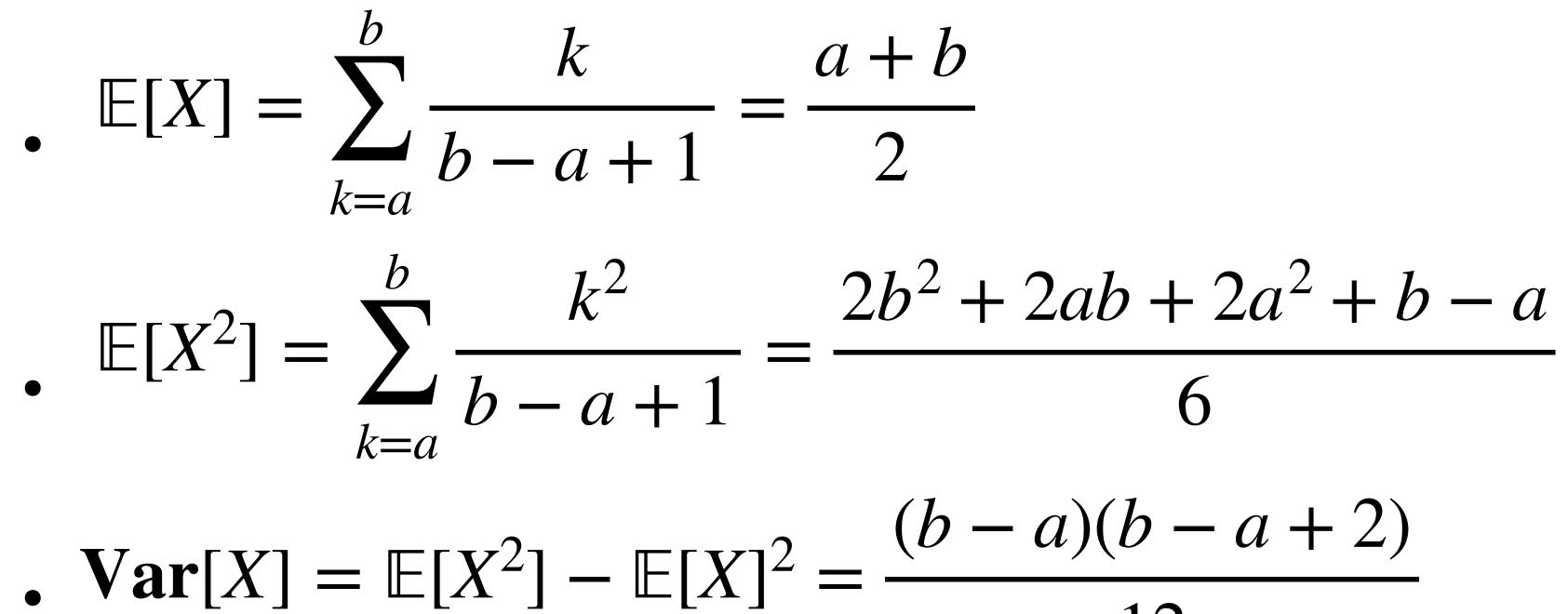
 $\mathbf{Var}\left[\sum_{i=1}^{n} X_{i}\right] = \sum_{i=1}^{n} \mathbf{Var}[X_{i}]$

Variance of Indicator

- For Bernoulli random variable $X \in \{0,1\}$ with parameter p $X^2 = X \implies \mathbb{E}[X^2] = \mathbb{E}[X] = p$ $Var[X] = \mathbb{E}[X^2] - \mathbb{E}[X]^2 = p - p^2 = p(1 - p)$ • For the indicator random variable X = I(A) of event A: $Var[X] = Pr(A)(1 - Pr(A)) = Pr(A) Pr(A^{c})$

Variance of Discrete Uniform Distribution

• For integers $a \leq b$, let X be chosen from $[a, b] = \{a, a + 1, \dots, b\}$ u.a.r.



12

Geometric Distribution (几何分布)

- For geometric random variable $X \sim \text{Geo}(p)$, recall $\mathbb{E}[X] = 1/p$, and
 - $\mathbb{E}[X^2] = \sum k^2 (1)$ <u>k≥1</u> $\operatorname{Var}[X] = \mathbb{E}[X^2] - \mathbb{E}[X]^2 =$
- Total expectation: $\mathbb{E}[X^2] = \mathbb{E}[X^2 \mid X > 1] \cdot (1 p) + \mathbb{E}[X^2 \mid X = 1] \cdot p$ $= \mathbb{E}[((X-1)+1)^2 | X > 1] \cdot (1-p) + p$ (memoryless) = $\mathbb{E}[(X+1)^2] \cdot (1-p) + p$ $= (1 - p)\mathbb{E}[X^2] + 2(1 - p)/p + 1$
- - $\implies \mathbb{E}[X^2] = (2-p)/p^2 \implies \operatorname{Var}[X] = \mathbb{E}[X^2] \mathbb{E}[X]^2 = (1-p)/p^2$

$$(-p)^{k-1}p = (2-p)p^{-2}$$

$$= (2 - p)p^{-2} - p^{-2} = (1 - p)/p^2$$

Binomial Distribution (二项分布)

• For binomial random variable $X \sim Bin(n, p)$, recall $\mathbb{E}[X] = np$, and

$$\mathbf{Var}[X] = \mathbb{E}[X^2] - \mathbb{E}[X]^2 = \sum_{k=0}^n k^2 \binom{n}{k} p^k (1-p)^{n-k} - (np)^2$$

- Observation: $X \sim Bin(n, p)$ can be expressed as $X = X_1 + \cdots + X_n$, where X_1, \ldots, X_n are i.i.d. Bernoulli random variables with parameter p
- For mutually independent X_1, \ldots, X_n

$$\mathbf{Var}\left[X\right] = \sum_{i=1}^{n} \mathbf{V}$$

$$X_n$$
:

$$\mathbf{Var}[X_i] = np(1-p)$$

Poisson Distribution

• For Poisson random variable $X \sim \text{Pois}(\lambda)$, recall $\mathbb{E}[X] = \lambda$, and

$$\mathbb{E}[X^2] = \sum_{k\geq 0} k^2 \frac{e^{-\lambda}\lambda^k}{k!} = \sum_{k\geq 0} k^2 \frac{e^{-\lambda}\lambda^k}{k!} = \sum_{k\geq 0} (k+1) \frac{e^{-\lambda}\lambda^k}{k!}$$
$$= \lambda \mathbb{E}[X+1] = \lambda(\mathbb{E})$$
$$\mathbf{Var}[X] = \mathbb{E}[X^2] - \mathbb{E}[X]^2 = \mathbf{Var}[X] = \mathbb{E}[X]^2 = \mathbf{Var}[X]$$



Negative Binomial Distribution (负 二项分布)

• For negative binomial random variable X with parameters r, p

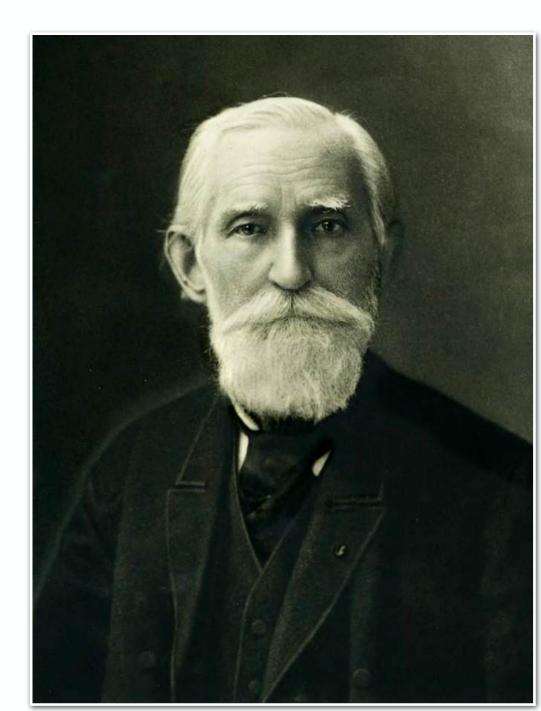
$$\operatorname{Var}[X] = \mathbb{E}[X^2] - \mathbb{E}[X]^2 = \sum_{k \ge 1} k^2 \binom{k+r-1}{k} (1-p)^k p^r - r^2 (1-p)^2 / p^2$$

- Observation: X can be expressed as $X = (X_1 1) + \cdots + (X_r 1)$, where X_1, \ldots, X_r are i.i.d. geometric random variables with parameter p
- For mutually independent X_1, \ldots, X_n $\operatorname{Var}[X] = \sum_{i=1}^{r} \operatorname{Var}[X_{i} - X_{i}]$ i=1

$$X_{r}:$$

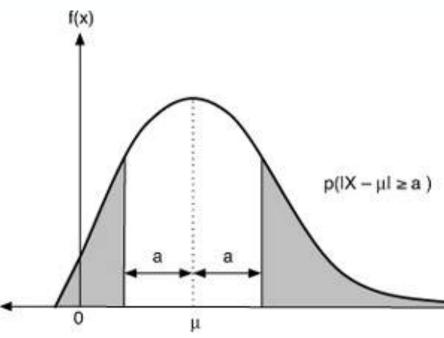
$$-1] = \sum_{i=1}^{r} \operatorname{Var}[X_{i}] = \frac{r(1-p)}{p^{2}}$$

Chebyshev (Чебышёв)'s Inequality



Chebyshev's Inequality (切比雪夫不等式)

- <u>Chebyshev's inequality</u>: Let X be a random variable. For any a > 0,
- Corollary: For standard deviation $\sigma = \sqrt{Var[X]}$, for any $k \ge 1$,
- and $\operatorname{Var}[X] = \sigma^2$ such that $\Pr(|X \mu| \ge k\sigma) = 1/k^2$



 $\Pr(|X - \mathbb{E}[X]| \ge a) \le \frac{\operatorname{Var}[X]}{a^2}$ $\Pr(|X - \mathbb{E}[X]| \ge k\sigma) \le \frac{1}{k^2}$ • Tight in the worst case: $\forall k \ge 1$, $\forall \mu \in \mathbb{R}$ and $\forall \sigma > 0$, $\exists X$ with $\mathbb{E}[X] = \mu$

Unbiased Estimator (mean trick)

- Empirical mean: $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ $\mathbb{E}[\overline{X}] = \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}[X_i] = \mu \text{ and}$
 - Chebyshev's inequality:

$$\Pr(|\overline{X} - \mu| \ge \epsilon \mu) \le \frac{\operatorname{Var}[\overline{X}]}{\epsilon^2 \mu^2} = \frac{\sigma^2}{\epsilon^2 \mu^2 n} \le \delta \quad \text{if } n \ge \frac{\sigma^2}{\epsilon^2 \mu^2 \delta}$$

• Let X_1, \ldots, X_n be *i.i.d.* random variables with $\mathbb{E}[X_i] = \mu$ and $\mathbf{Var}[X_i] = \sigma^2$.

$$\operatorname{Var}[\overline{X}] = \frac{1}{n^2} \sum_{i=1}^{n} \operatorname{Var}[X_i] = \frac{\sigma^2}{n}$$

(one-sided) Error Reduction

- Decision problem $f: \{0,1\}^* \to \{0,1\}$.
- Monte Carlo randomized algorithm A with one-sided error: for any input x and uniform random seed $r \in [p]$ for some prime number p

•
$$f(x) = 1 \Longrightarrow \Pr_{r \in [p]} \left(\mathscr{A}(x, r) = 0 \right)$$

• $f(x) = 0 \Longrightarrow \mathscr{A}(x, r) = 0$ for a

•
$$\mathscr{A}^k(x, r_1, \dots, r_k) = \bigvee_{i=1}^k \mathscr{A}(x, r_i)$$
: for
• $f(x) = 1 \Longrightarrow \Pr\left(\mathscr{A}^k(x, r_1, \dots, r_k)\right)$

- $= 1) \geq \epsilon$
- all $r \in [p]$
- or mutually independent $r_1, \ldots, r_k \in [p]$ $(r_k) = 0 \le (1 - \epsilon)^k$

Two-Point Sampling (2-Universal Hashing)

- Let p > 1 be a prime number and $[p] = \{0, 1, ..., p 1\} = \mathbb{Z}_p$.
- Pick $a, b \in [p]$ *u.a.r.* and let $r_i = (a \cdot i + b) \mod p$ for i = 1, 2, ..., p
- $r_1, \ldots, r_p \in [p]$ are pairwise independent
 - each r_i is <u>uniformly distributed</u> over [p]
- **Proof**: For any $i \neq j$, $\forall c, d \in [p]$, $\Pr(r_i = c \cap r_j = d) = 1/p^2$ because $\begin{cases} \boldsymbol{a} \cdot \boldsymbol{i} + \boldsymbol{b} \equiv c \pmod{p} \\ \boldsymbol{a} \cdot \boldsymbol{j} + \boldsymbol{b} \equiv d \pmod{p} \end{cases} \text{ has a unique solution } (a, b) \in [p]^2$
 - $\Pr(r_i = c) = \Pr(a \cdot i + b \equiv c \pmod{p})$

$$)) = \frac{1}{p} \sum_{a \in [p]} \Pr(b \equiv c - ai \pmod{p}) = \frac{1}{p}$$

Derandomization with Two-Point Sampling

- \mathscr{A} : for any input x and uniform *random seed* $r \in [p]$ for prime number p
 - $f(x) = 1 \Longrightarrow \Pr(\mathscr{A}(x, r) = 1) \ge \epsilon$
 - $f(x) = 0 \Longrightarrow \mathscr{A}(x, r) = 0$ for all $r \in [p]$
- $\mathscr{A}^k(x, r_1, \dots, r_k) = \bigvee_{i=1}^k \mathscr{A}(x, r_i): k \le p \text{ for } r_i = (\mathbf{a} \cdot i + \mathbf{b}) \mod p \text{ with uniform } \mathbf{a}, \mathbf{b} \in [p]$ • If $f(x) = 0 \Longrightarrow \mathscr{A}^k(x, r_1, \dots, r_k) = \bigvee_{i=1}^k \mathscr{A}(x, r_i) = 0$

 - If $f(x) = 1 \Longrightarrow \Pr(\mathscr{A}(x, r_i) = 1) \ge \epsilon$ because each r_i is uniform over [p]
 - Let $X_i = \mathscr{A}(x, r_i)$ and let $X = \sum_{i=1}^k X_i$.
 - X_1, \ldots, X_k are pairwise independent Bernoulli random variables with $Pr(X_i = 1) \ge \epsilon$ • $\Pr\left(\mathscr{A}^k(x, r_1, \dots, r_k) = 0\right) = \Pr(X = 0) \le \Pr\left(|X - \mathbb{E}[X]| \ge \mathbb{E}[X]\right) \le \frac{\operatorname{Var}[X]}{\mathbb{E}[X]^2}$ (Chebyshev's inequality)

Derandomization with Two-Point Sampling

- - If $f(x) = 1 \Longrightarrow \Pr(\mathscr{A}(x, r_i) = 1) \ge \epsilon$ because each r_i is uniform over [p]
 - Let $X_i = \mathscr{A}(x, r_i)$ and let $X = \sum_{i=1}^k X_i$.

•
$$\Pr\left(\mathscr{A}^{k}(x, r_{1}, ..., r_{k}) = 0\right) = \Pr(X =$$

- Linearity of expectation: $\mathbb{E}[X] = \sum_{i=1}^{k} \mathbb{E}[X_i] \ge \epsilon k$
- using only **2 random seeds** in total.

• $\mathscr{A}^k(x, r_1, \dots, r_k) = \bigvee_{i=1}^k \mathscr{A}(x, r_i)$: $k \le p$ and $r_i = (\mathbf{a} \cdot i + \mathbf{b}) \mod p$ with uniform $\mathbf{a}, \mathbf{b} \in [p]$

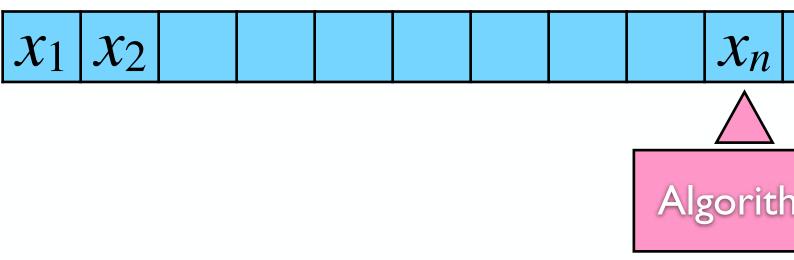
• X_1, \ldots, X_k are pairwise independent Bernoulli random variables with $Pr(X_i = 1) \ge \epsilon$ $= 0) \le \Pr\left(|X - \mathbb{E}[X]| \ge \mathbb{E}[X]\right) \le \frac{\operatorname{Var}[X]}{\mathbb{E}[X]^2} \le \frac{1}{C^k}$ • Pairwise independence: $\operatorname{Var}[X] = \sum_{i=1}^{k} \operatorname{Var}[X_i] \le \sum_{i=1}^{k} \mathbb{E}[X_i^2] = \sum_{i=1}^{k} \mathbb{E}[X_i] = \mathbb{E}[X]$

i=1Reduce any 1-sided error $1 - \epsilon$ to $1/(\epsilon k)$ with $k \le p$ runs of the algorithm

Count Distinct Elements

Input: a sequence x_1, x_2

Output: an estimation



- Sketch: (lossy) representation of data using space $\ll z$

$$x_2, \dots, x_n \in U = [N]$$

of $z = \left| \{x_1, x_2, \dots, x_n\} \right|$

• Data stream model: input data item comes one at a time

$$\xrightarrow{} f(x_1, \dots, x_n) = \left| \left\{ x_1, x_2, \dots, x_n \right\} \right|$$

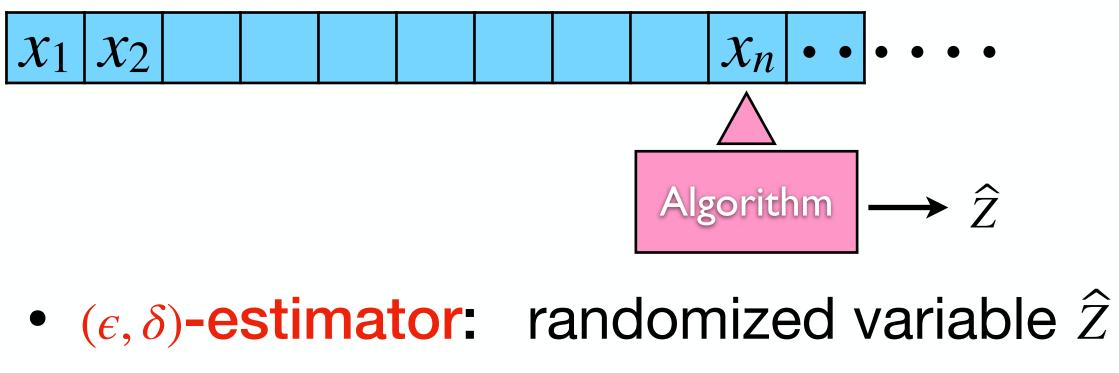
• Naïve algorithm: store all distinct data items using $\Omega(z \log N)$ bits

 Lower bound (Alon-Matias-Szegedy): any deterministic (exact or approx.) algorithm must use $\Omega(N)$ bits of space in the worst case

Count Distinct Elements

Input: a sequence x_1, x_2

Output: an estimation



 $\Pr\left[(1-\epsilon)z \le \right]$

Using only memory equivalent to 5 lines of printed text, you can estimate with a typical accuracy of 5% and in a single pass the total vocabulary of Shakespeare.

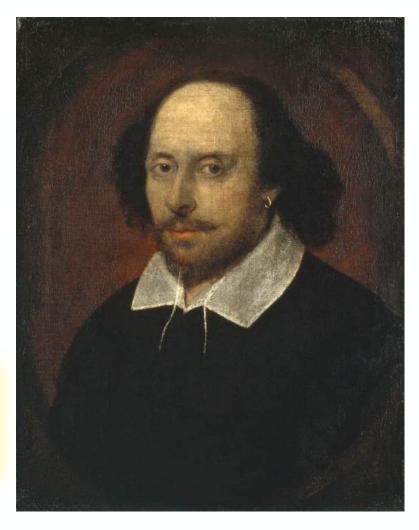
$$x_2, \dots, x_n \in U = [N]$$

of $z = \left| \{x_1, x_2, \dots, x_n\} \right|$

• Data stream model: input data item comes one at a time

$$\hat{Z} \le (1+\epsilon)z \Big] \ge 1-\delta$$

-Durand and Flajolet 2003



William Shakespeare

Input: a sequence x_1, x_2

Output: an estimation

Simple Uniform Hash Assumption (SUHA): A uniform function is available, whose preprocessing, representation and evaluation are considered to be easy.

- (idealized) uniform hash function $h: U \rightarrow [0,1]$
 - $x_i = x_i \longrightarrow$ the same hash value $h(x_i) = h(x_i) \in [0,1]$
- $\{h(x_1), \dots, h(x_n)\}$: $z \times$ uniform and independent values in [0,1]

$$\mathbb{E}\left[\min_{1 \le i \le n} h(x_i)\right] = \mathbb{E}[\text{length of a subinterval}] = \frac{1}{z+1} \text{ (by symmetry)}$$

• estimator: $\hat{Z} = \frac{1}{\min_i h(x_i)} - 1$? Variance is too large!

$$x_2, \dots, x_n \in U = [N]$$

of $z = \left| \{x_1, x_2, \dots, x_n\} \right|$

• partition [0,1] into z + 1 subintervals (with *identically distributed* lengths)

• (*idealized*) uniform hash function $h: U \rightarrow [0,1]$

Min Sketch:

let
$$Y = \min_{1 \le i \le n} h(x_i)$$
;
return $\hat{Z} = \frac{1}{Y} - 1$;

$$\left|Y - \mathbb{E}[Y]\right| > \frac{\epsilon/2}{z+1}$$
 \leftarrow $\left|Y - \frac{1}{z+1}\right| > \frac{\epsilon/2}{z+1}$

$$x_2, \dots, x_n \in U = [N]$$

of $z = \left| \{x_1, x_2, \dots, x_n\} \right|$

- By symmetry: $\mathbb{E}[Y] = \frac{1}{z+1}$
- Goal:

$$\Pr\left[\widehat{Z} < (1-\epsilon)z \text{ or } \widehat{Z} > (1+\epsilon)z\right] \le \delta$$

assuming $\epsilon \leq 1/2$

• (idealized) uniform hash function $h: U \rightarrow [0,1]$

Min Sketch:

let
$$Y = \min_{1 \le i \le n} h(x_i)$$
;
return $\hat{Z} = \frac{1}{Y} - 1$;

geometric probability: $\Pr[Y > y] = (1 - y)$ $\mathbb{E}[Y^2] = \int_{-1}^{1} y^2 p(y) \, \mathrm{d}y = \int_{-1}^{1} y^2 z(1)$ **J**0 **J**0 $\mathbf{Var}[Y] = \mathbb{E}[Y^2] - \mathbb{E}[Y]^2 = \frac{1}{(z+z)^2}$

$$x_2, \dots, x_n \in U = [N]$$

of $z = \left| \{x_1, x_2, \dots, x_n\} \right|$

• Uniform independent hash values:

 $H_1, \ldots, H_7 \in [0,1]$

• $Y = \min_{1 \le i \le z} H_i$

$$pdf: p(y) = z(1 - y)^{z-1}$$

$$1 - y)^{z-1} dy = \frac{2}{(z+1)(z+2)}$$

$$\frac{z}{(z+1)^2(z+2)} \le \frac{1}{(z+1)^2}$$

• (*idealized*) uniform hash function $h: U \rightarrow [0,1]$

Min Sketch: let $Y = \min_{1 \le i \le n} h(x_i)$; return $\hat{Z} = \frac{1}{V} - 1;$

$$\operatorname{Var}[Y] \leq \frac{1}{(z+1)^2} \xrightarrow{\text{(Chebyshev)}} \operatorname{Pr}\left[\left|Y - \mathbb{E}[Y]\right| > \frac{\epsilon/2}{z+1}\right] \leq \frac{4}{\epsilon^2}$$

$$x_2, \dots, x_n \in U = [N]$$

of $z = \left| \{x_1, x_2, \dots, x_n\} \right|$

- By symmetry: $\mathbb{E}[Y] = \frac{1}{z+1}$
- Goal:

$$\Pr\left[\hat{Z} < (1-\epsilon)z \text{ or } \hat{Z} > (1+\epsilon)z\right] \le \delta$$

assuming $\epsilon \leq 1/2$

The Mean Trick (for Variance Reduction)

• Variance and covariance:

$$\mathbf{Var}[X] = \mathbb{E}[(X$$

$$\mathbf{Cov}(X, Y) = \mathbb{E}\left[(X$$

• Useful properties:

$$\mathbf{Var}[X+a] = \mathbf{Var}[X]$$
$$\mathbb{E}\left[\frac{1}{k}\sum_{i=1}^{k}X_{i}\right] = \mathbb{E}[X_{1}]$$
$$\mathbf{Var}\left[\sum_{i}X_{i}\right] = \sum_{i}\mathbf{Var}[X_{i}] + \sum_{i\neq j}\mathbf{Cov}(X_{i}, X_{j})$$

• For pairwise independent identically distributed X_i 's:

$$\operatorname{Var}\left[\frac{1}{k}\sum_{i=1}^{k}X_{i}\right] = \frac{1}{k^{2}}\sum_{i=1}^{k}\operatorname{Var}[X_{i}] = \frac{1}{k}\operatorname{Var}[X_{1}]$$

 $[-\mathbb{E}[X])^2] = \mathbb{E}[X^2] - (\mathbb{E}[X])^2$ $-\mathbb{E}[X])(Y-\mathbb{E}[Y])$

• uniform & independent hash functions $h_1, \ldots, h_k : U \rightarrow [0,1]$

Min Sketch: for each $1 \le j \le k$, l return $\widehat{Z} = \frac{1}{\overline{V}} - 1$ wh

• For every
$$1 \le j \le k$$
:

$$\mathbb{E}\left[Y_j\right] = \frac{1}{z+1}$$

$$\operatorname{Var}[Y_j] \le \frac{1}{(z+1)^2}$$
indep

$$x_2, \dots, x_n \in U = [N]$$

of $z = \left| \{x_1, x_2, \dots, x_n\} \right|$

et
$$Y_j = \min_{1 \le i \le n} h_j(x_i)$$
;
nere $\overline{Y} = \frac{1}{k} \sum_{j=1}^k Y_j$;

earity of ectation z + 1 $\frac{\text{spendence}}{\text{Var}}\left[\overline{Y}\right] \leq \frac{1}{k(z+1)^2}$

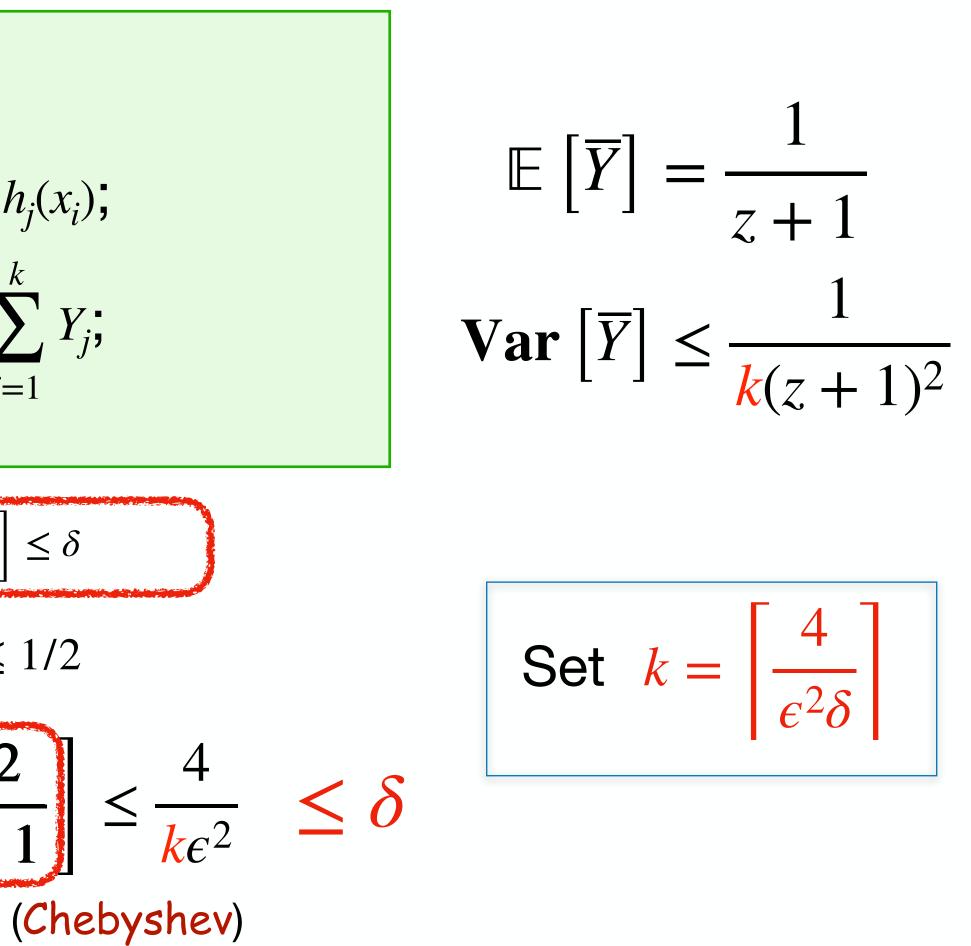
• uniform & independent hash functions $h_1, \ldots, h_k : U \rightarrow [0,1]$

Min Sketch: for each $1 \le j \le k$, let $Y_j = \min_{1 \le i \le n} h_j(x_i)$; return $\widehat{Z} = \frac{1}{\overline{Y}} - 1$ where $\overline{Y} = \frac{1}{k} \sum_{i=1}^k Y_j$;

• **Goal:** $\Pr\left[\hat{Z} < (1-\epsilon)z \text{ or } \hat{Z} > (1+\epsilon)z\right] \le \delta$ assuming $\epsilon \leq 1/2$ $\Pr\left[\left|\overline{Y} - \mathbb{E}\left[\overline{Y}\right]\right| > \frac{\epsilon/2}{z+1}\right] \le \frac{4}{k\epsilon^2} \le \delta$

$$x_2, \dots, x_n \in U = [N]$$

of $z = \left| \{x_1, x_2, \dots, x_n\} \right|$



• uniform & independent hash functions $h_1, \ldots, h_k : U \rightarrow [0,1]$

Set $k = \left[\frac{4}{(\epsilon^2 \delta)} \right]$ Min Sketch: for each $1 \le j \le k$, let return $\hat{Z} = \frac{1}{\overline{Y}} - 1$ wh

 $\Pr\left[\left(1-\epsilon\right)z\leq\hat{Z}\right]$

- Space cost: $k = O\left(\frac{1}{\epsilon^2 \delta}\right)$ real numbers in [0,1]
- Storing *k idealized* hash functions.

$$x_2, \dots, x_n \in U = [N]$$

of $z = \left| \{x_1, x_2, \dots, x_n\} \right|$

et
$$Y_j = \min_{1 \le i \le n} h_j(x_i)$$
;
nere $\overline{Y} = \frac{1}{k} \sum_{j=1}^k Y_j$;

$$\hat{Z} \le (1+\epsilon)z \Big] \ge 1-\delta$$

Two-Point Sampling (2-Universal Hashing)

- Let p > 1 be a prime number and $[p] = \{0, 1, ..., p 1\} = \mathbb{Z}_p$.
- Pick $a, b \in [p]$ *u.a.r.* and let $r_i = (a \cdot i + b) \mod p$ for i = 1, 2, ..., p
 - $r_1, \ldots, r_p \in [p]$ are pairwise independent
 - each r_i is <u>uniformly distributed</u> over [p]
- Linear congruential hashing $f: GF(q) \to GF(q)$ over finite field GF(q): • Pick $a, b \in GF(q)$ u.a.r and let $f(x) = a \cdot x + b$ for $x \in GF(q)$
- - { $x \in GF(q)$ } are <u>pairwise independent</u>
 - each f(x) is <u>uniformly distributed</u> over GF(q)
 - $GF(2^w)$ exists for any positive integer $w \in \mathbb{Z}^+$

Flajolet-Martin Algorithm

Input: a sequence x_1, x_2

Output: an estimation

- 2-wise independent hash function $h: [2^w] \rightarrow [2^w]$

let $R = \max \operatorname{zeros}(h(x_i));$ $1 \le i \le n$

return $\hat{Z} = 2^R$;

$$\Pr\left[\hat{Z} < \frac{z}{C} \text{ or } \hat{Z} > C \cdot z\right] \le \frac{3}{C}$$

$$x_2, \dots, x_n \in [N] \subseteq [2^w]$$

of $z = \left| \{x_1, x_2, \dots, x_n\} \right|$

• For $y \in [2^w]$, let $zeros(y) = max\{i : 2^i | y\}$ denote # of trailing 0's

Flajolet-Martin Algorithm:

- 2-wise independent hash function $h: [2^w] \rightarrow [2^w]$
- For $y \in [2^w]$, let $zeros(y) = max\{i : 2^i | y\}$ denote # of trailing 0's

Flajolet-Martin Algorithm:

let $R = \max \operatorname{zeros}(h(x_i));$ $1 \le i \le n$

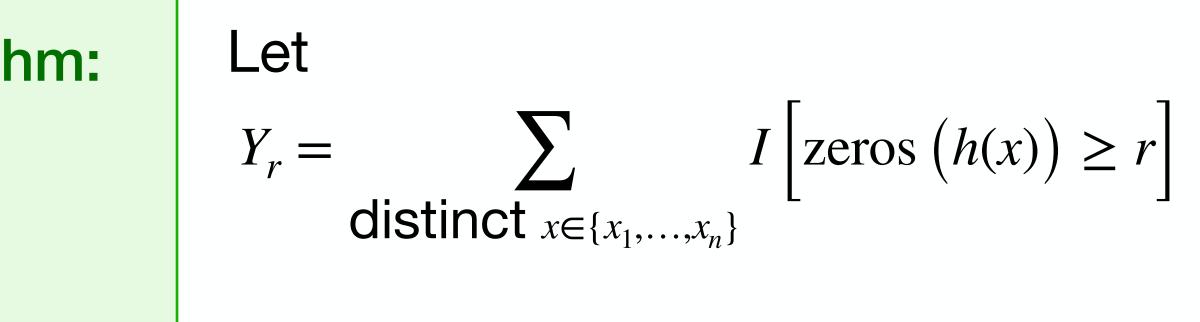
return $\hat{Z} = 2^R$;

(linearity of expectation)

 $\mathbb{E}[Y_r] =$ distinct $x \in \{x_1, \dots, x_n\}$ (pairwise independence) $\operatorname{Var}[Y_r] =$ distinct $x \in \{x_1, \ldots, x_n\}$

$$x_2, \dots, x_n \in [N] \subseteq [2^w]$$

of $z = \left| \{x_1, x_2, \dots, x_n\} \right|$



$$\Pr\left[\operatorname{zeros}\left(h(x)\right) \ge r\right] = z2^{-r}$$

Var $\left| I[\operatorname{zeros}(h(x)) \ge r] \right| = z2^{-r}(1 - 2^{-r}) \le z2^{-r}$

- 2-wise independent hash function $h: [2^w] \rightarrow [2^w]$
- For $y \in [2^w]$, let $zeros(y) = max\{i : 2^i | y\}$ denote # of trailing 0's

Flajolet-Martin Algorithm:

let $R = \max \operatorname{zeros}(h(x_i));$ $1 \le i \le n$

return $\hat{Z} = 2^R$;

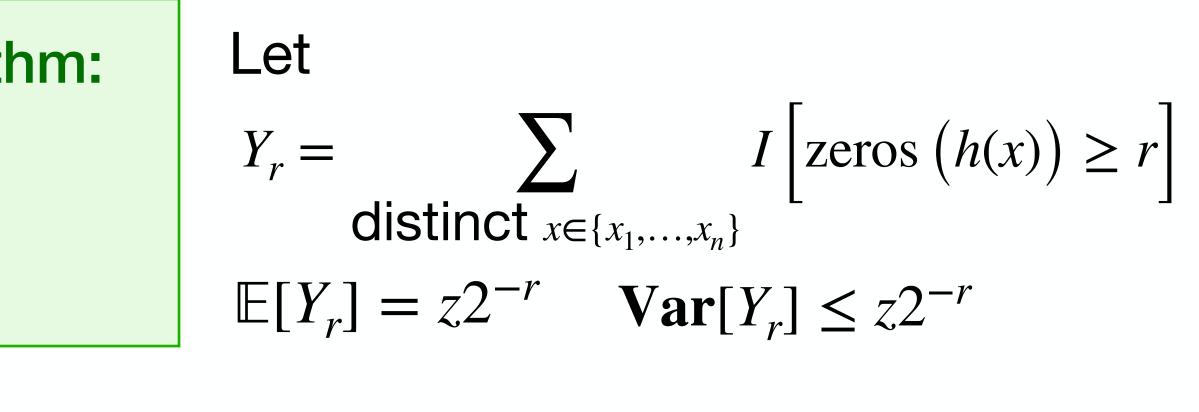
(denote $r^* = \lceil \log_2 C_z \rceil$)

(observe $R = \max\{r : Y_r > 0\}$)

 $\leq \mathbb{E}[Y_{r^*}] = z/2^{r^*} \leq 1/C$ (Markov's inequality)

$$x_2, \dots, x_n \in [N] \subseteq [2^w]$$

of $z = \left| \{x_1, x_2, \dots, x_n\} \right|$



$$\Pr\left[\hat{Z} > C_{Z}\right] \le \Pr[R \ge r^{*}]$$
$$\le \Pr[Y_{r^{*}} > 0] = \Pr[Y_{r^{*}} \ge 1]$$

- 2-wise independent hash function $h: [2^w] \rightarrow [2^w]$
- For $y \in [2^w]$, let $zeros(y) = max\{i : 2^i | y\}$ denote # of trailing 0's

Flajolet-Martin Algorithm:

let $R = \max \operatorname{zeros}(h(x_i));$ $1 \le i \le n$

return $\widehat{Z} = 2^R$;

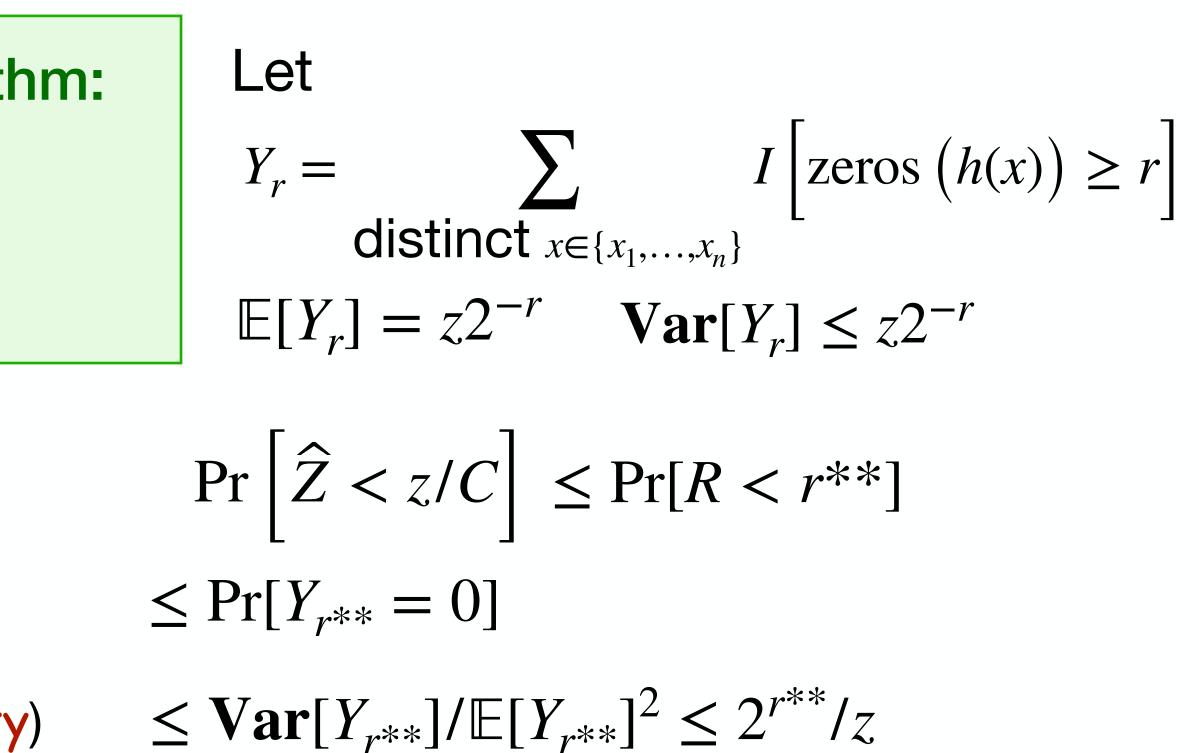
(denote $r^{**} = \lceil \log_2(z/C) \rceil$)

(observe $R = \max\{r : Y_r > 0\}$)

(Chebyshev's inequality)

$$x_2, \dots, x_n \in [N] \subseteq [2^w]$$

of $z = \left| \{x_1, x_2, \dots, x_n\} \right|$



 $\leq 2/C$

- 2-wise independent hash function $h: [2^w] \rightarrow [2^w]$

let $R = \max \operatorname{zeros}(h(x_i));$ $1 \le i \le n$

return $\hat{Z} = 2^R$;

$$\Pr\left[\hat{Z} < \frac{z}{C} \text{ or } \hat{Z} > C \cdot z\right] \le \frac{3}{C}$$

- Space cost: $O(\log \log N)$ bits for maintaining R
- O(log N) bits for storing 2-wise independent hash function

$$x_2, \dots, x_n \in [N] \subseteq [2^w]$$

of $z = \left| \{x_1, x_2, \dots, x_n\} \right|$

• For $y \in [2^w]$, let $zeros(y) = max\{i : 2^i | y\}$ denote # of trailing 0's

Flajolet-Martin Algorithm:

Weierstrass Approximation Theorem (魏尔施特拉斯逼近定理)

- <u>Weierstrass Approximation Theorem</u>: Let $f : [0,1] \rightarrow [0,1]$ be a continuous function. For any $\epsilon > 0$, there exists a polynomial p such that
 - $\sup p($ *x*∈[0,1]
- **Proof**: Let integer *n* be sufficiently large (to be fixed later). For $x \in [0,1]$, let $X \sim \frac{1}{n} Bin(n,x)$. Define polynomial p on $x \in [0,1]$ to be: $p(x) = \mathbb{E}\left[f(X)\right] = \sum_{k=0}^{n} f\left(\frac{k}{n}\right) p$

$$f(x) - f(x) \mid \leq \epsilon$$

$$p_X(k) = \sum_{k=0}^n f\left(\frac{k}{n}\right) \binom{n}{k} x^k (1-x)^{n-k}$$

Let $f: [0,1] \rightarrow [0,1]$ be continuous. $p(x) = \mathbb{E}\left[f(X)\right] = \sum_{x} f(x)$ k= $|p(x) - f(x)| = \left| \mathbb{E} \left[f(X) - f(x) \right] \right| \le \mathbb{E}$ (f is continuous on $[0,1] \implies \exists \delta > 0$ $= \mathbb{E} \left| \left| f(X) - f(x) \right| \right| \left| X - x \right| \le \delta$ $+\mathbb{E}\left|\left|f(X) - f(x)\right| \right| \left|X - x\right| >$ $\leq \mathbb{E}\left[\frac{\epsilon}{2}\right] + \left|1 - 0\right| \cdot \Pr\left(\left|X - x\right|\right)$ $\leq \frac{\epsilon}{2} + \frac{1}{4n\delta^2} \leq \epsilon \quad \text{if we choose } n \geq \frac{1}{2\epsilon\delta^2}$

For
$$x \in [0,1]$$
, let $X \sim \frac{1}{n} \operatorname{Bin}(n, x)$, and:

$$\int_{=0}^{n} f\left(\frac{k}{n}\right) \binom{n}{k} x^{k} (1-x)^{n-k}$$

$$\left|f(X) - f(x)\right|$$
s.t. $|f(x) - f(y)| \le \epsilon/2$ for all $|x - y| \le \delta$

Weierstrass Approximation Theorem (魏尔施特拉斯逼近定理)

- function. For any $\epsilon > 0$, there exists a polynomial p such that
 - $\sup p($ *x*∈[0,1]
- **Proof**: By continuity, $\exists \delta > 0$ s.t. $|f(x) f(y)| \le \epsilon/2$ if $|x y| \le \delta$.

$$p(x) = \mathbb{E}\left[f(X)\right] = \sum_{x \in X} f(x)$$

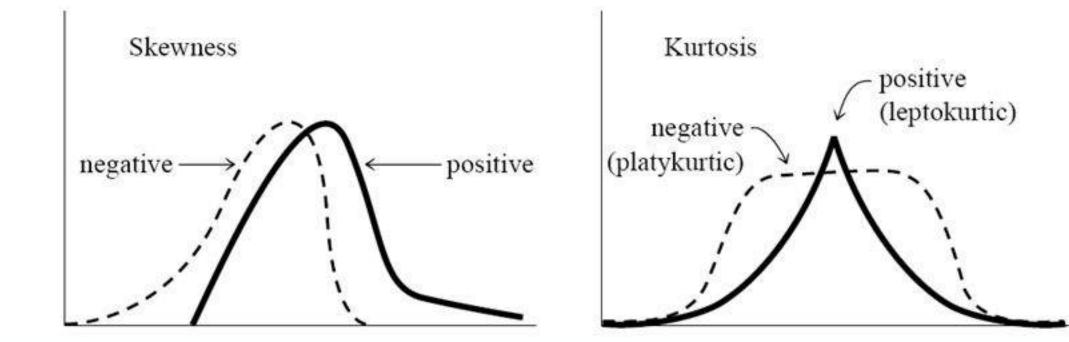
For any $x \in [0,1]$, it holds that $|p(x) - f(x)| \leq \epsilon$.

• <u>Weierstrass Approximation Theorem</u>: Let $f: [0,1] \rightarrow [0,1]$ be a continuous

$$f(x) - f(x) \le \epsilon$$

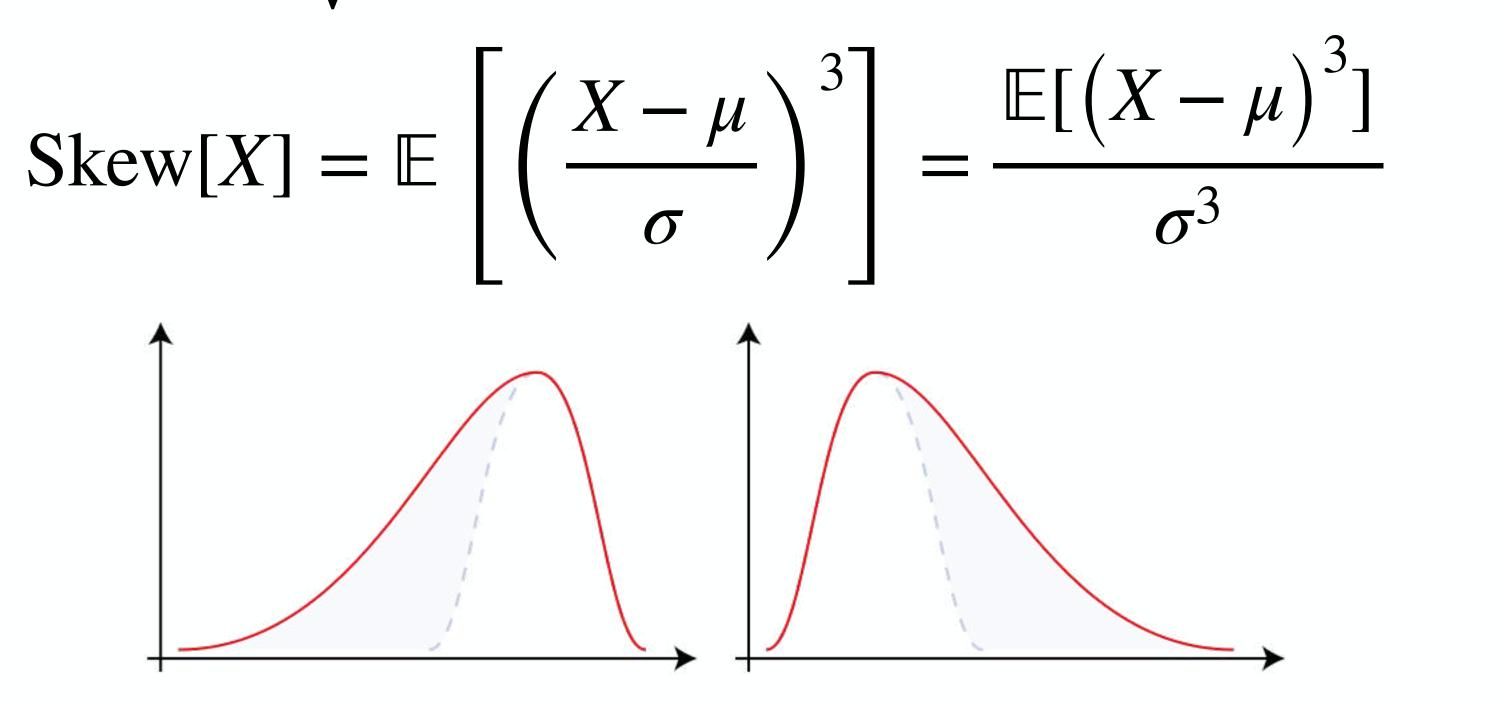
Let $n \ge 1/(2\epsilon\delta^2)$ be any integer. For $x \in [0,1]$, let $X \sim \frac{1}{n}$ Bin(n, x), and: $\sum_{k=0}^{n} f\left(\frac{k}{n}\right) \binom{n}{k} x^{k} (1-x)^{n-k}$

Higher Moments



Skewness (偏度)

standard deviation $\sigma = \sqrt{Var[X]}$ is defined by



Negative Skew

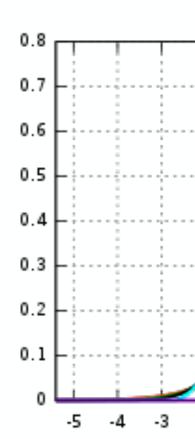
• The <u>skewness</u> (偏度) of a random variable X with expectation $\mu = \mathbb{E}[X]$ and

standardized moment (of degree 3)

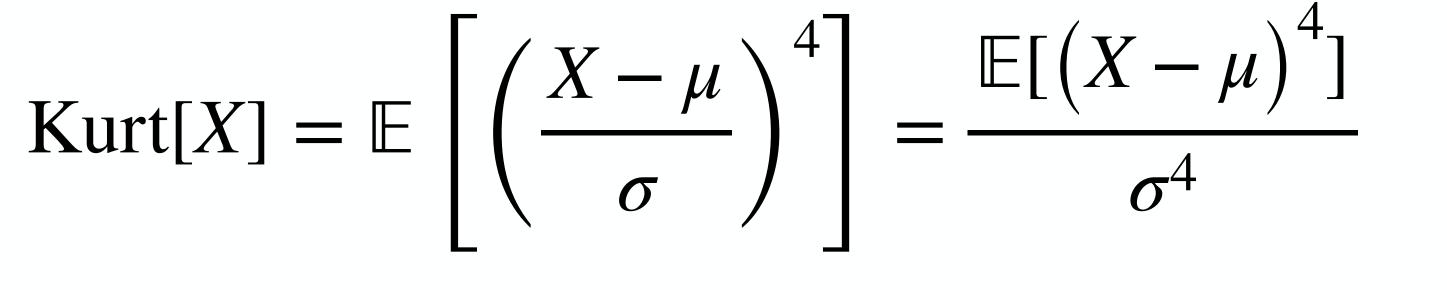
Positive Skew

Kurtosis (峰度)

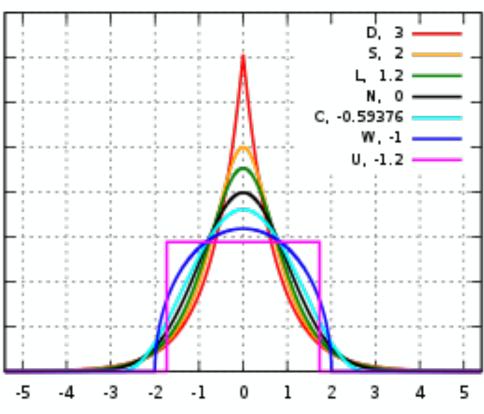
standard deviation $\sigma = \sqrt{Var[X]}$ is defined by



• The <u>kurtosis</u> (峰度) of a random variable X with expectation $\mu = \mathbb{E}[X]$ and



standardized moment (of degree 4)



The kth Moment Method

- **Proof**: Apply Markov's inequality to $Z = |X \mu|^k$.

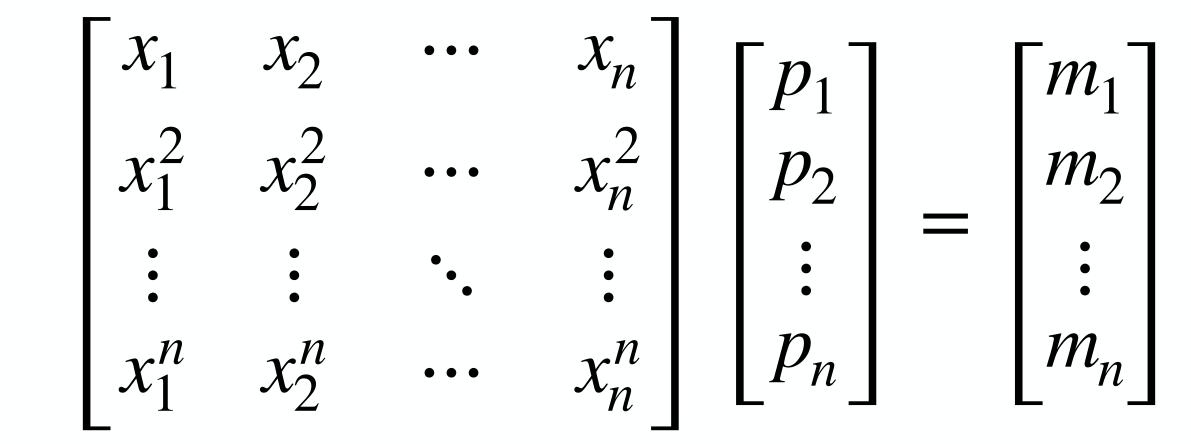
• Let X be a random variable with $\mathbb{E}[X] = \mu$. For any C > 1 and integer $k \ge 1$ $\Pr\left(|X-\mu| \ge C \cdot \mathbb{E}\left[|X-\mu|^k\right]^{\frac{1}{k}}\right) \le \frac{1}{C^k}$

The Moment Problem

- Do moments $m_k = \mathbb{E}[X^k], \forall k \ge 1$, uniquely identify the distribution of X?
- then solving the Vandermonde system:

can recover the pmf $p_i = p_X(x_i)$

• If X takes values from a finite set $\{x_1, \ldots, x_n\}$ with $p_X(x_i) = p_i$ & moments $\{m_i\}$



The Moment Problem

- Do moments $m_k = \mathbb{E}[X^k], \forall k \ge 1$, uniquely identify the distribution of X?
 - If $\mathbb{E}[X^k] = \mathbb{E}[Y^k]$ for all $k \ge 1$, are X and Y always identically distributed?
- If X and Y have the same moment generating function (MGF)
 - $M_X(t) = \mathbb{E}[e^{t}]$

then X and Y are identically distributed.

• The MGF $M_X(t)$ is convergent if the sequence $\mathbb{E}[X^k]$ does not grow too fast.

$$t^{X}] = \sum_{\substack{k \ge 0}} \frac{t^{k} \mathbb{E}[X^{k}]}{k!}$$