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Foundations of Data Science
Moment and Deviation



Moments and Deviations

Pr[ |X − 𝔼[X] | > a]
= Pr[X < 𝔼[X] − a] + Pr[X > 𝔼[X] + a]
= F(𝔼[X] − a) + (1 − F(𝔼[X] + a))

Pr[ |X − 𝔼[X] | > a] = ?



Markov’s Inequality

• Markov’s inequality: Let  be a nonnegative-valued random variable. Then,


for any ,      


• Proof (by indicator): Let . Since  and , we have 


.


Therefore, 

X

a > 0 Pr(X ≥ a) ≤ 𝔼[X]
a

I = I(X ≥ a) X ≥ 0 a > 0

I = I(X ≥ a) ≤ ⌊ X
a ⌋ ≤ X

a

Pr(X ≥ a) = 𝔼[I] ≤ 𝔼 [ X
a ] = 𝔼[X]

a

(马尔可夫不等式, the first Chebyshev inequality)



Markov’s Inequality

• Markov’s inequality: Let  be a nonnegative-valued random variable. Then,


for any ,      


• Proof (by total expectation):  





    


   

X

a > 0 Pr(X ≥ a) ≤ 𝔼[X]
a

𝔼[X] = 𝔼[X ∣ X ≥ a] ⋅ Pr(X ≥ a)+𝔼[X ∣ X < a] ⋅ Pr(X < a)
≥ a ⋅ Pr(X ≥ a)+0 ⋅ Pr(X < a) = a ⋅ Pr(X ≥ a)

⟹ Pr(X ≥ a) ≤ 𝔼[X]
a

(马尔可夫不等式)

(  is nonnegative)X(  is possible)X ≥ a



Markov’s Inequality

• Markov’s inequality: Let  be a nonnegative-valued random variable. Then,


for any ,      


• Corollary: for any ,      


• Tight in the worst case: , ,  nonnegative  with , 
such that  


• Lower tail variant (sometimes called reverse Markov’s inequality):  

 requires  to have bounded range 

X

a > 0 Pr(X ≥ a) ≤ 𝔼[X]
a

c > 1 Pr(X ≥ c𝔼[X]) ≤ 1/c
∀c > 1 ∀μ ∈ ℝ ∃ X 𝔼[X] = μ

Pr(X ≥ cμ) = 1/c

Pr(X ≤ a) ≤ (u − 𝔼[X])/(u − a) X X ≤ u

(马尔可夫不等式)



From Las Vegas to Monte Carlo

• Monte Carlo algorithm: randomized algorithms that are correct by chance


• Las Vegas algorithm: randomized algorithms that always give correct result 
upon termination (but may run for a random period of time before termination)


• If there is a Las Vegas algorithm  with expected running time at most  
for any input of size    (  has worst-case expected time complexity ):


• Algorithm  is a Monte Carlo algorithm s.t.

•  has worst-case running time 


•  is correct with probability at least        

(by Markov inequality)

𝒜 t(n)
n 𝒜 t(n)

ℬ
ℬ ≤ ⌈t(n)/ϵ⌉
ℬ 1 − ϵ

Algorithm :

simulate algorithm  up to  steps;

if algorithm  terminates


return the output of ;

else return an arbitrary answer;

ℬ
𝒜 ⌈t(n)/ϵ⌉

𝒜
𝒜



Cliques in Random Graph
•  : between every pair  among  vertices, an edge is added i.i.d. with prob. 


• Fix a constant integer . Let  be the number of -cliques ( ) in .


• For every distinct  of size , let . Then:


• 


•



• Linearity of expectation:  


• Markov’s inequality:   

 If , then  is -free a.a.s. (asymptotically almost surely)

G(n, p) u, v n p

k ≥ 3 X k Kk G ∼ G(n, p)

S ⊆ [n] |S | = k IS = I(KS ⊆ G)

𝔼[IS] = Pr(KS ⊆ G) = p(k
2)

X = ∑
S∈([n]

k )
IS

𝔼[X] = (n
k)p(k

2) ≤ nkpk(k−1)/2

Pr(X ≥ 1) ≤ 𝔼[X] = o(1) ⟹ Pr(X = 0) = 1 − o(1)
⟹ p = o (n−2/(k−1)) G(n, p) Kk

 for = o(1) p = o (n−2/(k−1))



Generalized Markov’s Inequality

• Let  be a random variable and  a nonnegative-valued function. 


For any ,      


• Proof: Apply the Markov’s inequality to the random variable .


• Applications: useful if  can “extract” useful information about 


• Chebyshev’s inequality, th moment method:  extracts the th moment


• Chernoff-Hoeffding bounds, Bernstein inequalities:  extracts all moments

X f : ℝ → ℝ≥0

a > 0 Pr( f(X) ≥ a) ≤ 𝔼[ f(X)]
a

Y = f(X)
f(X) X

k f(X) k

f(X)



Deviation Inequality
• Let  be a random variable with mean . For 


?


• Applying Markov’s inequality to  gives us





• Alternatively, we may apply Markov’s inequality to 


X μ = 𝔼[X] a > 0
Pr( |X − μ | ≥ a) ≤

Y = |X − μ |

Pr( |X − μ | ≥ a) ≤ 𝔼[ |X − μ | ]
a

Y = (X − μ)2

Pr( |X − μ | ≥ a) = Pr((X − μ)2 ≥ a2) ≤ 𝔼[(X − μ)2]
a2

difficult to calculate

μ

Variance 
(2nd central 

moment)



Variance (⽅差) and Moments (矩)

• For integer , the th moment ( 阶矩) of a random variable  is , 
and the th central moment ( 阶中⼼矩) of  is .


• Sometimes, a random variable  is called centralized (中⼼化的) if . 
A random variable  can be centralized by .


• The variance (⽅差) of a random variable  is its 2nd central moment:




and the standard deviation (标准差) of  is 

k > 0 k k X 𝔼[Xk]
k k X 𝔼[(X − 𝔼[X])k]

X 𝔼[X] = 0
X Y = X − 𝔼[X]

X
Var[X] = 𝔼 [(X − 𝔼[X])2]

X σ = σ[X] = Var[X]



Chebyshev’s Inequality
(切比雪夫不等式, the second Chebyshev inequality)

• Chebyshev’s inequality: Let  be a random variable. For any ,





• Proof: Apply Markov’s inequality to .


• Corollary: For standard deviation , for any  ,


X a > 0

Pr( |X − 𝔼[X] | ≥ a) ≤ Var[X]
a2

Y = (X − 𝔼[X])2

σ = Var[X] k ≥ 1

Pr( |X − 𝔼[X] | ≥ kσ) ≤ 1
k2



Median and Mean
• The median (中位数) of random variable  is defined to be any value  s.t.:


   and   


• The expectation  is the value that minimizes   




• Proof:   is convex and has 


• The median  is the value that minimizes   




• Proof:  By symmetry, suppose non-median  so that . 




X m
Pr(X ≤ m) ≥ 1/2 Pr(X ≥ m) ≥ 1/2

μ = 𝔼[X]
𝔼[(X − μ)2]

f(x) = 𝔼[(X − x)2] = 𝔼[X2] − 2x𝔼[X] + x2 f′ (μ) = 0

m
𝔼[ |X − m | ]

y > m Pr(X ≥ y) < 1/2
𝔼[ |X − y | − |X − m | ] = (m − y) Pr(X ≥ y) + ∑

m<x<y
(m + y − 2x) Pr(X = x) + (y − m) Pr(X ≤ m)

> (m − y)/2 + (y − m)/2 = 0



Median and Mean

• If  is a random variable with finite expectation , median , and standard deviation , 
then





• Proof: 


   (Jensen’s inequality)


   (the median  minimizes )


   (Jensen’s inequality)

X μ m σ

|μ − m | ≤ σ
|μ − m | = |𝔼[X] − m | = |𝔼[X − m] |

≤ 𝔼[ |X − m | ]

≤ 𝔼[ |X − μ | ] m 𝔼[ |X − m | ]

= 𝔼 [ (X − μ)2] ≤ 𝔼 [(X − μ)2] = σ



Variance



Calculation of Variance



• Proof: 











•  is constant a.s. ( )     

Var[X] = 𝔼 [(X − 𝔼[X])2] = 𝔼[X2] − 𝔼[X]2

Var[X] = 𝔼 [(X − 𝔼[X])2]
= 𝔼 [X2 − 2𝔼[X]X + 𝔼[X]2]
= 𝔼[X2] − 2𝔼[X]𝔼[X] + 𝔼[X]2

= 𝔼[X2] − 𝔼[X]2

X Pr(X = 𝔼[X]) = 1 ⟺ 𝔼[X2] = 𝔼[X]2 ⟺ Var[X] = 0



Variance of Linear Function
• For random variables  and real number :


• 


•   (variance is a central moment)


•   (variance is quadratic)


• 


• Proof: All can be verified through .

X, Y a ∈ ℝ
Var[a] = 0
Var[X + a] = Var[X]
Var[aX] = a2Var[X]
Var[X + Y] = Var[X] + Var[Y]+2(𝔼[XY] − 𝔼[X]𝔼[Y])

Var[X] = 𝔼[X2] − 𝔼[X]2



Covariance (协⽅差)
• The covariance (协⽅差) of two random variables  and  is





• Properties: 

• Symmetric: 

• Distributive:  





• If  and  are independent then 


X Y

Cov(X, Y) = 𝔼 [(X − 𝔼[X])(Y − 𝔼[Y])] = 𝔼[XY] − 𝔼[X]𝔼[Y]

Var[X] = Cov(X, X)
Cov(X, Y) = Cov(Y, X)
Cov(X + Y, Z) = Cov(X, Z) + Cov(Y, Z)
Cov(aX, Y) = aCov(X, Y)

X Y
Cov(X, Y) = 𝔼[XY] − 𝔼[X]𝔼[Y] = 0



Covariance of Independent Variables
• If random variables  and  are independent, then





• If random variables  are mutually independent, then





Proof: By change of variable (LOTUS) 




X Y
𝔼[XY] = 𝔼[X]𝔼[Y]

X1, X2, …, Xn

𝔼 [
n

∏
i=1

Xi] = 𝔼 [
n−1

∏
i=1

Xi] ⋅ 𝔼[Xn] =
n

∏
i=1

𝔼[Xi]

𝔼[XY] = ∑
x,y

xy Pr(X = x ∩ Y = y) = ∑
x,y

xy Pr(X = x) Pr(Y = y)

= (∑
x

x Pr(X = x)) ∑
y

y Pr(Y = y) = 𝔼[X]𝔼[Y]



Expectation of Product
• For random variables  and : 


if  and  independent, then  


• (Cauchy-Schwarz) 





• (Hölder) for any  satisfying 


X Y

X Y 𝔼[XY] = 𝔼[X]𝔼[Y]

𝔼[XY]2 ≤ 𝔼[X2]𝔼[Y2]
p, q > 0 1

p
+ 1

q
= 1

𝔼[XY] ≤ 𝔼[ |X |p ]1/p𝔼[ |Y |q ]1/q



Correlation (相关性)
• The covariance (协⽅差) of two random variables  and  is





• The correlation coefficient (相关系数) of  and  is





• Two random variables  and  are called uncorrelated if 


•  and  are uncorrelated means:  

• 

•

X Y

Cov(X, Y) = 𝔼 [(X − 𝔼[X])(Y − 𝔼[Y])] = 𝔼[XY] − 𝔼[X]𝔼[Y]

X Y

ρ(X, Y) = Cov(X, Y)
Var[X] ⋅ Var[Y]

X Y Cov(X, Y) = 0
X Y

𝔼[XY] = 𝔼[X]𝔼[Y]
Var[X + Y] = Var[X] + Var[Y]



by Cauchy-Schwarz

∈ [−1,1]



Variance of Sum
• For random variables :





• For random variables :





•  For pairwise independent :


X, Y
Var[X + Y] = Var[X] + Var[Y]+2Cov(X, Y)

X1, X2, …, Xn

Var [
n

∑
i=1

Xi] =
n

∑
i=1

Var[Xi]+ ∑
i≠j

Cov(Xi, Xj)

X1, X2, …, Xn

Var [
n

∑
i=1

Xi] =
n

∑
i=1

Var[Xi]



Variance of Indicator

• For Bernoulli random variable  with parameter 


    





• For the indicator random variable  of event :


X ∈ {0,1} p

X2 = X ⟹ 𝔼[X2] = 𝔼[X] = p

Var[X] = 𝔼[X2] − 𝔼[X]2 = p − p2 = p(1 − p)
X = I(A) A

Var[X] = Pr(A)(1 − Pr(A)) = Pr(A) Pr(Ac)

p 1 − p



Variance of Discrete Uniform Distribution

• For integers , let  be chosen from  u.a.r. 

•  


•  


•

a ≤ b X [a, b] = {a, a + 1,…, b}

𝔼[X] =
b

∑
k=a

k
b − a + 1 = a + b

2

𝔼[X2] =
b

∑
k=a

k2

b − a + 1 = 2b2 + 2ab + 2a2 + b − a
6

Var[X] = 𝔼[X2] − 𝔼[X]2 = (b − a)(b − a + 2)
12



Geometric Distribution (⼏何分布)

• For geometric random variable , recall , and








• Total expectation: 






 


     

X ∼ Geo(p) 𝔼[X] = 1/p
𝔼[X2] = ∑

k≥1
k2(1 − p)k−1p = (2 − p)p−2

Var[X] = 𝔼[X2] − 𝔼[X]2 = (2 − p)p−2 − p−2 = (1 − p)/p2

𝔼[X2] = 𝔼[X2 ∣ X > 1] ⋅ (1 − p) + 𝔼[X2 ∣ X = 1] ⋅ p
= 𝔼[((X − 1) + 1)2 ∣ X > 1] ⋅ (1 − p) + p
= 𝔼[(X + 1)2] ⋅ (1 − p) + p
= (1 − p)𝔼[X2] + 2(1 − p)/p + 1

⟹ 𝔼[X2] = (2 − p)/p2 ⟹ Var[X] = 𝔼[X2] − 𝔼[X]2 = (1 − p)/p2

(memoryless)



Binomial Distribution (⼆项分布)

• For binomial random variable , recall , and





• Observation:  can be expressed as ,

where  are i.i.d. Bernoulli random variables with parameter 


• For mutually independent : 


 

X ∼ Bin(n, p) 𝔼[X] = np

Var[X] = 𝔼[X2] − 𝔼[X]2 =
n

∑
k=0

k2(n
k)pk(1 − p)n−k − (np)2

X ∼ Bin(n, p) X = X1 + ⋯ + Xn
X1, …, Xn p

X1, …, Xn

Var [X] =
n

∑
i=1

Var[Xi] = np(1 − p)



Poisson Distribution
• For Poisson random variable , recall , and











X ∼ Pois(λ) 𝔼[X] = λ

𝔼[X2] = ∑
k≥0

k2 e−λλk

k! = ∑
k≥1

k
e−λλk

(k − 1)!

= ∑
k≥0

(k + 1) e−λλk+1

k! = λ∑
k≥0

(k + 1) e−λλk

k!

= λ𝔼[X + 1] = λ(𝔼[X] + 1) = λ(λ + 1)

Var[X] = 𝔼[X2] − 𝔼[X]2 = λ(λ + 1) − λ2 = λ



Negative Binomial Distribution (负⼆项分布)

• For negative binomial random variable  with parameters 





• Observation:  can be expressed as ,

where  are i.i.d. geometric random variables with parameter 


• For mutually independent : 


X r, p

Var[X] = 𝔼[X2] − 𝔼[X]2 = ∑
k≥1

k2(k + r − 1
k )(1 − p)kpr−r2(1 − p)2/p2

X X = (X1 − 1) + ⋯ + (Xr − 1)
X1, …, Xr p

X1, …, Xr

Var [X] =
r

∑
i=1

Var[Xi − 1] =
r

∑
i=1

Var[Xi] = r(1 − p)
p2



Chebyshev (Чебышёв)’s 
Inequality



Chebyshev’s Inequality
(切比雪夫不等式)

• Chebyshev’s inequality: Let  be a random variable. For any ,





• Corollary: For standard deviation , for any  ,





• Tight in the worst case: ,  and ,  with  
and  such that 

X a > 0

Pr( |X − 𝔼[X] | ≥ a) ≤ Var[X]
a2

σ = Var[X] k ≥ 1

Pr( |X − 𝔼[X] | ≥ kσ) ≤ 1
k2

∀k ≥ 1 ∀μ ∈ ℝ ∀σ > 0 ∃X 𝔼[X] = μ
Var[X] = σ2 Pr( |X − μ | ≥ kσ) = 1/k2



Unbiased Estimator (mean trick)
• Let  be i.i.d. random variables with  and .


• Empirical mean: 


  and  


• Chebyshev’s inequality:  


X1, …, Xn 𝔼[Xi] = μ Var[Xi] = σ2

X = 1
n

n

∑
i=1

Xi

𝔼[X] = 1
n

n

∑
i=1

𝔼[Xi] = μ Var[X] = 1
n2

n

∑
i=1

Var[Xi] = σ2

n

Pr( |X − μ | ≥ ϵμ) ≤ Var[X]
ϵ2μ2 = σ2

ϵ2μ2n
   if ≤ δ n ≥ σ2

ϵ2μ2δ



(one-sided) Error Reduction
• Decision problem .


• Monte Carlo randomized algorithm  with one-sided error: 

for any input  and uniform random seed  for some prime number 


•   


•    for all 


• : for mutually independent 


•   

f : {0,1}* → {0,1}
𝒜

x r ∈ [p] p
f(x) = 1 ⟹ Pr

r∈[p]
(𝒜(x, r) = 1) ≥ ϵ

f(x) = 0 ⟹ 𝒜(x, r) = 0 r ∈ [p]
𝒜k(x, r1, …, rk) = ∨k

i=1 𝒜(x, ri) r1, …, rk ∈ [p]
f(x) = 1 ⟹ Pr (𝒜k(x, r1, …, rk) = 0) ≤ (1 − ϵ)k



Two-Point Sampling (2-Universal Hashing)
• Let  be a prime number and .


• Pick  u.a.r. and let  for 


•  are pairwise independent


• each  is uniformly distributed over 


• Proof: For any , ,     because


  has a unique solution 


 

p > 1 [p] = {0,1,…, p − 1} = ℤp

a, b ∈ [p] ri = (a ⋅ i + b) mod p i = 1,2,…, p
r1, …, rp ∈ [p]

ri [p]
i ≠ j ∀c, d ∈ [p] Pr(ri = c ∩ rj = d) = 1/p2

{a ⋅ i + b ≡ c (mod p)
a ⋅ j + b ≡ d (mod p) (a, b) ∈ [p]2

Pr(ri = c) = Pr(a ⋅ i + b ≡ c (mod p)) = 1
p ∑

a∈[p]
Pr(b ≡ c − ai (mod p)) = 1

p



Derandomization with Two-Point Sampling
• : for any input  and uniform random seed  for prime number 


•   


•    for all 


• :   for  with uniform   

• If   


• If    because each  is uniform over 


• Let  and let . 


•  are pairwise independent Bernoulli random variables with 


•

𝒜 x r ∈ [p] p
f(x) = 1 ⟹ Pr (𝒜(x, r) = 1) ≥ ϵ
f(x) = 0 ⟹ 𝒜(x, r) = 0 r ∈ [p]

𝒜k(x, r1, …, rk) = ∨k
i=1 𝒜(x, ri) k ≤ p ri = (a ⋅ i + b) mod p a, b ∈ [p]

f(x) = 0 ⟹ 𝒜k(x, r1, …, rk) = ∨k
i=1 𝒜(x, ri) = 0

f(x) = 1 ⟹ Pr (𝒜(x, ri) = 1) ≥ ϵ ri [p]
Xi = 𝒜(x, ri) X = ∑k

i=1 Xi

X1, …, Xk Pr(Xi = 1) ≥ ϵ

Pr (𝒜k(x, r1, …, rk) = 0) = Pr(X = 0) ≤ Pr ( |X − 𝔼[X] | ≥ 𝔼[X]) ≤ Var[X]
𝔼[X]2

(Chebyshev’s inequality)



Derandomization with Two-Point Sampling
• :   and  with uniform 

• If    because each  is uniform over 


• Let  and let . 


•  are pairwise independent Bernoulli random variables with 


•  

• Linearity of expectation:  

• Pairwise independence:  

• Reduce any 1-sided error  to  with  runs of the algorithm 
using only 2 random seeds in total.

𝒜k(x, r1, …, rk) = ∨k
i=1 𝒜(x, ri) k ≤ p ri = (a ⋅ i + b) mod p a, b ∈ [p]

f(x) = 1 ⟹ Pr (𝒜(x, ri) = 1) ≥ ϵ ri [p]
Xi = 𝒜(x, ri) X = ∑k

i=1 Xi

X1, …, Xk Pr(Xi = 1) ≥ ϵ

Pr (𝒜k(x, r1, …, rk) = 0) = Pr(X = 0) ≤ Pr ( |X − 𝔼[X] | ≥ 𝔼[X]) ≤ Var[X]
𝔼[X]2

𝔼[X] = ∑k
i=1 𝔼[Xi] ≥ ϵk

Var[X] =
k

∑
i=1

Var[Xi] ≤
k

∑
i=1

𝔼[X2
i ] =

k

∑
i=1

𝔼[Xi] = 𝔼[X]

1 − ϵ 1/(ϵk) k ≤ p

 ≤ 1
ϵk



Count Distinct Elements
Input: a sequence 

Output: an estimation of 

x1, x2, …, xn ∈ U = [N]
z = {x1, x2, …, xn}

• Data stream model: input data item comes one at a time


• Naïve algorithm: store all distinct data items using  bits


• Sketch: (lossy) representation of data using space 

• Lower bound (Alon-Matias-Szegedy): any deterministic (exact or 

approx.) algorithm must use  bits of space in the worst case

≈(z log N)

× z

≈(N)

x1 x2 xn

Algorithm an estimation of
f(x1, …, xn) = {x1, x2, …, xn}



William Shakespeare

Count Distinct Elements

• Data stream model: input data item comes one at a time


• -estimator:   randomized variable 

 

(ϵ, δ) ̂Z

Pr [ (1 − ϵ)z ≤ ̂Z ≤ (1 + ϵ)z ] ≥ 1 − δ

Using only memory equivalent to 5 lines of printed text, you can estimate with a typical 
accuracy of 5% and in a single pass the total vocabulary of Shakespeare.    

——Durand and Flajolet 2003

x1 x2 xn

Algorithm ̂Z

Input: a sequence 

Output: an estimation of 

x1, x2, …, xn ∈ U = [N]
z = {x1, x2, …, xn}



• (idealized) uniform hash function 

•   the same hash value 


• :   uniform and independent values in 

• partition  into  subintervals (with identically distributed lengths)

h : U → [0,1]
xi = xj Ω h(xi) = h(xj) ∈r [0,1]

{h(x1), …, h(xn)} z ≪ [0,1]

[0,1] z + 1

Simple Uniform Hash Assumption (SUHA):

A uniform function is available, whose preprocessing, 
representation and evaluation are considered to be easy.

𝔼 [ min
1≤i≤n

h(xi)] = 𝔼[length of a subinterval] = 1
z + 1 (by symmetry)

• estimator:                                 ?̂Z = 1
mini h(xi)

− 1 Variance is too large!

Input: a sequence 

Output: an estimation of 

x1, x2, …, xn ∈ U = [N]
z = {x1, x2, …, xn}



Pr [ ̂Z < (1 − ϵ)z or  ̂Z > (1 + ϵ)z ] ≤ δ

• (idealized) uniform hash function h : U → [0,1]

Min Sketch:

let ;


return ;

Y = min
1≤i≤n

h(xi)

̂Z = 1
Y

− 1

• By symmetry:




• Goal:

𝔼 [Y] = 1
z + 1

Y − 1
z + 1 > ϵ/2

z + 1

assuming ϵ ≤ 1/2

Y − 𝔼[Y] > ϵ/2
z + 1

Input: a sequence 

Output: an estimation of 

x1, x2, …, xn ∈ U = [N]
z = {x1, x2, …, xn}



• Uniform independent hash values:

 


•

H1, …, Hz ∈ [0,1]

Y = min
1≤i≤z

Hi

0 1

geometric  
probability:      pdf: p(y) = z(1 − y)z−1

𝔼[Y2] = ∫
1

0
y2p(y) dy = ∫

1

0
y2z(1 − y)z−1 dy

Pr[Y > y] = (1 − y)z

= 2
(z + 1)(z + 2)

Var[Y] = 𝔼[Y2] − 𝔼[Y]2 = z
(z + 1)2(z + 2) ≤ 1

(z + 1)2

• (idealized) uniform hash function h : U → [0,1]

Min Sketch:

let ;


return ;

Y = min
1≤i≤n

h(xi)

̂Z = 1
Y

− 1

Input: a sequence 

Output: an estimation of 

x1, x2, …, xn ∈ U = [N]
z = {x1, x2, …, xn}



Y − 𝔼[Y] > ϵ/2
z + 1Pr [ Y − 𝔼[Y] > ϵ/2
z + 1 ] ≤ 4

ϵ2

Pr [ ̂Z < (1 − ϵ)z or  ̂Z > (1 + ϵ)z ] ≤ δ

assuming ϵ ≤ 1/2

Var[Y] ≤ 1
(z + 1)2

(Chebyshev)

• (idealized) uniform hash function h : U → [0,1]

• By symmetry:




• Goal:

𝔼 [Y] = 1
z + 1

Input: a sequence 

Output: an estimation of 

x1, x2, …, xn ∈ U = [N]
z = {x1, x2, …, xn}

Min Sketch:

let ;


return ;

Y = min
1≤i≤n

h(xi)

̂Z = 1
Y

− 1



The Mean Trick (for Variance Reduction)

• Variance and covariance: 

 


• Useful properties:

Var[X] = 𝔼[(X − 𝔼[X])2] = 𝔼[X2] − (𝔼[X])2

Cov(X, Y ) = 𝔼 [(X − 𝔼[X])(Y − 𝔼[Y ])]

Var[X + a] = Var[X]
Var[aX] = a2Var[X]

Var [∑
i

Xi] = ∑
i

Var[Xi] + ∑
i≠j

Cov(Xi, Xj)

• For pairwise independent identically distributed ’s:Xi

Var [ 1
k

k

∑
i=1

Xi] = 1
k2

k

∑
i=1

Var[Xi] = 1
k

Var[X1]

𝔼 [ 1
k

k

∑
i=1

Xi] = 𝔼[X1]



• uniform & independent hash functions h1, …, hk : U → [0,1]

Min Sketch:

for each , let ;


return  where ;

1 ≤ j ≤ k Yj = min
1≤i≤n

hj(xi)

̂Z = 1
Y

− 1 Y = 1
k

k

∑
j=1

Yj

𝔼 [Yj] = 1
z + 1

Var[Yj] ≤ 1
(z + 1)2

• For every :1 ≤ j ≤ k

𝔼 [Y] = 1
z + 1

Var [Y] ≤ 1
k(z + 1)2

linearity of 
expectation

independence

Input: a sequence 

Output: an estimation of 

x1, x2, …, xn ∈ U = [N]
z = {x1, x2, …, xn}



Y − 𝔼 [Y] > ϵ/2
z + 1Pr [ Y − 𝔼 [Y] > ϵ/2
z + 1 ] ≤ 4

kϵ2

• Goal:  Pr [ ̂Z < (1 − ϵ)z or  ̂Z > (1 + ϵ)z ] ≤ δ

assuming ϵ ≤ 1/2

(Chebyshev)

k = ⌈ 4
ϵ2δ ⌉Set

≤ δ

• uniform & independent hash functions h1, …, hk : U → [0,1]

Min Sketch:

for each , let ;


return  where ;

1 ≤ j ≤ k Yj = min
1≤i≤n

hj(xi)

̂Z = 1
Y

− 1 Y = 1
k

k

∑
j=1

Yj

𝔼 [Y] = 1
z + 1

Var [Y] ≤ 1
k(z + 1)2

Input: a sequence 

Output: an estimation of 

x1, x2, …, xn ∈ U = [N]
z = {x1, x2, …, xn}



Min Sketch:

for each , let ;


return  where ;

1 ≤ j ≤ k Yj = min
1≤i≤n

hj(xi)

̂Z = 1
Y

− 1 Y = 1
k

k

∑
j=1

Yj

• Space cost:  real numbers in 


• Storing  idealized hash functions.

k = O ( 1
ϵ2δ ) [0,1]

k

Pr [ (1 − ϵ)z ≤ ̂Z ≤ (1 + ϵ)z ] ≥ 1 − δ

set k = ⌈4/(ϵ2δ)⌉

• uniform & independent hash functions h1, …, hk : U → [0,1]

Input: a sequence 

Output: an estimation of 

x1, x2, …, xn ∈ U = [N]
z = {x1, x2, …, xn}



Two-Point Sampling (2-Universal Hashing)
• Let  be a prime number and .


• Pick  u.a.r. and let  for 


•  are pairwise independent


• each  is uniformly distributed over 


• Linear congruential hashing  over finite field :

• Pick  u.a.r and let  for 

•  are pairwise independent

• each  is uniformly distributed over 

•  exists for any positive integer 

p > 1 [p] = {0,1,…, p − 1} = ℤp

a, b ∈ [p] ri = (a ⋅ i + b) mod p i = 1,2,…, p
r1, …, rp ∈ [p]

ri [p]
f : GF(q) → GF(q) GF(q)

a, b ∈ GF(q) f(x) = a ⋅ x + b x ∈ GF(q)
{x ∈ GF(q)}

f(x) GF(q)
GF(2w) w ∈ ℤ+



Flajolet-Martin Algorithm
Input: a sequence 

Output: an estimation of 

x1, x2, …, xn ∈ [N] ⊆ [2w]
z = {x1, x2, …, xn}

• 2-wise independent hash function 

• For , let  denote # of trailing 0’s

h : [2w] → [2w]
y ∈ [2w] zeros(y) = max{i : 2i |y}

Flajolet-Martin Algorithm:

let ;


return ;

R = max
1≤i≤n

zeros(h(xi))

̂Z = 2R

Pr [ ̂Z < z
C
 or  ̂Z > C ⋅ z ] ≤ 3

C



Input: a sequence 

Output: an estimation of 

x1, x2, …, xn ∈ [N] ⊆ [2w]
z = {x1, x2, …, xn}

• 2-wise independent hash function 

• For , let  denote # of trailing 0’s

h : [2w] → [2w]
y ∈ [2w] zeros(y) = max{i : 2i |y}

Yr = ∑
distinct x∈{x1,…,xn}

I [zeros (h(x)) ≥ r]
Flajolet-Martin Algorithm:

let ;


return ;

R = max
1≤i≤n

zeros(h(xi))

̂Z = 2R

Let

(linearity of expectation)

𝔼[Yr] = ∑
distinct x∈{x1,…,xn}

Pr [zeros (h(x)) ≥ r] = z2−r

(pairwise independence)

Var[Yr] = ∑
distinct x∈{x1,…,xn}

Var [I[zeros (h(x)) ≥ r]] = z2−r(1 − 2−r) ≤ z2−r



• 2-wise independent hash function 

• For , let  denote # of trailing 0’s

h : [2w] → [2w]
y ∈ [2w] zeros(y) = max{i : 2i |y}

𝔼[Yr] = z2−r Var[Yr] ≤ z2−r

Let

(denote )r* = ⌈log2 Cz⌉ Pr [ ̂Z > Cz]
≤ Pr[Yr* > 0]

≤ 1/C

≤ Pr[R ≥ r*]

(observe )R = max{r : Yr > 0} = Pr[Yr* ≥ 1]

≤ 𝔼[Yr*] = z/2r*(Markov’s inequality)

Yr = ∑
distinct x∈{x1,…,xn}

I [zeros (h(x)) ≥ r]

Input: a sequence 

Output: an estimation of 

x1, x2, …, xn ∈ [N] ⊆ [2w]
z = {x1, x2, …, xn}

Flajolet-Martin Algorithm:

let ;


return ;

R = max
1≤i≤n

zeros(h(xi))

̂Z = 2R



(denote )r** = ⌈log2(z /C)⌉ Pr [ ̂Z < z/C]
≤ Pr[Yr** = 0]

≤ Pr[R < r**]

(observe )R = max{r : Yr > 0}

(Chebyshev’s inequality) ≤ Var[Yr**]/𝔼[Yr**]2 ≤ 2r**/z
≤ 2/C

• 2-wise independent hash function 

• For , let  denote # of trailing 0’s

h : [2w] → [2w]
y ∈ [2w] zeros(y) = max{i : 2i |y}

𝔼[Yr] = z2−r Var[Yr] ≤ z2−r

Let
Yr = ∑

distinct x∈{x1,…,xn}
I [zeros (h(x)) ≥ r]

Input: a sequence 

Output: an estimation of 

x1, x2, …, xn ∈ [N] ⊆ [2w]
z = {x1, x2, …, xn}

Flajolet-Martin Algorithm:

let ;


return ;

R = max
1≤i≤n

zeros(h(xi))

̂Z = 2R



• 2-wise independent hash function 

• For , let  denote # of trailing 0’s

h : [2w] → [2w]
y ∈ [2w] zeros(y) = max{i : 2i |y}

Flajolet-Martin Algorithm:

let ;


return ;

R = max
1≤i≤n

zeros(h(xi))

̂Z = 2R

Pr [ ̂Z < z
C
 or  ̂Z > C ⋅ z ] ≤ 3

C
• Space cost:  bits for maintaining 

•  bits for storing 2-wise independent hash function

O(log log N) R

O(log N)

Input: a sequence 

Output: an estimation of 

x1, x2, …, xn ∈ [N] ⊆ [2w]
z = {x1, x2, …, xn}



Weierstrass Approximation Theorem

• Weierstrass Approximation Theorem: Let  be a continuous 
function. For any , there exists a polynomial  such that





• Proof: Let integer  be sufficiently large (to be fixed later). 

For , let . Define polynomial  on  to be:


f : [0,1] → [0,1]
ϵ > 0 p

sup
x∈[0,1]

|p(x) − f(x) | ≤ ϵ

n
x ∈ [0,1] X ∼ 1

n Bin(n, x) p x ∈ [0,1]

p(x) = 𝔼 [f (X)] =
n

∑
k=0

f ( k
n ) pX(k) =

n

∑
k=0

f ( k
n ) (n

k)xk(1 − x)n−k

(魏尔施特拉斯逼近定理)



Let  be continuous. For , let , and:








(  is continuous on    s.t.  for all  )








 


       if we choose 

f : [0,1] → [0,1] x ∈ [0,1] X ∼ 1
n Bin(n, x)

p(x) = 𝔼 [f (X)] =
n

∑
k=0

f ( k
n ) (n

k)xk(1 − x)n−k

|p(x) − f(x) | = 𝔼 [f(X) − f(x)] ≤ 𝔼 [ f(X) − f(x) ]
f [0,1] ⟹ ∃δ > 0 | f(x) − f(y) | ≤ ϵ/2 |x − y | ≤ δ

= 𝔼 [ f (X) − f(x) ∣ X − x ≤ δ] ⋅ Pr ( X − x ≤ δ)
+𝔼 [ f (X) − f(x) ∣ X − x > δ] ⋅ Pr ( X − x > δ)

≤ 𝔼 [ϵ/2]+ 1 − 0 ⋅ Pr ( X − x > δ)
≤ ϵ

2 + 1
4nδ2 ≤ ϵ n ≥ 1

2ϵδ2

(Chebyshev)≤ ϵ
2 + x(1 − x)

nδ2



Weierstrass Approximation Theorem

• Weierstrass Approximation Theorem: Let  be a continuous 
function. For any , there exists a polynomial  such that





• Proof: By continuity,  s.t.  if .

Let  be any integer. For , let , and:





For any , it holds that .

f : [0,1] → [0,1]
ϵ > 0 p

sup
x∈[0,1]

|p(x) − f(x) | ≤ ϵ

∃δ > 0 | f(x) − f(y) | ≤ ϵ/2 |x − y | ≤ δ
n ≥ 1/(2ϵδ2) x ∈ [0,1] X ∼ 1

n Bin(n, x)

p(x) = 𝔼 [f (X)] =
n

∑
k=0

f ( k
n ) (n

k)xk(1 − x)n−k

x ∈ [0,1] |p(x) − f(x) | ≤ ϵ

(魏尔施特拉斯逼近定理)



Higher Moments



Skewness (偏度)
• The skewness (偏度) of a random variable  with expectation  and 

standard deviation  is defined by





X μ = 𝔼[X]
σ = Var[X]

Skew[X] = 𝔼 [( X − μ
σ )

3

] =
𝔼[(X − μ)3]

σ3
standardized


moment

(of degree 3)



Kurtosis (峰度)
• The kurtosis (峰度) of a random variable  with expectation  and 

standard deviation  is defined by





X μ = 𝔼[X]
σ = Var[X]

Kurt[X] = 𝔼 [( X − μ
σ )

4

] =
𝔼[(X − μ)4]

σ4

standardized

moment


(of degree 4)



The th Moment Methodk

• Let  be a random variable with . For any  and integer 





• Proof: Apply Markov’s inequality to .

X 𝔼[X] = μ C > 1 k ≥ 1

Pr ( |X − μ | ≥ C ⋅ 𝔼 [ |X − μ |k ]
1
k) ≤ 1

Ck

Z = |X − μ |k



The Moment Problem
• Do moments , , uniquely identify the distribution of ?


• If  takes values from a finite set  with  & moments  

then solving the Vandermonde system:





can recover the pmf  

mk = 𝔼[Xk] ∀k ≥ 1 X

X {x1, …, xn} pX(xi) = pi {mi}

x1 x2 ⋯ xn

x2
1 x2

2 ⋯ x2
n

⟶ ⟶ ⋮ ⟶
xn

1 xn
2 ⋯ xn

n

p1
p2
⟶
pn

=

m1
m2
⟶

mn

pi = pX(xi)



The Moment Problem
• Do moments , , uniquely identify the distribution of ?


• If  for all , are  and  always identically distributed?


• If  and  have the same moment generating function (MGF)


 


then  and  are identically distributed.


• The MGF  is convergent if the sequence  does not grow too fast.

mk = 𝔼[Xk] ∀k ≥ 1 X

𝔼[Xk] = 𝔼[Yk] k ≥ 1 X Y

X Y

MX(t) = 𝔼[etX] = ∑
k≥0

tk𝔼[Xk]
k!

X Y

MX(t) 𝔼[Xk]


