组合数学 (Fall 2011)/Pólya's theory of counting: Difference between revisions
imported>Etone No edit summary |
imported>Etone |
||
(22 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
== Groups == | == Groups == | ||
A group <math>(G,\cdot)</math> is set <math>G</math> along with a binary operator <math>\cdot</math> which satisfies the following axioms: | A group <math>(G,\cdot)</math> is set <math>G</math> along with a binary operator <math>\cdot</math> which satisfies the following axioms: | ||
* closure: <math>\forall g,h\in G, g\cdot h \in G</math>; | * ''closure'': <math>\forall g,h\in G, g\cdot h \in G</math>; | ||
* associativity: <math>\forall f,g,h\in G, f\cdot(g\cdot h)=(f\cdot g)\cdot h</math>; | * ''associativity'': <math>\forall f,g,h\in G, f\cdot(g\cdot h)=(f\cdot g)\cdot h</math>; | ||
* identity: there exists a special element <math>e\in G</math>, called the '''identity''', such that <math>e\cdot g=g</math> for any <math>g\in G</math>; | * ''identity'': there exists a special element <math>e\in G</math>, called the '''identity''', such that <math>e\cdot g=g</math> for any <math>g\in G</math>; | ||
* inverse: <math>\forall g\in G</math>, there exists an <math>h\in G</math> such that <math>g\cdot h=e</math>, and we denote that <math>h=g^{-1}</math>. | * ''inverse'': <math>\forall g\in G</math>, there exists an <math>h\in G</math> such that <math>g\cdot h=e</math>, and we denote that <math>h=g^{-1}</math>. | ||
=== Permutation groups=== | === Permutation groups=== | ||
A permutation is a bijection <math>\pi:[n]\xrightarrow[\text{onto}]{\text{1-1}}[n]</math>. We can define a natural operator "<math>\cdot</math>" between permutations by function composition, i.e. for any <math>\pi,\sigma\in S_n</math>, <math>(\pi\cdot\sigma)(i)=\pi(\sigma(i))</math> for all <math>i\in[n]</math>. | |||
;Symmetric group <math>S_n</math> | |||
:Let <math>S_n</math> denote the set of all permutations of <math>[n]</math>. It is easy to verify that <math>S_n</math> together with function composition <math>\cdot</math> form a group. This group is called the '''symmetric group''' on <math>n</math> elements. | |||
Subgroups of <math>S_n</math> are called '''permutation groups'''. The most basic permutation group is <math>S_n</math> itself (since a group is a subgroup of itself). Besides it, there are several typical permutation groups related to natural symmetric operations. | |||
;Cyclic group <math>C_n</math> | |||
:Given a permutation <math>\pi\in S_n</math>, denote that | |||
::<math>\pi^t=\underbrace{\pi\cdot\pi\cdots\pi}_t</math>, | |||
:and <math>\pi^0=e</math> is the identity. | |||
:We define a special permutation <math>\sigma\,</math> as that <math>\sigma(i)=(i+1)\bmod n\,</math> for any <math>i</math>, and let <math>C_n=\{\sigma^t\mid t\ge 0\}</math>. We say that <math>C_n</math> is ''generated'' by the permutation <math>\sigma</math>. It is easy to verify that <math>C_n</math> is a subgroup of <math>S_n</math>. The group <math>C_n</math> is called the '''cyclic group''' of order <math>n</math>, which is the group formed by all '''rotational symmetries''' of a regular polygon of <math>n</math> sides. | |||
:It is easy to see that <math>|C_n|=n</math>, that is, there are <math>n</math> rotations of a regular <math>n</math>-gon. | |||
;Dihedral group <math>D_n</math> | |||
:Define another special permutation <math>\rho\,</math> as that <math>\rho(i)=n-i-1\,</math> for all <math>i\in[n]</math>. The '''Dihedral group''' <math>D_n</math> is obtained by adding <math>\rho</math> into <math>C_n</math> and then take a ''closure'' (under operations of "<math>\cdot</math>"). This group is the group of symmetries, including '''rotations''' as well as '''reflections''', of a regular polygon of <math>n</math> sides. | |||
:It is an exercise to check that <math>|D_n|=2n</math>. | |||
==== Cycle decomposition ==== | ==== Cycle decomposition ==== | ||
A permutation <math>\pi:[n]\xrightarrow[\text{onto}]{\text{1-1}}[n]</math> can be written in the following form: | |||
:<math>\begin{pmatrix} | |||
1 & 2 & \cdots & n \\ | |||
\pi(1) & \pi(2) & \cdots & \pi(n) | |||
\end{pmatrix}</math>. | |||
For example, | |||
:<math>\begin{pmatrix} | |||
1 & 2 & 3 & 4 & 5 \\ | |||
3 & 5 & 1 & 2 & 4 | |||
\end{pmatrix}</math>. | |||
The permutation can be equivalently described as a composition of a number of '''cycles'''. For example, in the above permutation, we have two cycles: | |||
:<math>1\rightarrow 3\rightarrow 1</math> and <math>2\rightarrow5\rightarrow4\rightarrow2</math>. | |||
We can denote the permutation by | |||
:<math>(13)(254)</math>. | |||
=== Group action === | === Group action === | ||
Line 18: | Line 49: | ||
:* Identity: <math>e\circ x=x</math> for all <math>x\in X</math>. | :* Identity: <math>e\circ x=x</math> for all <math>x\in X</math>. | ||
}} | }} | ||
==== Example: coloring a necklace ==== | |||
Suppose a necklace is made of <math>n</math> beads, each with one of the <math>m</math> colors. Formally, a necklace is an assignment <math>x:[n]\rightarrow[m]</math> of <math>m</math> colors to <math>n</math> positions. Let <math>X=\{x:[n]\rightarrow[m]\}</math> be the set of all such assignments. | |||
For example, when <math>n=4</math> and <math>m=2</math>, <math>X</math> contains all possible 2-colorings (say red and blue) of 4 positions. | |||
:<math>X=\{{\color{blue}bbbb}, {\color{blue}bbb}{\color{red}r}, {\color{blue}bb}{\color{red}r}{\color{blue}b}, {\color{blue}bb}{\color{red}rr}, {\color{blue}b}{\color{red}r}{\color{blue}b}{\color{red}r}, {\color{blue}b}{\color{red}rr}{\color{blue}b}, {\color{blue}b}{\color{red}rrr}, {\color{red}r}{\color{blue}bbb}, {\color{red}r}{\color{blue}bb}{\color{red}r}, {\color{red}r}{\color{blue}b}{\color{red}r}{\color{blue}b}, {\color{red}r}{\color{blue}b}{\color{red}rr}, {\color{red}rr}{\color{blue}bb}, {\color{red}rr}{\color{blue}b}{\color{red}r}, {\color{red}rrr}{\color{blue}b}, {\color{red}rrrr}\}</math> | |||
We consider two kinds of symmetric operations on necklaces: | |||
* Rotation: the corresponding group is the cyclic group <math>C_n</math>. | |||
* Rotation and reflection: the corresponding group is the dihedral group <math>D_n</math>. | |||
Mathematically, these operations on necklaces are described as group actions on <math>X</math>. Recall that each member <math>x\in X</math> is an <math>m</math>-coloring <math>x:[n]\rightarrow[m]</math> of <math>n</math> positions. Suppose the permutation group is <math>G</math>, for any <math>\pi\in G</math> and any <math>x\in X</math>, the group action <math>\pi\circ x</math> is naturally defined as such: | |||
:<math>(\pi\circ x)(i)=x(\pi(i))</math>. | |||
== Burnside's Lemma == | == Burnside's Lemma == | ||
=== Orbits === | === Orbits === | ||
{{Theorem|Definition| | |||
:Let <math>G</math> be a permutation group acting on a set <math>X</math>. For any <math>x\in X</math>. The '''orbit''' of <math>x</math> under action of <math>G</math>, denoted <math>Gx</math>, is defined as | |||
::<math>Gx=\{\pi\circ x\mid \pi\in G\}</math>. | |||
}} | |||
For any <math>x,y,z\in X</math>, the followings can be verified for orbits | |||
* ''reflexivity'': <math>x\in Gx</math> since <math>e\circ x=x</math>; | |||
* ''symmetric'': if <math>y\in Gx</math> then there is a <math>\pi\in G</math> such that <math>\pi\circ x=y</math>, thus <math>\pi^{-1}\circ y=\pi^{-1}\circ(\pi\circ x) =(\pi^{-1}\cdot \pi)\circ x=e\circ x=x</math>, hence <math>x\in Gy</math>; | |||
* ''transitivity'': if <math>y\in Gx</math> and <math>z\in Gy</math>, then there exist <math>\pi,\sigma\in G</math> such that <math>\pi\circ x=y</math> and <math>\sigma\circ y=z</math>, thus <math>(\sigma\cdot \pi)\circ x=\sigma\circ(\pi\circ x)=\sigma\circ y=z</math>, hence <math>z\in Gx</math>. | |||
Therefore, <math>x\in Gy</math> defines an equivalent relation between <math>x</math> and <math>y</math>, and orbits partition the set <math>X</math>. | |||
;Example | |||
:Back to the example of coloring necklaces. | |||
:<math>X</math> contains all possible 2-colorings (say red and blue) of 4 positions. | |||
::<math>X=\{{\color{blue}bbbb}, {\color{blue}bbb}{\color{red}r}, {\color{blue}bb}{\color{red}r}{\color{blue}b}, {\color{blue}bb}{\color{red}rr}, {\color{blue}b}{\color{red}r}{\color{blue}bb}, {\color{blue}b}{\color{red}r}{\color{blue}b}{\color{red}r}, {\color{blue}b}{\color{red}rr}{\color{blue}b}, {\color{blue}b}{\color{red}rrr}, {\color{red}r}{\color{blue}bbb}, {\color{red}r}{\color{blue}bb}{\color{red}r}, {\color{red}r}{\color{blue}b}{\color{red}r}{\color{blue}b}, {\color{red}r}{\color{blue}b}{\color{red}rr}, {\color{red}rr}{\color{blue}bb}, {\color{red}rr}{\color{blue}b}{\color{red}r}, {\color{red}rrr}{\color{blue}b}, {\color{red}rrrr}\}</math> | |||
:We consider the rotations of necklaces. The cyclic group <math>C_4</math> acting on <math>X</math> partitions the <math>X</math> into the following equivalent classes: | |||
::<math>\begin{align} | |||
&\{{\color{blue}bbbb}\},\\ | |||
&\{ {\color{blue}bbb}{\color{red}r}, {\color{blue}bb}{\color{red}r}{\color{blue}b}, {\color{blue}b}{\color{red}r}{\color{blue}bb}, {\color{red}r}{\color{blue}bbb}\},\\ | |||
&\{ {\color{blue}bb}{\color{red}rr}, {\color{blue}b}{\color{red}rr}{\color{blue}b}, {\color{red}r}{\color{blue}bb}{\color{red}r}, {\color{red}rr}{\color{blue}bb}, \},\\ | |||
&\{ {\color{blue}b}{\color{red}r}{\color{blue}b}{\color{red}r}, {\color{red}r}{\color{blue}b}{\color{red}r}{\color{blue}b}\},\\ | |||
&\{ {\color{blue}b}{\color{red}rrr}, {\color{red}r}{\color{blue}b}{\color{red}rr}, {\color{red}rr}{\color{blue}b}{\color{red}r}, {\color{red}rrr}{\color{blue}b}\},\\ | |||
&\{ {\color{red}rrrr}\} | |||
\end{align} | |||
</math> | |||
=== Invariant sets and stabilizers === | |||
Let <math>G</math> be a permutation group acting on a set <math>X</math>. Let <math>\pi\in G, x\in X</math>. | |||
* The '''invariant set''' of <math>\pi</math>: | |||
::<math>X_\pi=\{x\in X\mid \pi\circ x=x\}</math>. | |||
* The '''stabilizer''' of <math>x</math>: | |||
::<math>G_x=\{\pi\in G\mid \pi\circ x=x\}</math>. | |||
There is a beautiful identity for invariant sets and stabilizers. | |||
{{Theorem|Lemma| | |||
:Let <math>G</math> be a permutation group acting on a set <math>X</math>. For any <math>x\in X</math>, | |||
::<math>|G_x||Gx|=|G|\,</math>. | |||
}} | |||
{{Proof| | |||
Recall that the orbit <math>Gx=\{\pi\circ x\mid \pi\in G\}</math>. Suppose that <math>Gx=\{x_1,x_2,\ldots,x_t\}</math>. Then there exist a set <math>P=\{\pi_1,\pi_2,\ldots,\pi_t\}</math> of permutations such that <math>\pi_i\circ x=x_i\,</math> for <math>i=1,2,\ldots,t</math>. We construct a bijection between <math>G</math> and <math>P\times G_x</math>, which will prove the lemma. | |||
For any <math>\pi\in G</math>, it holds that <math>\pi\circ x=x_i</math> for some <math>x_i</math>, and since <math>\pi_i\circ x=x_i</math>, we have | |||
<math>\pi_i\circ x=\pi\circ x</math>, hence | |||
:<math>(\pi_i^{-1}\cdot\pi)\circ x=\pi_i^{-1}\circ(\pi\circ x)=\pi_i^{-1}\circ(\pi_i\circ x)=(\pi_i^{-1}\cdot\pi_i)\circ x=e\circ x=x</math>. | |||
Denote that <math>\sigma=\pi_i^{-1}\cdot \pi</math>. Then | |||
*<math>\pi_i\cdot\sigma=\pi_i\cdot(\pi_i^{-1}\cdot\pi)=\pi</math>, and | |||
*<math>\sigma\circ x=(\pi_i^{-1}\cdot\pi)\circ x=x</math>, which implies that <math>\sigma\in G_x</math>. | |||
Therefore, each <math>\pi\in G</math> corresponds to a unique pair <math>(\pi_i,\sigma)\in P\times G_x</math>. We have a 1-1 mapping from <math>G</math> to <math>P\times G_x</math>. | |||
For every <math>\pi_i\in P</math> and every <math>\sigma\in G_x</math>, <math>\pi=\pi_i\cdot\sigma\in G</math>. We show that this is a 1-1 mapping. Suppose that <math>\pi_i\cdot\sigma=\pi_j\cdot\tau</math> for some <math>\pi_i,\pi_j\in P</math> and <math>\sigma,\tau\in G_x</math>. Then <math>(\pi_i\cdot\sigma)\circ x=\pi_i\circ(\sigma\circ x)=\pi_i\circ x=x_i</math> and <math>(\pi_j\cdot \tau)\circ x=\pi_j\circ(\tau\circ x)=\pi_j\circ x=x_j</math>, which implies <math>x_i=x_j</math> and correspondingly <math>\pi_i=\pi_j</math>. Since <math>\pi_i\cdot\sigma=\pi_j\cdot\tau</math>, <math>\sigma=\tau</math>. Therefore, we show that the mapping is 1-1. | |||
In conclusion, there exists a bijection between <math>P\times G_x</math> and <math>G</math>. As a consequence, <math>|Gx||G_x|=|P||G_x|=|P\times G_x|=|G|</math>. | |||
}} | |||
=== Counting orbits=== | === Counting orbits=== | ||
{{Theorem|Burnside's Lemma| | {{Theorem|Burnside's Lemma| | ||
:Let <math>G</math> be a permutation group acting on a set <math>X | :Let <math>G</math> be a permutation group acting on a set <math>X</math>. The number of orbits, denoted <math>|X/G|</math>, is | ||
::<math>|X/G|=\frac{1}{|G|}\sum_{\pi\in G}|X_{\pi}|.</math> | ::<math>|X/G|=\frac{1}{|G|}\sum_{\pi\in G}|X_{\pi}|.</math> | ||
}} | |||
{{Proof| | |||
Let | |||
:<math>A(\pi,x)=\begin{cases}1 & \pi\circ x=x,\\ 0 & \text{otherwise.}\end{cases}</math> | |||
Basically <math>A(\pi,x)</math> indicates whether <math>x</math> is invariant under action of <math>\pi</math>. We can think of <math>A</math> as a matrix indexed by <math>G\times X</math>. An important observation is that the row sums and column sums of <math>A</math> are <math>|X_\pi|</math> and <math>|G_x|</math> respectively, namely, | |||
:<math>|X_\pi|=\sum_{x\in X}A(\pi,x)</math> and <math>|G_x|=\sum_{\pi\in G}A(\pi,x)</math>. | |||
Then a double counting gives that | |||
:<math>\sum_{\pi\in G}|X_\pi|=\sum_{\pi\in G}\sum_{x\in X}A(\pi,x)=\sum_{x\in X}\sum_{\pi\in G}A(\pi,x)=\sum_{x\in X}|G_x|</math>. | |||
Due to the above lemma, <math>|G_x|=\frac{|G|}{|Gx|}</math>, thus | |||
:<math>\sum_{x\in X}|G_x|=\sum_{x\in X}\frac{|G|}{|Gx|}=|G|\sum_{x\in X}\frac{1}{|Gx|}</math>. | |||
We may enumerate the <math>x\in X</math> in the sum by first enumerating the orbits and then the elements in each orbit. Denote the orbits by <math>X_1,X_2,\ldots,X_{|X/G|}</math>. They forms a partition of <math>X</math>, and for any <math>X_i</math> and every <math>x\in X_i</math>, <math>X_i=Gx</math>. Thus, | |||
:<math>|G|\sum_{x\in X}\frac{1}{|Gx|}=|G|\sum_{i=1}^{|X/G|}\sum_{x\in X_i}\frac{1}{|Gx|}=|G|\sum_{i=1}^{|X/G|}\sum_{x\in X_i}\frac{1}{|X_i|}=|G|\sum_{i=1}^{|X/G|}1=|G|{|X/G|}</math>. | |||
Combining everything together | |||
:<math>\sum_{\pi\in G}|X_\pi|=\sum_{x\in X}|G_x|=|G|\sum_{x\in X}\frac{1}{|Gx|}=|G|{|X/G|}</math>, | |||
which gives us that the number of orbits is | |||
:<math>{|X/G|}=\frac{1}{|G|}\sum_{\pi\in G}|X_\pi|</math>. | |||
}} | }} | ||
==Pólya's Theory of Counting == | ==Pólya's Theory of Counting == | ||
=== The cycle index === | === The cycle index === | ||
Suppose we want to count the number of ways to color <math>n</math> objects using up to <math>m</math> colors, discounting symmetries on the objects described by a group <math>G</math>. If a coloring <math>x:[n]\rightarrow[m]</math> is invariant under the action of a permutation <math>\pi\in G</math>, then every position in the same cycle of <math>\pi</math> must have the same color. Therefore, if <math>\pi</math> is decomposed to <math>k</math> disjoint cycles, the number of colorings invariant under the action of <math>\pi</math> is <math>|X_\pi|=m^k</math>. | |||
We define the cycle index of a permutation group <math>G</math>. | |||
For a permutation <math>\pi\in G</math> of <math>[n]</math>, if <math>\pi</math> is a product of <math>k</math> cycles, and the <math>i</math>th cycle has length <math>\ell_i</math>, let | |||
:<math>M_\pi(x_1,x_2,\ldots,x_n)=\prod_{i=1}^k x_{\ell_i}</math>. | |||
The '''cycle index''' of <math>G</math> is defined by | |||
:<math>P_G(x_1,x_2,\ldots,x_n)=\frac{1}{|G|}\sum_{\pi\in G}M_\pi(x_1,x_2,\ldots,x_n)</math>. | |||
Due to Burnside's lemma, the number of equivalent classes of <math>m</math>-colorings of <math>n</math> objects, discounting the symmetries described by permutation group <math>G</math>, is given by | |||
:<math>P_G(\underbrace{m,m,\ldots,m}_{n})</math> | |||
=== Pólya's enumeration formula === | === Pólya's enumeration formula === | ||
For any tuple <math>\mathbf{v}=(n_1,n_2,\ldots,n_m)</math> of nonnegative integers satisfying that <math>n_1+n_2+\cdots +n_m=n</math>, let <math>a_{\mathbf{v}}</math> represent the number of nonequivalent (with respect to a permutation group <math>G</math>) <math>m</math>-colorings of the <math>n</math> objects, where the <math>i</math>th color occurs precisely <math>n_i</math> times. The '''pattern inventory''' is the (multivariate) generating function for the sequence <math>a_{\mathbf{v}}</math>, defined as | |||
:<math>F_G(y_1,y_2,\ldots,y_m)=\sum_{\mathbf{v}}a_{\mathbf{v}}y_1^{n_1}y_2^{n_2}\cdots y_m^{n_m}</math>, | |||
where the sum runs over all <math>\mathbf{v}=(n_1,n_2,\ldots,n_m)</math> satisfying that <math>n_1+n_2+\cdots +n_m=n</math> and <math>n_i\ge 0, 1\le i\le m</math>. | |||
=== | {{Theorem|Theorem (Pólya's enumeration formula)| | ||
:Let <math>G</math> be a permutation group. The pattern inventory for the nonequivalent <math>m</math>-colorings of <math>n</math> objects under the action of <math>G</math> is: | |||
::<math>F_G(y_1,y_2,\ldots,y_m)=P_G\left(\sum_{i=1}^m y_i, \sum_{i=1}^m y_i^2,\ldots, \sum_{i=1}^m y_i^n\right)</math>. | |||
}} | |||
{{Proof| | |||
Let <math>\mathbf{v}=(n_1,\ldots,n_m)</math> be a vector of nonnegative integers satisfying that <math>n_1+\cdots+n_m=n</math>, and let <math>a_{\mathbf{v}}</math> represent the number of nonequivalent (with respect to a permutation group <math>G</math>) <math>m</math>-colorings of the <math>n</math> objects, such that the <math>i</math>th color occurs precisely <math>n_i</math> times. | |||
The set of configurations is now | |||
:<math>X^{\mathbf{v}}=\{x:[n]\rightarrow[m]\mid \forall i\in[m], x^{-1}(i)=n_i\}</math>, | |||
which contains all <math>m</math>-colorings of the <math>n</math> objects such that the <math>i</math>th color occurs precisely <math>n_i</math> times, without considering symmetries. | |||
For every <math>\pi\in G</math>, the invariant set is now | |||
:<math>X_\pi^{\mathbf{v}}=\{x\in X^{\mathbf{v}}\mid \pi\circ x=x\}</math>. | |||
;Claim 1<nowiki>:</nowiki> <math>a_{\mathbf{v}}=\frac{1}{|G|}\sum_{\pi\in G}|X_\pi^{\mathbf{v}}|</math>. | |||
{{Proofbox| | |||
;Proof of Claim 1. | |||
For <math>\mathbf{v}=(n_1,\ldots,n_m)</math>, given any permutation <math>\pi\in G</math>, <math>|X^{\mathbf{v}}_\pi|</math> gives the number of colorings <math>x</math> in <math>X^\mathbf{v}</math> invariant under action of <math>\pi</math>, and <math>a_\mathbf{v}</math> is the number of orbits of <math>X^\mathbf{v}</math> induced by the action of permutation group <math>G</math>. Due to Burnside's lemma, | |||
:<math>a_{\mathbf{v}}=\frac{1}{|G|}\sum_{\pi\in G}|X_\pi^{\mathbf{v}}|</math>. | |||
}} | |||
;Claim 2<nowiki>:</nowiki> <math>M_\pi\left(\sum_{i=1}^m y_i, \sum_{i=1}^my_i^2,\ldots,\sum_{i=1}^my_i^n\right)=\sum_{\mathbf{v}=(n_1,\ldots,n_m)\atop n_1+\cdots+n_m=n}|X^{\mathbf{v}}_\pi|y_1^{n_1}y_2^{n_2}\cdots y_m^{n_m}</math>. | |||
{{Proofbox| | |||
;Proof of Claim 2. | |||
Supposed that a permutation <math>\pi\in G</math> can be represented as a composition of <math>k</math> cycles, the <math>i</math>th cycle of length <math>\ell_i</math>. | |||
:<math>\pi=\overbrace{\underbrace{(\cdots\cdots)}_{\ell_1}\underbrace{(\cdots)}_{\ell_2}\cdots\underbrace{(\cdots)}_{\ell_k}}^{k \text{ cycles}}</math> | |||
The permutation <math>\pi</math> does not change a coloring <math>x</math>, if and only if every cycle of <math>\pi</math> are assigned the same color. Then <math>|X^{\mathbf{v}}_\pi|</math> equals the number of <math>m</math>-colorings of <math>k</math> cycles, where the <math>i</math>th cycle is of length <math>\ell_i</math>, satisfying that the <math>i</math>th color occurs precisely <math>n_i</math> times. The following generalized version of multinomial theorem generates <math>|X^{\mathbf{v}}_\pi|</math> for all <math>\mathbf{v}=(n_1,\ldots,n_m)</math>. | |||
:<math> | |||
\begin{align} | |||
&\quad\, (y_1^{\ell_1}+y_2^{\ell_1}+\cdots+y_m^{\ell_1})(y_1^{\ell_2}+y_2^{\ell_2}+\cdots+y_m^{\ell_2})\cdots(y_1^{\ell_m}+y_2^{\ell_m}+\cdots+y_m^{\ell_m})\\ | |||
&=\sum_{\mathbf{v}=(n_1,\ldots,n_m)\atop n_1+\cdots+n_m=n}|X^{\mathbf{v}}_\pi|y_1^{n_1}y_2^{n_2}\cdots y_m^{n_m}. | |||
\end{align} | |||
</math> | |||
On the other hand, | |||
:<math>\begin{align} | |||
&\quad\, (y_1^{\ell_1}+y_2^{\ell_1}+\cdots+y_m^{\ell_1})(y_1^{\ell_2}+y_2^{\ell_2}+\cdots+y_m^{\ell_2})\cdots(y_1^{\ell_m}+y_2^{\ell_m}+\cdots+y_m^{\ell_m})\\ | |||
&=M_\pi\left(\sum_{i=1}^m y_i, \sum_{i=1}^my_i^2,\ldots,\sum_{i=1}^my_i^n\right). | |||
\end{align}</math> | |||
Therefore, | |||
:<math>M_\pi\left(\sum_{i=1}^m y_i, \sum_{i=1}^my_i^2,\ldots,\sum_{i=1}^my_i^n\right)=\sum_{\mathbf{v}=(n_1,\ldots,n_m)\atop n_1+\cdots+n_m=n}|X^{\mathbf{v}}_\pi|y_1^{n_1}y_2^{n_2}\cdots y_m^{n_m}</math>. | |||
}} | |||
Combining everything together, | |||
:<math> | |||
\begin{align} | |||
&\quad\, F_G(y_1,y_2,\ldots,y_m)\\ | |||
&=\sum_{\mathbf{v}=(n_1,\ldots,n_m)\atop n_1+\cdots+n_m=n}a_{\mathbf{v}}y_1^{n_1}y_2^{n_2}\cdots y_m^{n_m}\\ | |||
&=\sum_{\mathbf{v}=(n_1,\ldots,n_m)\atop n_1+\cdots+n_m=n}\left(\frac{1}{|G|}\sum_{\pi\in G}|X_\pi^{\mathbf{v}}|\right)y_1^{n_1}y_2^{n_2}\cdots y_m^{n_m} | |||
&\quad\text{(due to Claim 1)}\\ | |||
&=\frac{1}{|G|}\sum_{\pi\in G}\sum_{\mathbf{v}=(n_1,\ldots,n_m)\atop n_1+\cdots+n_m=n} |X_\pi^{\mathbf{v}}|y_1^{n_1}y_2^{n_2}\cdots y_m^{n_m}\\ | |||
&=\frac{1}{|G|}\sum_{\pi\in G}M_\pi\left(\sum_{i=1}^m y_i, \sum_{i=1}^my_i^2,\ldots,\sum_{i=1}^my_i^n\right) | |||
&\quad\text{(due to Claim 2)}\\ | |||
&=P_G\left(\sum_{i=1}^m y_i, \sum_{i=1}^m y_i^2,\ldots, \sum_{i=1}^m y_i^n\right). | |||
\end{align} | |||
</math> | |||
}} |
Latest revision as of 07:16, 8 October 2011
Groups
A group [math]\displaystyle{ (G,\cdot) }[/math] is set [math]\displaystyle{ G }[/math] along with a binary operator [math]\displaystyle{ \cdot }[/math] which satisfies the following axioms:
- closure: [math]\displaystyle{ \forall g,h\in G, g\cdot h \in G }[/math];
- associativity: [math]\displaystyle{ \forall f,g,h\in G, f\cdot(g\cdot h)=(f\cdot g)\cdot h }[/math];
- identity: there exists a special element [math]\displaystyle{ e\in G }[/math], called the identity, such that [math]\displaystyle{ e\cdot g=g }[/math] for any [math]\displaystyle{ g\in G }[/math];
- inverse: [math]\displaystyle{ \forall g\in G }[/math], there exists an [math]\displaystyle{ h\in G }[/math] such that [math]\displaystyle{ g\cdot h=e }[/math], and we denote that [math]\displaystyle{ h=g^{-1} }[/math].
Permutation groups
A permutation is a bijection [math]\displaystyle{ \pi:[n]\xrightarrow[\text{onto}]{\text{1-1}}[n] }[/math]. We can define a natural operator "[math]\displaystyle{ \cdot }[/math]" between permutations by function composition, i.e. for any [math]\displaystyle{ \pi,\sigma\in S_n }[/math], [math]\displaystyle{ (\pi\cdot\sigma)(i)=\pi(\sigma(i)) }[/math] for all [math]\displaystyle{ i\in[n] }[/math].
- Symmetric group [math]\displaystyle{ S_n }[/math]
- Let [math]\displaystyle{ S_n }[/math] denote the set of all permutations of [math]\displaystyle{ [n] }[/math]. It is easy to verify that [math]\displaystyle{ S_n }[/math] together with function composition [math]\displaystyle{ \cdot }[/math] form a group. This group is called the symmetric group on [math]\displaystyle{ n }[/math] elements.
Subgroups of [math]\displaystyle{ S_n }[/math] are called permutation groups. The most basic permutation group is [math]\displaystyle{ S_n }[/math] itself (since a group is a subgroup of itself). Besides it, there are several typical permutation groups related to natural symmetric operations.
- Cyclic group [math]\displaystyle{ C_n }[/math]
- Given a permutation [math]\displaystyle{ \pi\in S_n }[/math], denote that
- [math]\displaystyle{ \pi^t=\underbrace{\pi\cdot\pi\cdots\pi}_t }[/math],
- and [math]\displaystyle{ \pi^0=e }[/math] is the identity.
- We define a special permutation [math]\displaystyle{ \sigma\, }[/math] as that [math]\displaystyle{ \sigma(i)=(i+1)\bmod n\, }[/math] for any [math]\displaystyle{ i }[/math], and let [math]\displaystyle{ C_n=\{\sigma^t\mid t\ge 0\} }[/math]. We say that [math]\displaystyle{ C_n }[/math] is generated by the permutation [math]\displaystyle{ \sigma }[/math]. It is easy to verify that [math]\displaystyle{ C_n }[/math] is a subgroup of [math]\displaystyle{ S_n }[/math]. The group [math]\displaystyle{ C_n }[/math] is called the cyclic group of order [math]\displaystyle{ n }[/math], which is the group formed by all rotational symmetries of a regular polygon of [math]\displaystyle{ n }[/math] sides.
- It is easy to see that [math]\displaystyle{ |C_n|=n }[/math], that is, there are [math]\displaystyle{ n }[/math] rotations of a regular [math]\displaystyle{ n }[/math]-gon.
- Dihedral group [math]\displaystyle{ D_n }[/math]
- Define another special permutation [math]\displaystyle{ \rho\, }[/math] as that [math]\displaystyle{ \rho(i)=n-i-1\, }[/math] for all [math]\displaystyle{ i\in[n] }[/math]. The Dihedral group [math]\displaystyle{ D_n }[/math] is obtained by adding [math]\displaystyle{ \rho }[/math] into [math]\displaystyle{ C_n }[/math] and then take a closure (under operations of "[math]\displaystyle{ \cdot }[/math]"). This group is the group of symmetries, including rotations as well as reflections, of a regular polygon of [math]\displaystyle{ n }[/math] sides.
- It is an exercise to check that [math]\displaystyle{ |D_n|=2n }[/math].
Cycle decomposition
A permutation [math]\displaystyle{ \pi:[n]\xrightarrow[\text{onto}]{\text{1-1}}[n] }[/math] can be written in the following form:
- [math]\displaystyle{ \begin{pmatrix} 1 & 2 & \cdots & n \\ \pi(1) & \pi(2) & \cdots & \pi(n) \end{pmatrix} }[/math].
For example,
- [math]\displaystyle{ \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 1 & 2 & 4 \end{pmatrix} }[/math].
The permutation can be equivalently described as a composition of a number of cycles. For example, in the above permutation, we have two cycles:
- [math]\displaystyle{ 1\rightarrow 3\rightarrow 1 }[/math] and [math]\displaystyle{ 2\rightarrow5\rightarrow4\rightarrow2 }[/math].
We can denote the permutation by
- [math]\displaystyle{ (13)(254) }[/math].
Group action
Definition (group action) - A group action of a group [math]\displaystyle{ G }[/math] on a set [math]\displaystyle{ X }[/math] is a binary operator:
- [math]\displaystyle{ \circ:G\times X\rightarrow X }[/math]
- satisfying:
- Associativity: [math]\displaystyle{ (g\cdot h)\circ x=g\circ (h\circ x) }[/math] for all [math]\displaystyle{ g,h\in G }[/math] and [math]\displaystyle{ x\in X }[/math];
- Identity: [math]\displaystyle{ e\circ x=x }[/math] for all [math]\displaystyle{ x\in X }[/math].
- A group action of a group [math]\displaystyle{ G }[/math] on a set [math]\displaystyle{ X }[/math] is a binary operator:
Example: coloring a necklace
Suppose a necklace is made of [math]\displaystyle{ n }[/math] beads, each with one of the [math]\displaystyle{ m }[/math] colors. Formally, a necklace is an assignment [math]\displaystyle{ x:[n]\rightarrow[m] }[/math] of [math]\displaystyle{ m }[/math] colors to [math]\displaystyle{ n }[/math] positions. Let [math]\displaystyle{ X=\{x:[n]\rightarrow[m]\} }[/math] be the set of all such assignments.
For example, when [math]\displaystyle{ n=4 }[/math] and [math]\displaystyle{ m=2 }[/math], [math]\displaystyle{ X }[/math] contains all possible 2-colorings (say red and blue) of 4 positions.
- [math]\displaystyle{ X=\{{\color{blue}bbbb}, {\color{blue}bbb}{\color{red}r}, {\color{blue}bb}{\color{red}r}{\color{blue}b}, {\color{blue}bb}{\color{red}rr}, {\color{blue}b}{\color{red}r}{\color{blue}b}{\color{red}r}, {\color{blue}b}{\color{red}rr}{\color{blue}b}, {\color{blue}b}{\color{red}rrr}, {\color{red}r}{\color{blue}bbb}, {\color{red}r}{\color{blue}bb}{\color{red}r}, {\color{red}r}{\color{blue}b}{\color{red}r}{\color{blue}b}, {\color{red}r}{\color{blue}b}{\color{red}rr}, {\color{red}rr}{\color{blue}bb}, {\color{red}rr}{\color{blue}b}{\color{red}r}, {\color{red}rrr}{\color{blue}b}, {\color{red}rrrr}\} }[/math]
We consider two kinds of symmetric operations on necklaces:
- Rotation: the corresponding group is the cyclic group [math]\displaystyle{ C_n }[/math].
- Rotation and reflection: the corresponding group is the dihedral group [math]\displaystyle{ D_n }[/math].
Mathematically, these operations on necklaces are described as group actions on [math]\displaystyle{ X }[/math]. Recall that each member [math]\displaystyle{ x\in X }[/math] is an [math]\displaystyle{ m }[/math]-coloring [math]\displaystyle{ x:[n]\rightarrow[m] }[/math] of [math]\displaystyle{ n }[/math] positions. Suppose the permutation group is [math]\displaystyle{ G }[/math], for any [math]\displaystyle{ \pi\in G }[/math] and any [math]\displaystyle{ x\in X }[/math], the group action [math]\displaystyle{ \pi\circ x }[/math] is naturally defined as such:
- [math]\displaystyle{ (\pi\circ x)(i)=x(\pi(i)) }[/math].
Burnside's Lemma
Orbits
Definition - Let [math]\displaystyle{ G }[/math] be a permutation group acting on a set [math]\displaystyle{ X }[/math]. For any [math]\displaystyle{ x\in X }[/math]. The orbit of [math]\displaystyle{ x }[/math] under action of [math]\displaystyle{ G }[/math], denoted [math]\displaystyle{ Gx }[/math], is defined as
- [math]\displaystyle{ Gx=\{\pi\circ x\mid \pi\in G\} }[/math].
- Let [math]\displaystyle{ G }[/math] be a permutation group acting on a set [math]\displaystyle{ X }[/math]. For any [math]\displaystyle{ x\in X }[/math]. The orbit of [math]\displaystyle{ x }[/math] under action of [math]\displaystyle{ G }[/math], denoted [math]\displaystyle{ Gx }[/math], is defined as
For any [math]\displaystyle{ x,y,z\in X }[/math], the followings can be verified for orbits
- reflexivity: [math]\displaystyle{ x\in Gx }[/math] since [math]\displaystyle{ e\circ x=x }[/math];
- symmetric: if [math]\displaystyle{ y\in Gx }[/math] then there is a [math]\displaystyle{ \pi\in G }[/math] such that [math]\displaystyle{ \pi\circ x=y }[/math], thus [math]\displaystyle{ \pi^{-1}\circ y=\pi^{-1}\circ(\pi\circ x) =(\pi^{-1}\cdot \pi)\circ x=e\circ x=x }[/math], hence [math]\displaystyle{ x\in Gy }[/math];
- transitivity: if [math]\displaystyle{ y\in Gx }[/math] and [math]\displaystyle{ z\in Gy }[/math], then there exist [math]\displaystyle{ \pi,\sigma\in G }[/math] such that [math]\displaystyle{ \pi\circ x=y }[/math] and [math]\displaystyle{ \sigma\circ y=z }[/math], thus [math]\displaystyle{ (\sigma\cdot \pi)\circ x=\sigma\circ(\pi\circ x)=\sigma\circ y=z }[/math], hence [math]\displaystyle{ z\in Gx }[/math].
Therefore, [math]\displaystyle{ x\in Gy }[/math] defines an equivalent relation between [math]\displaystyle{ x }[/math] and [math]\displaystyle{ y }[/math], and orbits partition the set [math]\displaystyle{ X }[/math].
- Example
- Back to the example of coloring necklaces.
- [math]\displaystyle{ X }[/math] contains all possible 2-colorings (say red and blue) of 4 positions.
- [math]\displaystyle{ X=\{{\color{blue}bbbb}, {\color{blue}bbb}{\color{red}r}, {\color{blue}bb}{\color{red}r}{\color{blue}b}, {\color{blue}bb}{\color{red}rr}, {\color{blue}b}{\color{red}r}{\color{blue}bb}, {\color{blue}b}{\color{red}r}{\color{blue}b}{\color{red}r}, {\color{blue}b}{\color{red}rr}{\color{blue}b}, {\color{blue}b}{\color{red}rrr}, {\color{red}r}{\color{blue}bbb}, {\color{red}r}{\color{blue}bb}{\color{red}r}, {\color{red}r}{\color{blue}b}{\color{red}r}{\color{blue}b}, {\color{red}r}{\color{blue}b}{\color{red}rr}, {\color{red}rr}{\color{blue}bb}, {\color{red}rr}{\color{blue}b}{\color{red}r}, {\color{red}rrr}{\color{blue}b}, {\color{red}rrrr}\} }[/math]
- We consider the rotations of necklaces. The cyclic group [math]\displaystyle{ C_4 }[/math] acting on [math]\displaystyle{ X }[/math] partitions the [math]\displaystyle{ X }[/math] into the following equivalent classes:
- [math]\displaystyle{ \begin{align} &\{{\color{blue}bbbb}\},\\ &\{ {\color{blue}bbb}{\color{red}r}, {\color{blue}bb}{\color{red}r}{\color{blue}b}, {\color{blue}b}{\color{red}r}{\color{blue}bb}, {\color{red}r}{\color{blue}bbb}\},\\ &\{ {\color{blue}bb}{\color{red}rr}, {\color{blue}b}{\color{red}rr}{\color{blue}b}, {\color{red}r}{\color{blue}bb}{\color{red}r}, {\color{red}rr}{\color{blue}bb}, \},\\ &\{ {\color{blue}b}{\color{red}r}{\color{blue}b}{\color{red}r}, {\color{red}r}{\color{blue}b}{\color{red}r}{\color{blue}b}\},\\ &\{ {\color{blue}b}{\color{red}rrr}, {\color{red}r}{\color{blue}b}{\color{red}rr}, {\color{red}rr}{\color{blue}b}{\color{red}r}, {\color{red}rrr}{\color{blue}b}\},\\ &\{ {\color{red}rrrr}\} \end{align} }[/math]
Invariant sets and stabilizers
Let [math]\displaystyle{ G }[/math] be a permutation group acting on a set [math]\displaystyle{ X }[/math]. Let [math]\displaystyle{ \pi\in G, x\in X }[/math].
- The invariant set of [math]\displaystyle{ \pi }[/math]:
- [math]\displaystyle{ X_\pi=\{x\in X\mid \pi\circ x=x\} }[/math].
- The stabilizer of [math]\displaystyle{ x }[/math]:
- [math]\displaystyle{ G_x=\{\pi\in G\mid \pi\circ x=x\} }[/math].
There is a beautiful identity for invariant sets and stabilizers.
Lemma - Let [math]\displaystyle{ G }[/math] be a permutation group acting on a set [math]\displaystyle{ X }[/math]. For any [math]\displaystyle{ x\in X }[/math],
- [math]\displaystyle{ |G_x||Gx|=|G|\, }[/math].
- Let [math]\displaystyle{ G }[/math] be a permutation group acting on a set [math]\displaystyle{ X }[/math]. For any [math]\displaystyle{ x\in X }[/math],
Proof. Recall that the orbit [math]\displaystyle{ Gx=\{\pi\circ x\mid \pi\in G\} }[/math]. Suppose that [math]\displaystyle{ Gx=\{x_1,x_2,\ldots,x_t\} }[/math]. Then there exist a set [math]\displaystyle{ P=\{\pi_1,\pi_2,\ldots,\pi_t\} }[/math] of permutations such that [math]\displaystyle{ \pi_i\circ x=x_i\, }[/math] for [math]\displaystyle{ i=1,2,\ldots,t }[/math]. We construct a bijection between [math]\displaystyle{ G }[/math] and [math]\displaystyle{ P\times G_x }[/math], which will prove the lemma.
For any [math]\displaystyle{ \pi\in G }[/math], it holds that [math]\displaystyle{ \pi\circ x=x_i }[/math] for some [math]\displaystyle{ x_i }[/math], and since [math]\displaystyle{ \pi_i\circ x=x_i }[/math], we have [math]\displaystyle{ \pi_i\circ x=\pi\circ x }[/math], hence
- [math]\displaystyle{ (\pi_i^{-1}\cdot\pi)\circ x=\pi_i^{-1}\circ(\pi\circ x)=\pi_i^{-1}\circ(\pi_i\circ x)=(\pi_i^{-1}\cdot\pi_i)\circ x=e\circ x=x }[/math].
Denote that [math]\displaystyle{ \sigma=\pi_i^{-1}\cdot \pi }[/math]. Then
- [math]\displaystyle{ \pi_i\cdot\sigma=\pi_i\cdot(\pi_i^{-1}\cdot\pi)=\pi }[/math], and
- [math]\displaystyle{ \sigma\circ x=(\pi_i^{-1}\cdot\pi)\circ x=x }[/math], which implies that [math]\displaystyle{ \sigma\in G_x }[/math].
Therefore, each [math]\displaystyle{ \pi\in G }[/math] corresponds to a unique pair [math]\displaystyle{ (\pi_i,\sigma)\in P\times G_x }[/math]. We have a 1-1 mapping from [math]\displaystyle{ G }[/math] to [math]\displaystyle{ P\times G_x }[/math].
For every [math]\displaystyle{ \pi_i\in P }[/math] and every [math]\displaystyle{ \sigma\in G_x }[/math], [math]\displaystyle{ \pi=\pi_i\cdot\sigma\in G }[/math]. We show that this is a 1-1 mapping. Suppose that [math]\displaystyle{ \pi_i\cdot\sigma=\pi_j\cdot\tau }[/math] for some [math]\displaystyle{ \pi_i,\pi_j\in P }[/math] and [math]\displaystyle{ \sigma,\tau\in G_x }[/math]. Then [math]\displaystyle{ (\pi_i\cdot\sigma)\circ x=\pi_i\circ(\sigma\circ x)=\pi_i\circ x=x_i }[/math] and [math]\displaystyle{ (\pi_j\cdot \tau)\circ x=\pi_j\circ(\tau\circ x)=\pi_j\circ x=x_j }[/math], which implies [math]\displaystyle{ x_i=x_j }[/math] and correspondingly [math]\displaystyle{ \pi_i=\pi_j }[/math]. Since [math]\displaystyle{ \pi_i\cdot\sigma=\pi_j\cdot\tau }[/math], [math]\displaystyle{ \sigma=\tau }[/math]. Therefore, we show that the mapping is 1-1.
In conclusion, there exists a bijection between [math]\displaystyle{ P\times G_x }[/math] and [math]\displaystyle{ G }[/math]. As a consequence, [math]\displaystyle{ |Gx||G_x|=|P||G_x|=|P\times G_x|=|G| }[/math].
- [math]\displaystyle{ \square }[/math]
Counting orbits
Burnside's Lemma - Let [math]\displaystyle{ G }[/math] be a permutation group acting on a set [math]\displaystyle{ X }[/math]. The number of orbits, denoted [math]\displaystyle{ |X/G| }[/math], is
- [math]\displaystyle{ |X/G|=\frac{1}{|G|}\sum_{\pi\in G}|X_{\pi}|. }[/math]
- Let [math]\displaystyle{ G }[/math] be a permutation group acting on a set [math]\displaystyle{ X }[/math]. The number of orbits, denoted [math]\displaystyle{ |X/G| }[/math], is
Proof. Let
- [math]\displaystyle{ A(\pi,x)=\begin{cases}1 & \pi\circ x=x,\\ 0 & \text{otherwise.}\end{cases} }[/math]
Basically [math]\displaystyle{ A(\pi,x) }[/math] indicates whether [math]\displaystyle{ x }[/math] is invariant under action of [math]\displaystyle{ \pi }[/math]. We can think of [math]\displaystyle{ A }[/math] as a matrix indexed by [math]\displaystyle{ G\times X }[/math]. An important observation is that the row sums and column sums of [math]\displaystyle{ A }[/math] are [math]\displaystyle{ |X_\pi| }[/math] and [math]\displaystyle{ |G_x| }[/math] respectively, namely,
- [math]\displaystyle{ |X_\pi|=\sum_{x\in X}A(\pi,x) }[/math] and [math]\displaystyle{ |G_x|=\sum_{\pi\in G}A(\pi,x) }[/math].
Then a double counting gives that
- [math]\displaystyle{ \sum_{\pi\in G}|X_\pi|=\sum_{\pi\in G}\sum_{x\in X}A(\pi,x)=\sum_{x\in X}\sum_{\pi\in G}A(\pi,x)=\sum_{x\in X}|G_x| }[/math].
Due to the above lemma, [math]\displaystyle{ |G_x|=\frac{|G|}{|Gx|} }[/math], thus
- [math]\displaystyle{ \sum_{x\in X}|G_x|=\sum_{x\in X}\frac{|G|}{|Gx|}=|G|\sum_{x\in X}\frac{1}{|Gx|} }[/math].
We may enumerate the [math]\displaystyle{ x\in X }[/math] in the sum by first enumerating the orbits and then the elements in each orbit. Denote the orbits by [math]\displaystyle{ X_1,X_2,\ldots,X_{|X/G|} }[/math]. They forms a partition of [math]\displaystyle{ X }[/math], and for any [math]\displaystyle{ X_i }[/math] and every [math]\displaystyle{ x\in X_i }[/math], [math]\displaystyle{ X_i=Gx }[/math]. Thus,
- [math]\displaystyle{ |G|\sum_{x\in X}\frac{1}{|Gx|}=|G|\sum_{i=1}^{|X/G|}\sum_{x\in X_i}\frac{1}{|Gx|}=|G|\sum_{i=1}^{|X/G|}\sum_{x\in X_i}\frac{1}{|X_i|}=|G|\sum_{i=1}^{|X/G|}1=|G|{|X/G|} }[/math].
Combining everything together
- [math]\displaystyle{ \sum_{\pi\in G}|X_\pi|=\sum_{x\in X}|G_x|=|G|\sum_{x\in X}\frac{1}{|Gx|}=|G|{|X/G|} }[/math],
which gives us that the number of orbits is
- [math]\displaystyle{ {|X/G|}=\frac{1}{|G|}\sum_{\pi\in G}|X_\pi| }[/math].
- [math]\displaystyle{ \square }[/math]
Pólya's Theory of Counting
The cycle index
Suppose we want to count the number of ways to color [math]\displaystyle{ n }[/math] objects using up to [math]\displaystyle{ m }[/math] colors, discounting symmetries on the objects described by a group [math]\displaystyle{ G }[/math]. If a coloring [math]\displaystyle{ x:[n]\rightarrow[m] }[/math] is invariant under the action of a permutation [math]\displaystyle{ \pi\in G }[/math], then every position in the same cycle of [math]\displaystyle{ \pi }[/math] must have the same color. Therefore, if [math]\displaystyle{ \pi }[/math] is decomposed to [math]\displaystyle{ k }[/math] disjoint cycles, the number of colorings invariant under the action of [math]\displaystyle{ \pi }[/math] is [math]\displaystyle{ |X_\pi|=m^k }[/math].
We define the cycle index of a permutation group [math]\displaystyle{ G }[/math]. For a permutation [math]\displaystyle{ \pi\in G }[/math] of [math]\displaystyle{ [n] }[/math], if [math]\displaystyle{ \pi }[/math] is a product of [math]\displaystyle{ k }[/math] cycles, and the [math]\displaystyle{ i }[/math]th cycle has length [math]\displaystyle{ \ell_i }[/math], let
- [math]\displaystyle{ M_\pi(x_1,x_2,\ldots,x_n)=\prod_{i=1}^k x_{\ell_i} }[/math].
The cycle index of [math]\displaystyle{ G }[/math] is defined by
- [math]\displaystyle{ P_G(x_1,x_2,\ldots,x_n)=\frac{1}{|G|}\sum_{\pi\in G}M_\pi(x_1,x_2,\ldots,x_n) }[/math].
Due to Burnside's lemma, the number of equivalent classes of [math]\displaystyle{ m }[/math]-colorings of [math]\displaystyle{ n }[/math] objects, discounting the symmetries described by permutation group [math]\displaystyle{ G }[/math], is given by
- [math]\displaystyle{ P_G(\underbrace{m,m,\ldots,m}_{n}) }[/math]
Pólya's enumeration formula
For any tuple [math]\displaystyle{ \mathbf{v}=(n_1,n_2,\ldots,n_m) }[/math] of nonnegative integers satisfying that [math]\displaystyle{ n_1+n_2+\cdots +n_m=n }[/math], let [math]\displaystyle{ a_{\mathbf{v}} }[/math] represent the number of nonequivalent (with respect to a permutation group [math]\displaystyle{ G }[/math]) [math]\displaystyle{ m }[/math]-colorings of the [math]\displaystyle{ n }[/math] objects, where the [math]\displaystyle{ i }[/math]th color occurs precisely [math]\displaystyle{ n_i }[/math] times. The pattern inventory is the (multivariate) generating function for the sequence [math]\displaystyle{ a_{\mathbf{v}} }[/math], defined as
- [math]\displaystyle{ F_G(y_1,y_2,\ldots,y_m)=\sum_{\mathbf{v}}a_{\mathbf{v}}y_1^{n_1}y_2^{n_2}\cdots y_m^{n_m} }[/math],
where the sum runs over all [math]\displaystyle{ \mathbf{v}=(n_1,n_2,\ldots,n_m) }[/math] satisfying that [math]\displaystyle{ n_1+n_2+\cdots +n_m=n }[/math] and [math]\displaystyle{ n_i\ge 0, 1\le i\le m }[/math].
Theorem (Pólya's enumeration formula) - Let [math]\displaystyle{ G }[/math] be a permutation group. The pattern inventory for the nonequivalent [math]\displaystyle{ m }[/math]-colorings of [math]\displaystyle{ n }[/math] objects under the action of [math]\displaystyle{ G }[/math] is:
- [math]\displaystyle{ F_G(y_1,y_2,\ldots,y_m)=P_G\left(\sum_{i=1}^m y_i, \sum_{i=1}^m y_i^2,\ldots, \sum_{i=1}^m y_i^n\right) }[/math].
- Let [math]\displaystyle{ G }[/math] be a permutation group. The pattern inventory for the nonequivalent [math]\displaystyle{ m }[/math]-colorings of [math]\displaystyle{ n }[/math] objects under the action of [math]\displaystyle{ G }[/math] is:
Proof. Let [math]\displaystyle{ \mathbf{v}=(n_1,\ldots,n_m) }[/math] be a vector of nonnegative integers satisfying that [math]\displaystyle{ n_1+\cdots+n_m=n }[/math], and let [math]\displaystyle{ a_{\mathbf{v}} }[/math] represent the number of nonequivalent (with respect to a permutation group [math]\displaystyle{ G }[/math]) [math]\displaystyle{ m }[/math]-colorings of the [math]\displaystyle{ n }[/math] objects, such that the [math]\displaystyle{ i }[/math]th color occurs precisely [math]\displaystyle{ n_i }[/math] times.
The set of configurations is now
- [math]\displaystyle{ X^{\mathbf{v}}=\{x:[n]\rightarrow[m]\mid \forall i\in[m], x^{-1}(i)=n_i\} }[/math],
which contains all [math]\displaystyle{ m }[/math]-colorings of the [math]\displaystyle{ n }[/math] objects such that the [math]\displaystyle{ i }[/math]th color occurs precisely [math]\displaystyle{ n_i }[/math] times, without considering symmetries.
For every [math]\displaystyle{ \pi\in G }[/math], the invariant set is now
- [math]\displaystyle{ X_\pi^{\mathbf{v}}=\{x\in X^{\mathbf{v}}\mid \pi\circ x=x\} }[/math].
- Claim 1: [math]\displaystyle{ a_{\mathbf{v}}=\frac{1}{|G|}\sum_{\pi\in G}|X_\pi^{\mathbf{v}}| }[/math].
- Proof of Claim 1.
For [math]\displaystyle{ \mathbf{v}=(n_1,\ldots,n_m) }[/math], given any permutation [math]\displaystyle{ \pi\in G }[/math], [math]\displaystyle{ |X^{\mathbf{v}}_\pi| }[/math] gives the number of colorings [math]\displaystyle{ x }[/math] in [math]\displaystyle{ X^\mathbf{v} }[/math] invariant under action of [math]\displaystyle{ \pi }[/math], and [math]\displaystyle{ a_\mathbf{v} }[/math] is the number of orbits of [math]\displaystyle{ X^\mathbf{v} }[/math] induced by the action of permutation group [math]\displaystyle{ G }[/math]. Due to Burnside's lemma,
- [math]\displaystyle{ a_{\mathbf{v}}=\frac{1}{|G|}\sum_{\pi\in G}|X_\pi^{\mathbf{v}}| }[/math].
- [math]\displaystyle{ \square }[/math]
- Claim 2: [math]\displaystyle{ M_\pi\left(\sum_{i=1}^m y_i, \sum_{i=1}^my_i^2,\ldots,\sum_{i=1}^my_i^n\right)=\sum_{\mathbf{v}=(n_1,\ldots,n_m)\atop n_1+\cdots+n_m=n}|X^{\mathbf{v}}_\pi|y_1^{n_1}y_2^{n_2}\cdots y_m^{n_m} }[/math].
- Proof of Claim 2.
Supposed that a permutation [math]\displaystyle{ \pi\in G }[/math] can be represented as a composition of [math]\displaystyle{ k }[/math] cycles, the [math]\displaystyle{ i }[/math]th cycle of length [math]\displaystyle{ \ell_i }[/math].
- [math]\displaystyle{ \pi=\overbrace{\underbrace{(\cdots\cdots)}_{\ell_1}\underbrace{(\cdots)}_{\ell_2}\cdots\underbrace{(\cdots)}_{\ell_k}}^{k \text{ cycles}} }[/math]
The permutation [math]\displaystyle{ \pi }[/math] does not change a coloring [math]\displaystyle{ x }[/math], if and only if every cycle of [math]\displaystyle{ \pi }[/math] are assigned the same color. Then [math]\displaystyle{ |X^{\mathbf{v}}_\pi| }[/math] equals the number of [math]\displaystyle{ m }[/math]-colorings of [math]\displaystyle{ k }[/math] cycles, where the [math]\displaystyle{ i }[/math]th cycle is of length [math]\displaystyle{ \ell_i }[/math], satisfying that the [math]\displaystyle{ i }[/math]th color occurs precisely [math]\displaystyle{ n_i }[/math] times. The following generalized version of multinomial theorem generates [math]\displaystyle{ |X^{\mathbf{v}}_\pi| }[/math] for all [math]\displaystyle{ \mathbf{v}=(n_1,\ldots,n_m) }[/math].
- [math]\displaystyle{ \begin{align} &\quad\, (y_1^{\ell_1}+y_2^{\ell_1}+\cdots+y_m^{\ell_1})(y_1^{\ell_2}+y_2^{\ell_2}+\cdots+y_m^{\ell_2})\cdots(y_1^{\ell_m}+y_2^{\ell_m}+\cdots+y_m^{\ell_m})\\ &=\sum_{\mathbf{v}=(n_1,\ldots,n_m)\atop n_1+\cdots+n_m=n}|X^{\mathbf{v}}_\pi|y_1^{n_1}y_2^{n_2}\cdots y_m^{n_m}. \end{align} }[/math]
On the other hand,
- [math]\displaystyle{ \begin{align} &\quad\, (y_1^{\ell_1}+y_2^{\ell_1}+\cdots+y_m^{\ell_1})(y_1^{\ell_2}+y_2^{\ell_2}+\cdots+y_m^{\ell_2})\cdots(y_1^{\ell_m}+y_2^{\ell_m}+\cdots+y_m^{\ell_m})\\ &=M_\pi\left(\sum_{i=1}^m y_i, \sum_{i=1}^my_i^2,\ldots,\sum_{i=1}^my_i^n\right). \end{align} }[/math]
Therefore,
- [math]\displaystyle{ M_\pi\left(\sum_{i=1}^m y_i, \sum_{i=1}^my_i^2,\ldots,\sum_{i=1}^my_i^n\right)=\sum_{\mathbf{v}=(n_1,\ldots,n_m)\atop n_1+\cdots+n_m=n}|X^{\mathbf{v}}_\pi|y_1^{n_1}y_2^{n_2}\cdots y_m^{n_m} }[/math].
- [math]\displaystyle{ \square }[/math]
Combining everything together,
- [math]\displaystyle{ \begin{align} &\quad\, F_G(y_1,y_2,\ldots,y_m)\\ &=\sum_{\mathbf{v}=(n_1,\ldots,n_m)\atop n_1+\cdots+n_m=n}a_{\mathbf{v}}y_1^{n_1}y_2^{n_2}\cdots y_m^{n_m}\\ &=\sum_{\mathbf{v}=(n_1,\ldots,n_m)\atop n_1+\cdots+n_m=n}\left(\frac{1}{|G|}\sum_{\pi\in G}|X_\pi^{\mathbf{v}}|\right)y_1^{n_1}y_2^{n_2}\cdots y_m^{n_m} &\quad\text{(due to Claim 1)}\\ &=\frac{1}{|G|}\sum_{\pi\in G}\sum_{\mathbf{v}=(n_1,\ldots,n_m)\atop n_1+\cdots+n_m=n} |X_\pi^{\mathbf{v}}|y_1^{n_1}y_2^{n_2}\cdots y_m^{n_m}\\ &=\frac{1}{|G|}\sum_{\pi\in G}M_\pi\left(\sum_{i=1}^m y_i, \sum_{i=1}^my_i^2,\ldots,\sum_{i=1}^my_i^n\right) &\quad\text{(due to Claim 2)}\\ &=P_G\left(\sum_{i=1}^m y_i, \sum_{i=1}^m y_i^2,\ldots, \sum_{i=1}^m y_i^n\right). \end{align} }[/math]
- [math]\displaystyle{ \square }[/math]