随机算法 (Fall 2011)/Problem set 4: Difference between revisions
Jump to navigation
Jump to search
imported>Etone |
imported>Etone |
||
(8 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
== Problem 1== | == Problem 1== | ||
Let <math>p</math> and <math>q</math> be two probability distributions over <math>\Omega</math>. | Let <math>p</math> and <math>q</math> be two probability distributions over <math>\Omega</math>. Give an explicit construction of a coupling <math>\mu</math> of <math>p</math> and <math>q</math> such that | ||
::<math>\Pr_{(X,Y)\sim\mu}[X\neq Y]=\|p-q\|_{TV}</math>. | |||
== Problem 2 == | |||
Consider the Markov chain of graph coloring | |||
{{Theorem|Markov Chain for Graph Coloring| | |||
:Start with a proper coloring of <math>G(V,E)</math>. At each step: | |||
# Pick a vertex <math>v\in V</math> and a color <math>c\in[q]</math> uniformly at random. | |||
# Change the color of <math>v</math> to <math>c</math> if the resulting coloring is proper; do nothing if otherwise. | |||
}} | |||
Show that the Markov chain is: | |||
# aperiodic; | |||
# irreducible if <math>q\ge \Delta+2</math>; | |||
# with uniform stationary distribution. | |||
== Problem 3 == | |||
Consider the following random walk on hypercube: | |||
{{Theorem|Yet another random Walk on Hypercube| | |||
: At each step, for the current state <math>x\in\{0,1\}^n</math>: | |||
# pick an <math>i\in\{0,1,2,\ldots,n\}</math> uniformly at random; | |||
# flip <math>x_i</math> (let <math>x_i=1-x_i</math>) if <math>i\neq 0</math>. | |||
}} | |||
* Show that the random walk is ergodic. | |||
* Give the stationary distribution of the random walk. | |||
* Analyze the mixing time of the random walk by coupling. | |||
== Problem 4== | |||
Consider the following random walk over all subsets <math>S\in{[n]\choose k}</math> for some <math>k\le \frac{n}{2}</math>: | |||
{{Theorem|Random walk over <math>k</math>-subsets| | |||
: At each step, for the current state <math>S\in{[n]\choose k}</math>: | |||
# with probability <math>p</math>, do nothing; | |||
# else pick an <math>x\in S</math> and a <math>y\in[n]\setminus S</math> independently and uniformly at random, and change the current set to be <math>S\setminus\{x\}\cup\{y\}</math>. | |||
}} | |||
You are allowed to choose a self-loop probability <math>p</math> for your convenience. | |||
* Show that the random walk is ergodic | |||
* Give the stationary distribution of the random walk. | |||
* Prove that the mixing time is <math>O(n\log k)</math>. |
Latest revision as of 06:55, 28 November 2011
Problem 1
Let [math]\displaystyle{ p }[/math] and [math]\displaystyle{ q }[/math] be two probability distributions over [math]\displaystyle{ \Omega }[/math]. Give an explicit construction of a coupling [math]\displaystyle{ \mu }[/math] of [math]\displaystyle{ p }[/math] and [math]\displaystyle{ q }[/math] such that
- [math]\displaystyle{ \Pr_{(X,Y)\sim\mu}[X\neq Y]=\|p-q\|_{TV} }[/math].
Problem 2
Consider the Markov chain of graph coloring
Markov Chain for Graph Coloring - Start with a proper coloring of [math]\displaystyle{ G(V,E) }[/math]. At each step:
- Pick a vertex [math]\displaystyle{ v\in V }[/math] and a color [math]\displaystyle{ c\in[q] }[/math] uniformly at random.
- Change the color of [math]\displaystyle{ v }[/math] to [math]\displaystyle{ c }[/math] if the resulting coloring is proper; do nothing if otherwise.
Show that the Markov chain is:
- aperiodic;
- irreducible if [math]\displaystyle{ q\ge \Delta+2 }[/math];
- with uniform stationary distribution.
Problem 3
Consider the following random walk on hypercube:
Yet another random Walk on Hypercube - At each step, for the current state [math]\displaystyle{ x\in\{0,1\}^n }[/math]:
- pick an [math]\displaystyle{ i\in\{0,1,2,\ldots,n\} }[/math] uniformly at random;
- flip [math]\displaystyle{ x_i }[/math] (let [math]\displaystyle{ x_i=1-x_i }[/math]) if [math]\displaystyle{ i\neq 0 }[/math].
- Show that the random walk is ergodic.
- Give the stationary distribution of the random walk.
- Analyze the mixing time of the random walk by coupling.
Problem 4
Consider the following random walk over all subsets [math]\displaystyle{ S\in{[n]\choose k} }[/math] for some [math]\displaystyle{ k\le \frac{n}{2} }[/math]:
Random walk over [math]\displaystyle{ k }[/math]-subsets - At each step, for the current state [math]\displaystyle{ S\in{[n]\choose k} }[/math]:
- with probability [math]\displaystyle{ p }[/math], do nothing;
- else pick an [math]\displaystyle{ x\in S }[/math] and a [math]\displaystyle{ y\in[n]\setminus S }[/math] independently and uniformly at random, and change the current set to be [math]\displaystyle{ S\setminus\{x\}\cup\{y\} }[/math].
You are allowed to choose a self-loop probability [math]\displaystyle{ p }[/math] for your convenience.
- Show that the random walk is ergodic
- Give the stationary distribution of the random walk.
- Prove that the mixing time is [math]\displaystyle{ O(n\log k) }[/math].