高级算法 (Fall 2021)/Problem Set 4: Difference between revisions

From TCS Wiki
Jump to navigation Jump to search
imported>TCSseminar
imported>TCSseminar
 
(13 intermediate revisions by the same user not shown)
Line 2: Line 2:


== Problem 1 ==
== Problem 1 ==
Given a graph <math>G = (V, E)</math>, and weights <math>\{w_e\}_{e\in E}</math> for each edge, the maximum weight matching problem is the problem of finding a matching in which the sum of weights is maximized.
The following ILP is built for the maximum weight matching problem.  
The following ILP is built for the maximum weight matching problem.  
:<math>
:<math>
\begin{align}
\begin{align}
\textrm{maximize} & \sum_e w_e x_e \\
\textrm{maximize} & \sum_{e \in E} w_e x_e \\
\textrm{s.t.} & \sum_{e \ni v} x_e \leq 1, \forall v \in V \\
\textrm{s.t.} & \sum_{e \ni v} x_e \leq 1, \forall v \in V \\
               & x_e \in \{0, 1\}, \forall e \in E.
               & x_e \in \{0, 1\}, \forall e \in E.
Line 38: Line 39:


== Problem 4 ==
== Problem 4 ==
(MCMC)
In this problem, we investigate some properties about the detailed balance equation.
* Let <math>\Omega</math> be a finite set, <math>\pi: \Omega \to \mathbb{R}_{>0}</math> be a distribution over <math>\Omega</math>, and <math>P \in \mathbb{R}^{\Omega\times\Omega}</math> be a Markov chain. Suppose for all <math> x, y \in \Omega </math>, it holds that <math> \pi(x) P(x, y) = \pi(y) P(y, x) </math>. Now, let <math> t > 0 </math> be an integer, show that for all <math> x, y \in \Omega </math>, it also holds that <math> \pi(x) P^t(x, y) = \pi(y) P^t(y, x) </math>.
* Let <math>\Omega</math> be a finite set, <math>\pi: \Omega \to \mathbb{R}_{>0}</math> be a distribution over <math>\Omega</math>, and <math>P \in \mathbb{R}^{\Omega\times\Omega}</math> be a Markov chain. For all <math>f, g \in \mathbb{R}^\Omega</math>, an inner product <math>\langle \cdot, \cdot\rangle_\pi</math> with respect to <math>\pi</math> is defined as <math>\langle f, g \rangle_\pi \triangleq \sum_{x \in \Omega} \pi(x) f(x) g(x)</math>.We want you to prove an equivalent variant for the detailed balance equation:
:<math>
\begin{align}
\forall x, y \in \Omega, \quad \pi(x)P(x, y) = \pi(y)P(y, x) \quad  \Leftrightarrow \quad \forall f, g \in \mathbb{R}^\Omega, \quad \langle f, P g \rangle_\pi = \langle P f, g \rangle_\pi.
\end{align}
</math>
* Let <math>\Omega_1, \Omega_2</math> be two finite sets. Let <math>\pi_1:\Omega_1 \to \mathbb{R}_{>0}, \pi_2 :\Omega_2 \to \mathbb{R}_{>0} </math> be two distributions on <math>\Omega_1</math> and <math>\Omega_2</math>, respectively. Let <math> P_{12} \in \mathbb{R}^{\Omega_1 \times \Omega_2} </math> and <math> P_{21} \in \mathbb{R}^{\Omega_2 \times \Omega_1} </math> be two Markov chains. Show that:
:<math>
\begin{align}
\forall x \in \Omega_1, y \in \Omega_2, \quad \pi_1(x)P_{12}(x, y) = \pi_2(y)P_{21}(y, x) \quad  \Leftrightarrow \quad \forall f \in \mathbb{R}^{\Omega_1}, g \in \mathbb{R}^{\Omega_2}, \quad \langle f, P_{12} g \rangle_{\pi_1} = \langle P_{21} f, g \rangle_{\pi_2}.
\end{align}
</math>
<math>\quad</math> Moreover, assuming that <math>P_{12}, P_{21}</math> satisfy <math>\forall x \in \Omega_1, y \in \Omega_2, \pi_1(x)P_{12}(x, y) = \pi_2(y)P_{21}(y, x)</math>, show that <math>P = P_{12}P_{21}</math> is positive semidefinite.

Latest revision as of 04:54, 26 December 2021

  • 每道题目的解答都要有完整的解题过程。中英文不限。

Problem 1

Given a graph [math]\displaystyle{ G = (V, E) }[/math], and weights [math]\displaystyle{ \{w_e\}_{e\in E} }[/math] for each edge, the maximum weight matching problem is the problem of finding a matching in which the sum of weights is maximized. The following ILP is built for the maximum weight matching problem.

[math]\displaystyle{ \begin{align} \textrm{maximize} & \sum_{e \in E} w_e x_e \\ \textrm{s.t.} & \sum_{e \ni v} x_e \leq 1, \forall v \in V \\ & x_e \in \{0, 1\}, \forall e \in E. \end{align} }[/math]
  • Give the dual-relaxed program of the above ILP.
  • Relax complementary slackness conditions appropriately, and show that the integrality gap of this ILP is at least 1/2.

Problem 2

A [math]\displaystyle{ k }[/math]-uniform hypergraph is an ordered pair [math]\displaystyle{ G=(V,E) }[/math], where [math]\displaystyle{ V }[/math] denotes the set of vertices and [math]\displaystyle{ E }[/math] denotes the set of edges. Moreover, each edge in [math]\displaystyle{ E }[/math] now contains [math]\displaystyle{ k }[/math] distinct vertices, instead of [math]\displaystyle{ 2 }[/math] (so a [math]\displaystyle{ 2 }[/math]-uniform hypergraph is just what we normally call a graph). A hypergraph is [math]\displaystyle{ k }[/math]-regular if all vertices have degree [math]\displaystyle{ k }[/math]; that is, each vertex is exactly contained within [math]\displaystyle{ k }[/math] hypergraph edges.

Show that for sufficiently large [math]\displaystyle{ k }[/math], the vertices of a [math]\displaystyle{ k }[/math]-uniform, [math]\displaystyle{ k }[/math]-regular hypergraph can be [math]\displaystyle{ 2 }[/math]-colored so that no edge is monochromatic. What's the smallest value of [math]\displaystyle{ k }[/math] you can achieve?

Problem 3

Suppose we have graphs [math]\displaystyle{ G=(V,E) }[/math] and [math]\displaystyle{ H=(V,F) }[/math] on the same vertex set. We wish to partition [math]\displaystyle{ V }[/math] into clusters [math]\displaystyle{ V_1,V_2,\cdots }[/math] so as to maximize:

[math]\displaystyle{ (\#\text{ of edges in }E\text{ that lie within clusters})+(\#\text{ of edges in }F\text{ that lie between clusters}). }[/math]
  • Show that the following SDP is an upperbound on this.
[math]\displaystyle{ \text{maximize}\qquad\sum_{(u,v)\in E}\langle x_u,x_v\rangle+\sum_{(u,v)\in F}(1-\langle x_u,x_v\rangle) \\ \begin{align} \text{subject to} && \langle x_u,x_u\rangle & =1, & \forall u & \in V, \\ && \langle x_u,x_v\rangle & \ge0, & \forall u,v & \in V, \\ && x_u & \in\mathbb R^{|V|}, & \forall u & \in V. \end{align} }[/math]
  • Describe a clustering into [math]\displaystyle{ 4 }[/math] clusters that achieves an objective value [math]\displaystyle{ 0.75 }[/math] times the SDP value. (Hint: Use Goemans-Williamson style rounding but with two random hyperplanes instead of one. You may need a quick matlab calculation just like GW.)

Problem 4

In this problem, we investigate some properties about the detailed balance equation.

  • Let [math]\displaystyle{ \Omega }[/math] be a finite set, [math]\displaystyle{ \pi: \Omega \to \mathbb{R}_{\gt 0} }[/math] be a distribution over [math]\displaystyle{ \Omega }[/math], and [math]\displaystyle{ P \in \mathbb{R}^{\Omega\times\Omega} }[/math] be a Markov chain. Suppose for all [math]\displaystyle{ x, y \in \Omega }[/math], it holds that [math]\displaystyle{ \pi(x) P(x, y) = \pi(y) P(y, x) }[/math]. Now, let [math]\displaystyle{ t \gt 0 }[/math] be an integer, show that for all [math]\displaystyle{ x, y \in \Omega }[/math], it also holds that [math]\displaystyle{ \pi(x) P^t(x, y) = \pi(y) P^t(y, x) }[/math].
  • Let [math]\displaystyle{ \Omega }[/math] be a finite set, [math]\displaystyle{ \pi: \Omega \to \mathbb{R}_{\gt 0} }[/math] be a distribution over [math]\displaystyle{ \Omega }[/math], and [math]\displaystyle{ P \in \mathbb{R}^{\Omega\times\Omega} }[/math] be a Markov chain. For all [math]\displaystyle{ f, g \in \mathbb{R}^\Omega }[/math], an inner product [math]\displaystyle{ \langle \cdot, \cdot\rangle_\pi }[/math] with respect to [math]\displaystyle{ \pi }[/math] is defined as [math]\displaystyle{ \langle f, g \rangle_\pi \triangleq \sum_{x \in \Omega} \pi(x) f(x) g(x) }[/math].We want you to prove an equivalent variant for the detailed balance equation:
[math]\displaystyle{ \begin{align} \forall x, y \in \Omega, \quad \pi(x)P(x, y) = \pi(y)P(y, x) \quad \Leftrightarrow \quad \forall f, g \in \mathbb{R}^\Omega, \quad \langle f, P g \rangle_\pi = \langle P f, g \rangle_\pi. \end{align} }[/math]
  • Let [math]\displaystyle{ \Omega_1, \Omega_2 }[/math] be two finite sets. Let [math]\displaystyle{ \pi_1:\Omega_1 \to \mathbb{R}_{\gt 0}, \pi_2 :\Omega_2 \to \mathbb{R}_{\gt 0} }[/math] be two distributions on [math]\displaystyle{ \Omega_1 }[/math] and [math]\displaystyle{ \Omega_2 }[/math], respectively. Let [math]\displaystyle{ P_{12} \in \mathbb{R}^{\Omega_1 \times \Omega_2} }[/math] and [math]\displaystyle{ P_{21} \in \mathbb{R}^{\Omega_2 \times \Omega_1} }[/math] be two Markov chains. Show that:
[math]\displaystyle{ \begin{align} \forall x \in \Omega_1, y \in \Omega_2, \quad \pi_1(x)P_{12}(x, y) = \pi_2(y)P_{21}(y, x) \quad \Leftrightarrow \quad \forall f \in \mathbb{R}^{\Omega_1}, g \in \mathbb{R}^{\Omega_2}, \quad \langle f, P_{12} g \rangle_{\pi_1} = \langle P_{21} f, g \rangle_{\pi_2}. \end{align} }[/math]

[math]\displaystyle{ \quad }[/math] Moreover, assuming that [math]\displaystyle{ P_{12}, P_{21} }[/math] satisfy [math]\displaystyle{ \forall x \in \Omega_1, y \in \Omega_2, \pi_1(x)P_{12}(x, y) = \pi_2(y)P_{21}(y, x) }[/math], show that [math]\displaystyle{ P = P_{12}P_{21} }[/math] is positive semidefinite.