组合数学 (Fall 2023)/Problem Set 4: Difference between revisions
(6 intermediate revisions by one other user not shown) | |||
Line 1: | Line 1: | ||
== Problem 1 == | == Problem 1 == | ||
Prove that | Recall that the smallest number <math>R(k,\ell)</math> satisfying the condition in the Ramsey theory is called the '''Ramsey number'''. Prove that: | ||
* <math>R(4,3)\leq 9</math>. (Hint: Proof by contradiction. Color the edges of <math>K_9</math> in red and blue, and assume that there are no red triangles and no blue <math>4</math>-cliques. Try to determine the number of red and blue edges adjacent to each vertex) | * <math>R(4,3)\leq 9</math>. (Hint: Proof by contradiction. Color the edges of <math>K_9</math> in red and blue, and assume that there are no red triangles and no blue <math>4</math>-cliques. Try to determine the number of red and blue edges adjacent to each vertex.) | ||
* <math>R(4,4)\leq 18</math>. | * <math>R(4,4)\leq 18</math>. | ||
Line 19: | Line 19: | ||
== Problem 5 == | == Problem 5 == | ||
Use the '''König-Egerváry theorem''' to prove the followings | Use the '''König-Egerváry theorem''' to prove the followings: | ||
* Every bipartite graph <math>G</math> with <math>l</math> edges has a matching of size at least <math>l/\Delta(G)</math>, where <math> | * Every bipartite graph <math>G</math> with <math>l</math> edges has a matching of size at least <math>l/\Delta(G)</math>, where <math>\Delta(G)</math> is the maximum degree of a vertex in <math>G</math>. | ||
* Let <math>A</math> be a 0-1 matrix with <math>m</math> 1s. Let <math>s</math> be the maximal number of 1s in a row or column of <math>A</math>, and suppose that <math>A</math> has no square <math>r\times r</math> all-1 sub-matrix. | * Let <math>A</math> be a 0-1 matrix with <math>m</math> 1s. Let <math>s</math> be the maximal number of 1s in a row or column of <math>A</math>, and suppose that <math>A</math> has no square <math>r\times r</math> all-1 sub-matrix. It requires at least <math>m/(sr)</math> all-1 (not necessarily square) sub-matrices to cover all 1s in <math>A</math>. |
Latest revision as of 02:48, 10 June 2023
Problem 1
Recall that the smallest number [math]\displaystyle{ R(k,\ell) }[/math] satisfying the condition in the Ramsey theory is called the Ramsey number. Prove that:
- [math]\displaystyle{ R(4,3)\leq 9 }[/math]. (Hint: Proof by contradiction. Color the edges of [math]\displaystyle{ K_9 }[/math] in red and blue, and assume that there are no red triangles and no blue [math]\displaystyle{ 4 }[/math]-cliques. Try to determine the number of red and blue edges adjacent to each vertex.)
- [math]\displaystyle{ R(4,4)\leq 18 }[/math].
Problem 2
We color each non-empty subset of [math]\displaystyle{ [n]=\{1,2,\ldots,n\} }[/math] with one of the [math]\displaystyle{ r }[/math] colors in [math]\displaystyle{ [r] }[/math]. Show that for any finite [math]\displaystyle{ r }[/math] there is a finite [math]\displaystyle{ N }[/math] such that for all [math]\displaystyle{ n\ge N }[/math], for any [math]\displaystyle{ r }[/math]-coloring of non-empty subsets of [math]\displaystyle{ [n] }[/math], there always exist [math]\displaystyle{ 1\le i\lt j\lt k\le n }[/math] such that the intervals [math]\displaystyle{ [i,j)=\{i,i+1,\ldots, j-1\} }[/math], [math]\displaystyle{ [j,k)=\{j,j+1,\ldots, k-1\} }[/math] and [math]\displaystyle{ [i,k)=\{i,i+1,\ldots, k-1\} }[/math] are all assigned with the same color.
Problem 3
(Frankl 1986)
Let [math]\displaystyle{ \mathcal{F}\subseteq {[n]\choose k} }[/math] be a [math]\displaystyle{ k }[/math]-uniform family, and suppose that it satisfies that [math]\displaystyle{ A\cap B \not\subset C }[/math] for any [math]\displaystyle{ A,B,C\in\mathcal{F} }[/math].
- Fix any [math]\displaystyle{ B\in\mathcal{F} }[/math]. Show that the family [math]\displaystyle{ \{A\cap B\mid A\in\mathcal{F}, A\neq B\} }[/math] is an anti chain.
- Show that [math]\displaystyle{ |\mathcal{F}|\le 1+{k\choose \lfloor k/2\rfloor} }[/math].
Problem 4
Suppose that [math]\displaystyle{ M,M' }[/math] are matchings in a bipartite graph [math]\displaystyle{ G }[/math] with bipartition [math]\displaystyle{ A,B }[/math]. Suppose that all the vertices of [math]\displaystyle{ S\subseteq A }[/math] are matched by [math]\displaystyle{ M }[/math] and that all the vertices of [math]\displaystyle{ T\subseteq B }[/math] are matched by [math]\displaystyle{ M' }[/math]. Prove that [math]\displaystyle{ G }[/math] contains a matching that matches all the vertices of [math]\displaystyle{ S \cup T }[/math].
Problem 5
Use the König-Egerváry theorem to prove the followings:
- Every bipartite graph [math]\displaystyle{ G }[/math] with [math]\displaystyle{ l }[/math] edges has a matching of size at least [math]\displaystyle{ l/\Delta(G) }[/math], where [math]\displaystyle{ \Delta(G) }[/math] is the maximum degree of a vertex in [math]\displaystyle{ G }[/math].
- Let [math]\displaystyle{ A }[/math] be a 0-1 matrix with [math]\displaystyle{ m }[/math] 1s. Let [math]\displaystyle{ s }[/math] be the maximal number of 1s in a row or column of [math]\displaystyle{ A }[/math], and suppose that [math]\displaystyle{ A }[/math] has no square [math]\displaystyle{ r\times r }[/math] all-1 sub-matrix. It requires at least [math]\displaystyle{ m/(sr) }[/math] all-1 (not necessarily square) sub-matrices to cover all 1s in [math]\displaystyle{ A }[/math].