组合数学 (Fall 2011): Difference between revisions
Jump to navigation
Jump to search
imported>WikiSysop |
imported>Etone |
||
(56 intermediate revisions by 2 users not shown) | |||
Line 2: | Line 2: | ||
|name = Infobox | |name = Infobox | ||
|bodystyle = | |bodystyle = | ||
|title = 组合数学 | |title = <font size=3>组合数学 <br> | ||
Combinatorics | Combinatorics</font> | ||
|titlestyle = | |titlestyle = | ||
Line 22: | Line 22: | ||
|header3 = | |header3 = | ||
|label3 = Email | |label3 = Email | ||
|data3 = yitong.yin@gmail.com yinyt@nju.edu.cn | |data3 = yitong.yin@gmail.com yinyt@nju.edu.cn | ||
|header4 = | |header4 = | ||
|label4= office | |label4= office | ||
|data4= | |data4= 计算机系 804 | ||
|header5 = Class | |header5 = Class | ||
|label5 = | |label5 = | ||
Line 31: | Line 31: | ||
|header6 = | |header6 = | ||
|label6 = Class meetings | |label6 = Class meetings | ||
|data6 = | |data6 = Thursday, 10am-12pm <br> 仙逸B-104 | ||
|header7 = | |header7 = | ||
|label7 = Place | |label7 = Place | ||
Line 37: | Line 37: | ||
|header8 = | |header8 = | ||
|label8 = Office hours | |label8 = Office hours | ||
|data8 = | |data8 = Wednesday, 2-5pm <br>计算机系 804 | ||
|header9 = Textbook | |header9 = Textbook | ||
|label9 = | |label9 = | ||
Line 52: | Line 52: | ||
= Announcement = | = Announcement = | ||
* (10/28/2011) 第三次作业的第二题做了点修改,请同学们注意。 | |||
* (10/27/2011) 第三次作业发布。两周后11月3日上课时交。 | |||
* (09/29/2011) 第二次作业发布。两周后10月13日上课时交。 | |||
* (09/15/2011) 第一次作业发布,在Assignments部分。下周四上课时交。 | |||
* 由于有事需要外出,9月14日星期三下午的office hour改在9月13日下午。 | |||
* 第一、二次课的slides已发布,见lecture notes部分。 | |||
= Course info = | = Course info = | ||
* '''Instructor ''': 尹一通 | * '''Instructor ''': 尹一通 | ||
:*email: yitong.yin@gmail.com, yinyt@nju.edu.cn, | :*email: yitong.yin@gmail.com, yinyt@nju.edu.cn, | ||
:*office: | :*office: 804 | ||
* '''Teaching fellow''': | * '''Teaching fellow''': TBA | ||
:*email: | :*email: TBA | ||
* '''Class meeting''': | * '''Class meeting''': Thursday 10am-12pm, 仙逸B-104. | ||
* '''Office hour''': | * '''Office hour''': Wednesday 2-5pm, 计算机系 804. | ||
= Syllabus = | = Syllabus = | ||
Line 79: | Line 86: | ||
学术诚信是所有从事学术活动的学生和学者最基本的职业道德底线,本课程将不遗余力的维护学术诚信规范,违反这一底线的行为将不会被容忍。 | 学术诚信是所有从事学术活动的学生和学者最基本的职业道德底线,本课程将不遗余力的维护学术诚信规范,违反这一底线的行为将不会被容忍。 | ||
作业完成的原则:'''署你名字的工作必须由你完成'''。允许讨论,但作业必须独立完成,并在作业中列出所有参与讨论的人。不允许其他任何形式的合作——尤其是与已经完成作业的同学“讨论”。 | |||
本课程将对剽窃行为采取零容忍的态度。在完成作业过程中,对他人工作(出版物、互联网资料、其他人的作业等)直接的文本抄袭和对关键思想、关键元素的抄袭,按照 [http://www.acm.org/publications/policies/plagiarism_policy ACM Policy on Plagiarism]的解释,都将视为剽窃。剽窃者成绩将被取消。如果发现互相抄袭行为,<font color=red> 抄袭和被抄袭双方的成绩都将被取消</font>。因此请主动防止自己的作业被他人抄袭。 | 本课程将对剽窃行为采取零容忍的态度。在完成作业过程中,对他人工作(出版物、互联网资料、其他人的作业等)直接的文本抄袭和对关键思想、关键元素的抄袭,按照 [http://www.acm.org/publications/policies/plagiarism_policy ACM Policy on Plagiarism]的解释,都将视为剽窃。剽窃者成绩将被取消。如果发现互相抄袭行为,<font color=red> 抄袭和被抄袭双方的成绩都将被取消</font>。因此请主动防止自己的作业被他人抄袭。 | ||
Line 86: | Line 93: | ||
= Assignments = | = Assignments = | ||
* (2011/09/15) [[组合数学 (Fall 2011)/Problem set 1|Problem set 1]] due on Sept 22, in class. | |||
* (2011/09/29) [[组合数学 (Fall 2011)/Problem set 2|Problem set 2]] due on Oct 13, in class. | |||
* (2011/10/27) [[组合数学 (Fall 2011)/Problem set 3|Problem set 3]] due on Nov 3, in class. | |||
* (2011/11/17) [[组合数学 (Fall 2011)/Problem set 4|Problem set 4]] due on Dec 1, in class. | |||
* (2011/12/15) [[组合数学 (Fall 2011)/Problem set 5|Problem set 5]] due on Dec 22, in class. | |||
= Lecture Notes = | = Lecture Notes = | ||
# [[组合数学 (Fall 2011)/Basic enumeration|Basic enumeration]] | # [[组合数学 (Fall 2011)/Basic enumeration|Basic enumeration]] | [http://tcs.nju.edu.cn/slides/comb2011/comb1.pdf slides1] | [http://tcs.nju.edu.cn/slides/comb2011/comb2-1.pdf slides2] | ||
# [[组合数学 (Fall 2011)/ | # [[组合数学 (Fall 2011)/Generating functions|Generating functions]] | [http://tcs.nju.edu.cn/slides/comb2011/comb2-2.pdf slides1] | [http://tcs.nju.edu.cn/slides/comb2011/comb3.pdf slides2] | ||
# [[组合数学 (Fall 2011)/ | # [[组合数学 (Fall 2011)/Sieve methods|Sieve methods]] | [http://tcs.nju.edu.cn/slides/comb2011/comb4.pdf slides] | ||
# [[组合数学 (Fall 2011)/ | # [[组合数学 (Fall 2011)/Pólya's theory of counting|Pólya's theory of counting]] | ||
# [[组合数学 (Fall 2011)/ | # [[组合数学 (Fall 2011)/Counting and existence|Counting and existence]] | [http://tcs.nju.edu.cn/slides/comb2011/comb6.pdf slides] | ||
# [[组合数学 (Fall 2011)/ | # [[组合数学 (Fall 2011)/Discrete probability|Discrete probability]] | ||
# [[组合数学 (Fall 2011)/ | # [[组合数学 (Fall 2011)/The probabilistic method|The probabilistic method]] | [http://tcs.nju.edu.cn/slides/comb2011/comb8.pdf slides] | ||
# [[组合数学 (Fall 2011)/Extremal | # [[组合数学 (Fall 2011)/Extremal graph theory| Extremal graph theory]] | [http://tcs.nju.edu.cn/slides/comb2011/comb9.pdf slides] | ||
# [[组合数学 (Fall 2011)/Extremal set theory | # [[组合数学 (Fall 2011)/Extremal set theory|Extremal set theory]] | [http://tcs.nju.edu.cn/slides/comb2011/comb10.pdf slides] | ||
# [[组合数学 (Fall 2011)/Ramsey theory|Ramsey theory]] | # [[组合数学 (Fall 2011)/Ramsey theory|Ramsey theory]] | [http://tcs.nju.edu.cn/slides/comb2011/comb11-1.pdf slides1] | [http://tcs.nju.edu.cn/slides/comb2011/comb11-2.pdf slides2] | ||
# [[组合数学 (Fall 2011)/ | # [[组合数学 (Fall 2011)/Matching theory|Matching theory]] | [http://tcs.nju.edu.cn/slides/comb2011/comb13.pdf slides] | ||
# [[组合数学 (Fall 2011)/Flow and matching | Flow and matching]] | # [[组合数学 (Fall 2011)/Flow and matching | Flow and matching]] | [http://tcs.nju.edu.cn/slides/comb2011/comb14.pdf slides] | ||
# [[组合数学 (Fall 2011)/Optimization|Optimization]] | [http://tcs.nju.edu.cn/slides/comb2011/comb15.pdf slides] | |||
# [[组合数学 (Fall 2011)/ | |||
= Concepts = | = Concepts = | ||
Line 110: | Line 120: | ||
* [http://en.wikipedia.org/wiki/Stirling_numbers_of_the_second_kind Stirling number of the second kind] | * [http://en.wikipedia.org/wiki/Stirling_numbers_of_the_second_kind Stirling number of the second kind] | ||
* [http://en.wikipedia.org/wiki/Partition_(number_theory) Partition of a number] | * [http://en.wikipedia.org/wiki/Partition_(number_theory) Partition of a number] | ||
* [http://en.wikipedia.org/wiki/Partition_(number_theory)#Ferrers_diagram Ferrers diagram] (and the MathWorld [http://mathworld.wolfram.com/FerrersDiagram.html link]) | |||
* [http://en.wikipedia.org/wiki/Twelvefold_way The twelvefold way] | * [http://en.wikipedia.org/wiki/Twelvefold_way The twelvefold way] | ||
* [http://en.wikipedia.org/wiki/Generating_function Generating function] and [http://en.wikipedia.org/wiki/Formal_power_series formal power series] | * [http://en.wikipedia.org/wiki/Generating_function Generating function] and [http://en.wikipedia.org/wiki/Formal_power_series formal power series] | ||
* [http://en.wikipedia.org/wiki/Fibonacci_number Fibonacci number] | * [http://en.wikipedia.org/wiki/Fibonacci_number Fibonacci number] | ||
* [http://en.wikipedia.org/wiki/Binomial_series Newton's formula] | * [http://en.wikipedia.org/wiki/Binomial_series Newton's formula] | ||
* [http://en.wikipedia.org/wiki/Catalan_number Catalan number] | * [http://en.wikipedia.org/wiki/Catalan_number Catalan number] | ||
* [http://en.wikipedia.org/wiki/Inclusion-exclusion_principle The principle of inclusion-exclusion] (and more generally the [http://en.wikipedia.org/wiki/Sieve_theory sieve method]) | |||
* [http://en.wikipedia.org/wiki/M%C3%B6bius_inversion_formula Möbius inversion formula] | |||
* [http://en.wikipedia.org/wiki/Derangement Derangement], and [http://en.wikipedia.org/wiki/M%C3%A9nage_problem Problème des ménages] | |||
* [http://en.wikipedia.org/wiki/Burnside's_lemma Burnside's lemma] | |||
* [http://en.wikipedia.org/wiki/P%C3%B3lya_enumeration_theorem Pólya enumeration theorem] | |||
* [http://en.wikipedia.org/wiki/Double_counting_(proof_technique) Double counting] and the [http://en.wikipedia.org/wiki/Handshaking_lemma handshaking lemma] | * [http://en.wikipedia.org/wiki/Double_counting_(proof_technique) Double counting] and the [http://en.wikipedia.org/wiki/Handshaking_lemma handshaking lemma] | ||
* [http://en.wikipedia.org/wiki/Sperner's_lemma Sperner's lemma] and [http://en.wikipedia.org/wiki/Brouwer_fixed_point_theorem Brouwer fixed point theorem] | |||
* [http://en.wikipedia.org/wiki/Cayley's_formula Cayley's formula] | * [http://en.wikipedia.org/wiki/Cayley's_formula Cayley's formula] | ||
* [http://en.wikipedia.org/wiki/Pigeonhole_principle Pigeonhole principle] | * [http://en.wikipedia.org/wiki/Pigeonhole_principle Pigeonhole principle] |
Latest revision as of 12:47, 15 September 2017
This is the page for the class Combinatorics for the Fall 2011 semester. Students who take this class should check this page periodically for content updates and new announcements.
Announcement
- (10/28/2011) 第三次作业的第二题做了点修改,请同学们注意。
- (10/27/2011) 第三次作业发布。两周后11月3日上课时交。
- (09/29/2011) 第二次作业发布。两周后10月13日上课时交。
- (09/15/2011) 第一次作业发布,在Assignments部分。下周四上课时交。
- 由于有事需要外出,9月14日星期三下午的office hour改在9月13日下午。
- 第一、二次课的slides已发布,见lecture notes部分。
Course info
- Instructor : 尹一通
- email: yitong.yin@gmail.com, yinyt@nju.edu.cn,
- office: 804
- Teaching fellow: TBA
- email: TBA
- Class meeting: Thursday 10am-12pm, 仙逸B-104.
- Office hour: Wednesday 2-5pm, 计算机系 804.
Syllabus
先修课程 Prerequisites
- 离散数学(Discrete Mathematics)
- 线性代数(Linear Algebra)
- 概率论(Probability Theory)
Course materials
成绩 Grades
- 课程成绩:本课程将会有六次作业和一次期末考试。最终成绩将由平时作业成绩和期末考试成绩综合得出。
- 迟交:如果有特殊的理由,无法按时完成作业,请提前联系授课老师,给出正当理由。否则迟交的作业将不被接受。
学术诚信 Academic Integrity
学术诚信是所有从事学术活动的学生和学者最基本的职业道德底线,本课程将不遗余力的维护学术诚信规范,违反这一底线的行为将不会被容忍。
作业完成的原则:署你名字的工作必须由你完成。允许讨论,但作业必须独立完成,并在作业中列出所有参与讨论的人。不允许其他任何形式的合作——尤其是与已经完成作业的同学“讨论”。
本课程将对剽窃行为采取零容忍的态度。在完成作业过程中,对他人工作(出版物、互联网资料、其他人的作业等)直接的文本抄袭和对关键思想、关键元素的抄袭,按照 ACM Policy on Plagiarism的解释,都将视为剽窃。剽窃者成绩将被取消。如果发现互相抄袭行为, 抄袭和被抄袭双方的成绩都将被取消。因此请主动防止自己的作业被他人抄袭。
学术诚信影响学生个人的品行,也关乎整个教育系统的正常运转。为了一点分数而做出学术不端的行为,不仅使自己沦为一个欺骗者,也使他人的诚实努力失去意义。让我们一起努力维护一个诚信的环境。
Assignments
- (2011/09/15) Problem set 1 due on Sept 22, in class.
- (2011/09/29) Problem set 2 due on Oct 13, in class.
- (2011/10/27) Problem set 3 due on Nov 3, in class.
- (2011/11/17) Problem set 4 due on Dec 1, in class.
- (2011/12/15) Problem set 5 due on Dec 22, in class.
Lecture Notes
- Basic enumeration | slides1 | slides2
- Generating functions | slides1 | slides2
- Sieve methods | slides
- Pólya's theory of counting
- Counting and existence | slides
- Discrete probability
- The probabilistic method | slides
- Extremal graph theory | slides
- Extremal set theory | slides
- Ramsey theory | slides1 | slides2
- Matching theory | slides
- Flow and matching | slides
- Optimization | slides
Concepts
- Binomial coefficient
- Composition of a number
- Combinations with repetition, [math]\displaystyle{ k }[/math]-multisets on a set
- Stirling number of the second kind
- Partition of a number
- Ferrers diagram (and the MathWorld link)
- The twelvefold way
- Generating function and formal power series
- Fibonacci number
- Newton's formula
- Catalan number
- The principle of inclusion-exclusion (and more generally the sieve method)
- Möbius inversion formula
- Derangement, and Problème des ménages
- Burnside's lemma
- Pólya enumeration theorem
- Double counting and the handshaking lemma
- Sperner's lemma and Brouwer fixed point theorem
- Cayley's formula
- Pigeonhole principle
- The Probabilistic Method
- Erdős–Rényi model for random graphs
- Graph property
- Some graph parameters: girth [math]\displaystyle{ g(G) }[/math], chromatic number [math]\displaystyle{ \chi(G) }[/math], Independence number [math]\displaystyle{ \alpha(G) }[/math], clique number [math]\displaystyle{ \omega(G) }[/math]
- Extremal graph theory
- Turán's theorem, Turán graph
- Two analytic inequalities:
- Erdős–Stone theorem (fundamental theorem of extremal graph theory)
- Dirac's theorem
- Hall's theorem (the marriage theorem)
- Birkhoff-Von Neumann theorem
- König-Egerváry theorem
- Dilworth's theorem
- Sperner system
- Erdős–Ko–Rado theorem
- VC dimension
- Kruskal–Katona theorem
- Ramsey theory