组合数学 (Spring 2014)/Problem Set 4: Difference between revisions
imported>Etone Created page with "==Problem 1 == An <math>n</math>-player tournament (竞赛图) <math>T([n],E)</math> is said to be transitive, if there exists a permutation <math>\pi</math> of <math>[n]</math> …" |
imported>Etone |
||
(9 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
==Problem 1 == | ==Problem 1 == | ||
An <math>n</math>-player tournament (竞赛图) <math>T([n],E)</math> is said to be transitive, if there exists a permutation <math>\pi</math> of <math>[n]</math> such that <math>\pi_i<\pi_j</math> for every <math>(i,j)\in E</math>. | An <math>n</math>-player tournament (竞赛图) <math>T([n],E)</math> is said to be '''transitive''', if there exists a permutation <math>\pi</math> of <math>[n]</math> such that <math>\pi_i<\pi_j</math> for every <math>(i,j)\in E</math>. | ||
Show that for any <math>k\ge 3</math>, there exists an <math>N(k)</math> such that every tournament of <math>n\ge N(k)</math> players contains a transitive sub-tournament of <math>k</math> players. | Show that for any <math>k\ge 3</math>, there exists an <math>N(k)</math> such that every tournament of <math>n\ge N(k)</math> players contains a transitive sub-tournament of <math>k</math> players. | ||
== Problem 2 == | |||
Let <math>G(U,V,E)</math> be a bipartite graph. Let <math>\delta_U</math> be the '''minimum''' degree of vertices in <math>U</math>, and <math>\Delta_V</math> be the maximum degree of vertices in <math>V</math>. | |||
Show that if <math>\delta_U\ge \Delta_V</math>, then there must be a matching in <math>G</math> such that all vertices in <math>U</math> are matched. | |||
== Problem 3 == | |||
Prove the following statement: | |||
* For any <math>n</math> distinct finite sets <math>S_1,S_2,\ldots,S_n</math>, there always is a collection <math>\mathcal{F}\subseteq \{S_1,S_2,\ldots,S_n\}</math> such that <math>|\mathcal{F}|\ge \lfloor\sqrt{n}\rfloor</math> and for any different <math>A,B,C\in\mathcal{F}</math> we have <math>A\cup B\neq C</math>. | |||
(Hint: use Dilworth theorem.) | |||
== Problem 4== | |||
A Boolean matrix is a matrix whose entries are either 0 or 1. We call a matrix '''1-matrix''' if all its entries are 1. | |||
Let <math>A</math> be a Boolean matrix satisfying: | |||
* there are totally <math>m</math> 1-entries in <math>A</math>; | |||
* every row <font color=red>and every column</font> of <math>A</math> contains at most <math>s</math> 1-entries; | |||
* <math>A</math> does not contain any <math>r\times r</math> 1-matrix as submatrix. | |||
Use König-Egerváry Theorem to prove: we need at least <math>\frac{m}{sr}</math> many 1-matrices to precisely cover all the 1-entries in <math>A</math>. |
Latest revision as of 03:06, 10 June 2014
Problem 1
An [math]\displaystyle{ n }[/math]-player tournament (竞赛图) [math]\displaystyle{ T([n],E) }[/math] is said to be transitive, if there exists a permutation [math]\displaystyle{ \pi }[/math] of [math]\displaystyle{ [n] }[/math] such that [math]\displaystyle{ \pi_i\lt \pi_j }[/math] for every [math]\displaystyle{ (i,j)\in E }[/math].
Show that for any [math]\displaystyle{ k\ge 3 }[/math], there exists an [math]\displaystyle{ N(k) }[/math] such that every tournament of [math]\displaystyle{ n\ge N(k) }[/math] players contains a transitive sub-tournament of [math]\displaystyle{ k }[/math] players.
Problem 2
Let [math]\displaystyle{ G(U,V,E) }[/math] be a bipartite graph. Let [math]\displaystyle{ \delta_U }[/math] be the minimum degree of vertices in [math]\displaystyle{ U }[/math], and [math]\displaystyle{ \Delta_V }[/math] be the maximum degree of vertices in [math]\displaystyle{ V }[/math].
Show that if [math]\displaystyle{ \delta_U\ge \Delta_V }[/math], then there must be a matching in [math]\displaystyle{ G }[/math] such that all vertices in [math]\displaystyle{ U }[/math] are matched.
Problem 3
Prove the following statement:
- For any [math]\displaystyle{ n }[/math] distinct finite sets [math]\displaystyle{ S_1,S_2,\ldots,S_n }[/math], there always is a collection [math]\displaystyle{ \mathcal{F}\subseteq \{S_1,S_2,\ldots,S_n\} }[/math] such that [math]\displaystyle{ |\mathcal{F}|\ge \lfloor\sqrt{n}\rfloor }[/math] and for any different [math]\displaystyle{ A,B,C\in\mathcal{F} }[/math] we have [math]\displaystyle{ A\cup B\neq C }[/math].
(Hint: use Dilworth theorem.)
Problem 4
A Boolean matrix is a matrix whose entries are either 0 or 1. We call a matrix 1-matrix if all its entries are 1.
Let [math]\displaystyle{ A }[/math] be a Boolean matrix satisfying:
- there are totally [math]\displaystyle{ m }[/math] 1-entries in [math]\displaystyle{ A }[/math];
- every row and every column of [math]\displaystyle{ A }[/math] contains at most [math]\displaystyle{ s }[/math] 1-entries;
- [math]\displaystyle{ A }[/math] does not contain any [math]\displaystyle{ r\times r }[/math] 1-matrix as submatrix.
Use König-Egerváry Theorem to prove: we need at least [math]\displaystyle{ \frac{m}{sr} }[/math] many 1-matrices to precisely cover all the 1-entries in [math]\displaystyle{ A }[/math].