随机算法 (Fall 2015)/Problem Set 3: Difference between revisions
imported>Etone Created page with "== Problem 1== Use the Chernoff bounds instead of Chebyshev's inequality in the analysis of the LazySelect Algorithm and try to use as few random samples as possible. ==Prob..." |
imported>Etone |
||
(12 intermediate revisions by the same user not shown) | |||
Line 2: | Line 2: | ||
Use the Chernoff bounds instead of Chebyshev's inequality in the analysis of the LazySelect Algorithm and try to use as few random samples as possible. | Use the Chernoff bounds instead of Chebyshev's inequality in the analysis of the LazySelect Algorithm and try to use as few random samples as possible. | ||
==Problem 2== | == Problem 2 == | ||
Let <math>X</math> be a real-valued random variable with finite <math>\mathbb{E}[X]</math> and finite <math>\mathbb{E}\left[\mathrm{e}^{\lambda X}\right]</math> for all <math>\lambda\ge 0</math>. We define the ''log-moment-generating function'' as | |||
:<math>\Psi_X(\lambda)=\ln\mathbb{E}[\mathrm{e}^{\lambda X}] \quad\text{ for all }\lambda\ge 0</math>, | |||
and its ''dual function'': | |||
:<math>\Psi_X^*(t)=\sup_{\lambda\ge 0}(\lambda t-\Psi_X(\lambda))</math>. | |||
Assume that <math>X</math> is NOT almost surely constant. Then due to the convexity of <math>\mathrm{e}^{\lambda X}</math> with respect to <math>\lambda</math>, the function <math>\Psi_X(\lambda)</math> is ''strictly'' convex over <math>\lambda\ge 0</math>. | |||
#Prove the following Chernoff bound: | |||
#:<math>\Pr[X\ge t]\le\exp(-\Psi_X^*(t))</math>. | |||
#:In particular if <math>\Psi_X(\lambda)</math> is continuously differentiable, prove that the supreme in <math>\Psi_X^*(t)</math> is achieved at the unique <math>\lambda\ge 0</math> satisfying <math>\Psi_X'(\lambda)=t\,</math>, where <math>\Psi_X'(\lambda)\,</math> denotes the derivative of <math>\Psi_X(\lambda)\,</math> with respect to <math>\lambda</math>. | |||
#'''Normal random variables.''' Let <math>X\sim \mathrm{N}(\mu,\sigma)</math> be a Gaussian random variable with mean <math>\mu</math> and standard deviation <math>\sigma</math>. What are the <math>\Psi_X(\lambda)</math> and <math>\Psi_X^*(t)</math>? And give a tail inequality to upper bound the probability <math>\Pr[X\ge t]</math>. | |||
#'''Poisson random variables.''' Let <math>X\sim \mathrm{Pois}(\nu)</math> be a Poisson random variable with parameter <math>\nu</math>, that is, <math>\Pr[X=k]=\mathrm{e}^{-\nu}\nu^k/k!</math> for all <math>k=0,1,2,\ldots</math>. What are the <math>\Psi_X(\lambda)</math> and <math>\Psi_X^*(t)</math>? And give a tail inequality to upper bound the probability <math>\Pr[X\ge t]</math>. | |||
#'''Bernoulli random variables.''' Let <math>X\in\{0,1\}</math> be a single Bernoulli trial with probability of success <math>p</math>, that is, <math>\Pr[X=1]=1-\Pr[X=0]=p</math>. Show that for any <math>t\in(p,1)</math>, we have <math>\Psi_X^*(t)=D(Y \| X)</math> where <math>Y\in\{0,1\}</math> is a Bernoulli random variable with parameter <math>t</math> and <math>D(Y \| X)=(1-t)\ln\frac{1-t}{1-p}+t\ln\frac{t}{p}</math> is the ''Kullback-Leibler divergence'' between <math>Y</math> and <math>X</math>. | |||
#'''Sum of independent random variables.''' Let <math>X=\sum_{i=1}^nX_i</math> be the sum of <math>n</math> independently and identically distributed random variables <math>X_1,X_2,\ldots, X_n</math>. Show that <math>\Psi_X(\lambda)=\sum_{i=1}^n\Psi_{X_i}(\lambda)</math> and <math>\Psi_X^*(t)=n\Psi^*_{X_i}(\frac{t}{n})</math>. Also for binomial random variable <math>X\sim \mathrm{Bin}(n,p)</math>, give an upper bound to the tail inequality <math>\Pr[X\ge t]</math> in terms of KL-divergence. | |||
::Give an upper bound to <math>\Pr[X\ge t]</math> when every <math>X_i</math> follows the geometric distribution with a probability <math>p</math> of success. | |||
==Problem 3== | |||
A '''boolean code''' is a mapping <math>C:\{0,1\}^k\rightarrow\{0,1\}^n</math>. Each <math>x\in\{0,1\}^k</math> is called a '''message''' and <math>y=C(x)</math> is called a '''codeword'''. The '''code rate''' <math>r</math> of a code <math>C</math> is <math>r=\frac{k}{n}</math>. A boolean code <math>C:\{0,1\}^k\rightarrow\{0,1\}^n</math> is a '''linear code''' if it is a linear transformation, i.e. there is a matrix <math>A\in\{0,1\}^{n\times k}</math> such that <math>C(x)=Ax</math> for any <math>x\in\{0,1\}^k</math>, where the additions and multiplications are defined over the finite field of order two, <math>(\{0,1\},+_{\bmod 2},\times_{\bmod 2})</math>. | A '''boolean code''' is a mapping <math>C:\{0,1\}^k\rightarrow\{0,1\}^n</math>. Each <math>x\in\{0,1\}^k</math> is called a '''message''' and <math>y=C(x)</math> is called a '''codeword'''. The '''code rate''' <math>r</math> of a code <math>C</math> is <math>r=\frac{k}{n}</math>. A boolean code <math>C:\{0,1\}^k\rightarrow\{0,1\}^n</math> is a '''linear code''' if it is a linear transformation, i.e. there is a matrix <math>A\in\{0,1\}^{n\times k}</math> such that <math>C(x)=Ax</math> for any <math>x\in\{0,1\}^k</math>, where the additions and multiplications are defined over the finite field of order two, <math>(\{0,1\},+_{\bmod 2},\times_{\bmod 2})</math>. | ||
Line 12: | Line 29: | ||
* Prove a similar result for linear boolean codes. | * Prove a similar result for linear boolean codes. | ||
== Problem 4 == | |||
Given a binary string, define a '''run''' as a <font color=red>maximal</font> sequence of contiguous 1s; for example, the following string | |||
:<math>\underbrace{111}_{3}00\underbrace{11}_{2}00\underbrace{111111}_{6}0\underbrace{1}_{1}0\underbrace{11}_{2}</math> | |||
contains 5 runs, of length 3, 2, 6, 1, and 2. | |||
Let <math>S</math> be a binary string of length <math>n</math>, generated uniformly at random. Let <math>X_k</math> be the number of runs in <math>S</math> of length <math>k</math> or more. | |||
*Compute the exact value of <math>\mathbb{E}[X_k]</math> as a function of <math>n</math> and <math>k</math>. | |||
*Give the best concentration bound you can obtain for <math>|X_k -\mathbb{E}[X_k]|</math>. | |||
== Problem 5 == | |||
(Due to J. Naor.) | |||
The <i>Chernoff bound</i> is an exponentially decreasing bound on tail distributions. Let <math>X_1,\dots,X_n</math> be independent random variables and <math>\mathbf{E}[X_i]=0</math> for all <math>1\le i\le n</math>. Define <math>X=X_1+X_2+\dots+X_n</math>. We can use the following two kinds of tail inequalities for <math>X</math>. | |||
* '''Chernoff Bounds:''' | |||
:<math>\Pr[|X|\ge\delta]\le\min_{t\ge 0}\frac{\mathbf{E}[e^{t|X|}]}{e^{t\delta}}</math>. | |||
* '''<math>k</math>th-Moment Bound: | |||
:<math>\Pr[|X|\ge\delta]\le\frac{\mathbf{E}[|X|^k]}{\delta^k}</math>. | |||
# Show that for each <math>\delta</math>, there exists a choice of <math>k</math> such that the <math>k</math>th-moment bound is strictly stronger than the Chernoff bound. (Hint: You may consider using the probabilistic method.) | |||
# Why would we still prefer the Chernoff bound to the seemingly stronger <math>k</math>th-moment bound? |
Latest revision as of 07:58, 4 December 2015
Problem 1
Use the Chernoff bounds instead of Chebyshev's inequality in the analysis of the LazySelect Algorithm and try to use as few random samples as possible.
Problem 2
Let [math]\displaystyle{ X }[/math] be a real-valued random variable with finite [math]\displaystyle{ \mathbb{E}[X] }[/math] and finite [math]\displaystyle{ \mathbb{E}\left[\mathrm{e}^{\lambda X}\right] }[/math] for all [math]\displaystyle{ \lambda\ge 0 }[/math]. We define the log-moment-generating function as
- [math]\displaystyle{ \Psi_X(\lambda)=\ln\mathbb{E}[\mathrm{e}^{\lambda X}] \quad\text{ for all }\lambda\ge 0 }[/math],
and its dual function:
- [math]\displaystyle{ \Psi_X^*(t)=\sup_{\lambda\ge 0}(\lambda t-\Psi_X(\lambda)) }[/math].
Assume that [math]\displaystyle{ X }[/math] is NOT almost surely constant. Then due to the convexity of [math]\displaystyle{ \mathrm{e}^{\lambda X} }[/math] with respect to [math]\displaystyle{ \lambda }[/math], the function [math]\displaystyle{ \Psi_X(\lambda) }[/math] is strictly convex over [math]\displaystyle{ \lambda\ge 0 }[/math].
- Prove the following Chernoff bound:
- [math]\displaystyle{ \Pr[X\ge t]\le\exp(-\Psi_X^*(t)) }[/math].
- In particular if [math]\displaystyle{ \Psi_X(\lambda) }[/math] is continuously differentiable, prove that the supreme in [math]\displaystyle{ \Psi_X^*(t) }[/math] is achieved at the unique [math]\displaystyle{ \lambda\ge 0 }[/math] satisfying [math]\displaystyle{ \Psi_X'(\lambda)=t\, }[/math], where [math]\displaystyle{ \Psi_X'(\lambda)\, }[/math] denotes the derivative of [math]\displaystyle{ \Psi_X(\lambda)\, }[/math] with respect to [math]\displaystyle{ \lambda }[/math].
- Normal random variables. Let [math]\displaystyle{ X\sim \mathrm{N}(\mu,\sigma) }[/math] be a Gaussian random variable with mean [math]\displaystyle{ \mu }[/math] and standard deviation [math]\displaystyle{ \sigma }[/math]. What are the [math]\displaystyle{ \Psi_X(\lambda) }[/math] and [math]\displaystyle{ \Psi_X^*(t) }[/math]? And give a tail inequality to upper bound the probability [math]\displaystyle{ \Pr[X\ge t] }[/math].
- Poisson random variables. Let [math]\displaystyle{ X\sim \mathrm{Pois}(\nu) }[/math] be a Poisson random variable with parameter [math]\displaystyle{ \nu }[/math], that is, [math]\displaystyle{ \Pr[X=k]=\mathrm{e}^{-\nu}\nu^k/k! }[/math] for all [math]\displaystyle{ k=0,1,2,\ldots }[/math]. What are the [math]\displaystyle{ \Psi_X(\lambda) }[/math] and [math]\displaystyle{ \Psi_X^*(t) }[/math]? And give a tail inequality to upper bound the probability [math]\displaystyle{ \Pr[X\ge t] }[/math].
- Bernoulli random variables. Let [math]\displaystyle{ X\in\{0,1\} }[/math] be a single Bernoulli trial with probability of success [math]\displaystyle{ p }[/math], that is, [math]\displaystyle{ \Pr[X=1]=1-\Pr[X=0]=p }[/math]. Show that for any [math]\displaystyle{ t\in(p,1) }[/math], we have [math]\displaystyle{ \Psi_X^*(t)=D(Y \| X) }[/math] where [math]\displaystyle{ Y\in\{0,1\} }[/math] is a Bernoulli random variable with parameter [math]\displaystyle{ t }[/math] and [math]\displaystyle{ D(Y \| X)=(1-t)\ln\frac{1-t}{1-p}+t\ln\frac{t}{p} }[/math] is the Kullback-Leibler divergence between [math]\displaystyle{ Y }[/math] and [math]\displaystyle{ X }[/math].
- Sum of independent random variables. Let [math]\displaystyle{ X=\sum_{i=1}^nX_i }[/math] be the sum of [math]\displaystyle{ n }[/math] independently and identically distributed random variables [math]\displaystyle{ X_1,X_2,\ldots, X_n }[/math]. Show that [math]\displaystyle{ \Psi_X(\lambda)=\sum_{i=1}^n\Psi_{X_i}(\lambda) }[/math] and [math]\displaystyle{ \Psi_X^*(t)=n\Psi^*_{X_i}(\frac{t}{n}) }[/math]. Also for binomial random variable [math]\displaystyle{ X\sim \mathrm{Bin}(n,p) }[/math], give an upper bound to the tail inequality [math]\displaystyle{ \Pr[X\ge t] }[/math] in terms of KL-divergence.
- Give an upper bound to [math]\displaystyle{ \Pr[X\ge t] }[/math] when every [math]\displaystyle{ X_i }[/math] follows the geometric distribution with a probability [math]\displaystyle{ p }[/math] of success.
Problem 3
A boolean code is a mapping [math]\displaystyle{ C:\{0,1\}^k\rightarrow\{0,1\}^n }[/math]. Each [math]\displaystyle{ x\in\{0,1\}^k }[/math] is called a message and [math]\displaystyle{ y=C(x) }[/math] is called a codeword. The code rate [math]\displaystyle{ r }[/math] of a code [math]\displaystyle{ C }[/math] is [math]\displaystyle{ r=\frac{k}{n} }[/math]. A boolean code [math]\displaystyle{ C:\{0,1\}^k\rightarrow\{0,1\}^n }[/math] is a linear code if it is a linear transformation, i.e. there is a matrix [math]\displaystyle{ A\in\{0,1\}^{n\times k} }[/math] such that [math]\displaystyle{ C(x)=Ax }[/math] for any [math]\displaystyle{ x\in\{0,1\}^k }[/math], where the additions and multiplications are defined over the finite field of order two, [math]\displaystyle{ (\{0,1\},+_{\bmod 2},\times_{\bmod 2}) }[/math].
The distance between two codeword [math]\displaystyle{ y_1 }[/math] and [math]\displaystyle{ y_2 }[/math], denoted by [math]\displaystyle{ d(y_1,y_2) }[/math], is defined as the Hamming distance between them. Formally, [math]\displaystyle{ d(y_1,y_2)=\|y_1-y_2\|_1=\sum_{i=1}^n|y_1(i)-y_2(i)| }[/math]. The distance of a code [math]\displaystyle{ C }[/math] is the minimum distance between any two codewords. Formally, [math]\displaystyle{ d=\min_{x_1,x_2\in \{0,1\}^k\atop x_1\neq x_2}d(C(x_1),C(x_2)) }[/math].
Usually we want to make both the code rate [math]\displaystyle{ r }[/math] and the code distance [math]\displaystyle{ d }[/math] as large as possible, because a larger rate means that the amount of actual message per transmitted bit is high, and a larger distance allows for more error correction and detection.
- Use the probabilistic method to prove that there exists a boolean code [math]\displaystyle{ C:\{0,1\}^k\rightarrow\{0,1\}^n }[/math] of code rate [math]\displaystyle{ r }[/math] and distance [math]\displaystyle{ \left(\frac{1}{2}-\Theta\left(\sqrt{r}\right)\right)n }[/math]. Try to optimize the constant in [math]\displaystyle{ \Theta(\cdot) }[/math].
- Prove a similar result for linear boolean codes.
Problem 4
Given a binary string, define a run as a maximal sequence of contiguous 1s; for example, the following string
- [math]\displaystyle{ \underbrace{111}_{3}00\underbrace{11}_{2}00\underbrace{111111}_{6}0\underbrace{1}_{1}0\underbrace{11}_{2} }[/math]
contains 5 runs, of length 3, 2, 6, 1, and 2.
Let [math]\displaystyle{ S }[/math] be a binary string of length [math]\displaystyle{ n }[/math], generated uniformly at random. Let [math]\displaystyle{ X_k }[/math] be the number of runs in [math]\displaystyle{ S }[/math] of length [math]\displaystyle{ k }[/math] or more.
- Compute the exact value of [math]\displaystyle{ \mathbb{E}[X_k] }[/math] as a function of [math]\displaystyle{ n }[/math] and [math]\displaystyle{ k }[/math].
- Give the best concentration bound you can obtain for [math]\displaystyle{ |X_k -\mathbb{E}[X_k]| }[/math].
Problem 5
(Due to J. Naor.)
The Chernoff bound is an exponentially decreasing bound on tail distributions. Let [math]\displaystyle{ X_1,\dots,X_n }[/math] be independent random variables and [math]\displaystyle{ \mathbf{E}[X_i]=0 }[/math] for all [math]\displaystyle{ 1\le i\le n }[/math]. Define [math]\displaystyle{ X=X_1+X_2+\dots+X_n }[/math]. We can use the following two kinds of tail inequalities for [math]\displaystyle{ X }[/math].
- Chernoff Bounds:
- [math]\displaystyle{ \Pr[|X|\ge\delta]\le\min_{t\ge 0}\frac{\mathbf{E}[e^{t|X|}]}{e^{t\delta}} }[/math].
- [math]\displaystyle{ k }[/math]th-Moment Bound:
- [math]\displaystyle{ \Pr[|X|\ge\delta]\le\frac{\mathbf{E}[|X|^k]}{\delta^k} }[/math].
- Show that for each [math]\displaystyle{ \delta }[/math], there exists a choice of [math]\displaystyle{ k }[/math] such that the [math]\displaystyle{ k }[/math]th-moment bound is strictly stronger than the Chernoff bound. (Hint: You may consider using the probabilistic method.)
- Why would we still prefer the Chernoff bound to the seemingly stronger [math]\displaystyle{ k }[/math]th-moment bound?