组合数学 (Fall 2019)/Problem Set 1: Difference between revisions
imported>Etone |
imported>Etone No edit summary |
||
(11 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
*每道题目的解答都要有<font color="red" size=5>完整的解题过程</font>。中英文不限。 | *每道题目的解答都要有<font color="red" size=5>完整的解题过程</font>。中英文不限。 | ||
*9月25日上课时交给老师,或者将电子版发给助教(email: ichenhm@gmail.com)。 | |||
== Problem 1 == | == Problem 1 == | ||
Line 13: | Line 13: | ||
== Problem 3 == | == Problem 3 == | ||
In each of the following cases, | In each of the following cases, first answer what the <math>a_n</math>'s are, and then try to give the closed forms for the generating functions <math>A(x)=\sum_{n\ge 0}a_n x^n</math>. | ||
#<math>a_n</math> is the number of ways of distributing <math>n</math> identical objects into 4 distinct boxes; | #<math>a_n</math> is the number of ways of distributing <math>n</math> identical objects into 4 distinct boxes; | ||
#<math>a_n</math> is the number of ways of distributing <math>n</math> identical objects into 4 distinct boxes so that no box is empty; | #<math>a_n</math> is the number of ways of distributing <math>n</math> identical objects into 4 distinct boxes so that no box is empty; | ||
Line 27: | Line 27: | ||
Consider the decimal expansion <math>1/9899=0.0001010203050813213455\cdots</math> | Consider the decimal expansion <math>1/9899=0.0001010203050813213455\cdots</math> | ||
Why do the Fibonacci numbers 1,2,3,5,8,13,21,34,55 appear? | Why do the Fibonacci numbers 1,1,2,3,5,8,13,21,34,55 appear? | ||
== Problem 6 == | == Problem 6 == | ||
Let <math>f(n,r,s)</math> denote the number of subsets <math>S</math> of <math>[2n]</math> consisting of <math>r</math> odd and <math>s</math> even integers, with no two elements of <math>S</math> differing by <math>1</math>. Give a combinatorial proof that <math>f(n,r,s)=\binom{n-r}{s}\binom{n-s}{r}</math>. | Let <math>f(n,r,s)</math> denote the number of subsets <math>S</math> of <math>[2n]</math> consisting of <math>r</math> odd and <math>s</math> even integers, with no two elements of <math>S</math> differing by <math>1</math>. Give a combinatorial proof that <math>f(n,r,s)=\binom{n-r}{s}\binom{n-s}{r}</math>. | ||
*'''Hint''': Note that <math>\left({{n-r-s+1}\choose s}\right)=\binom{n-r}{s}</math> and <math>\left({{n-r-s+1}\choose r}\right)=\binom{n-s}{r}</math>. |
Latest revision as of 09:55, 18 September 2019
- 每道题目的解答都要有完整的解题过程。中英文不限。
- 9月25日上课时交给老师,或者将电子版发给助教(email: ichenhm@gmail.com)。
Problem 1
Suppose that we have [math]\displaystyle{ n }[/math] identical red balls and [math]\displaystyle{ m }[/math] distinct blue balls. Find the number of ways to select [math]\displaystyle{ r }[/math] balls from these [math]\displaystyle{ n+m }[/math] balls, in each of the following cases:
- [math]\displaystyle{ r\leq m,\ r\leq n }[/math];
- [math]\displaystyle{ n\leq r\leq m }[/math];
- [math]\displaystyle{ m\leq r\leq n }[/math].
Problem 2
李雷和韩梅梅竞选学生会主席,韩梅梅获得选票 [math]\displaystyle{ p }[/math] 张,李雷获得选票 [math]\displaystyle{ q }[/math] 张,[math]\displaystyle{ p\gt q }[/math]。我们将总共的 [math]\displaystyle{ p+q }[/math] 张选票一张一张的点数,有多少种选票的排序方式使得在整个点票过程中,韩梅梅的票数一直高于李雷的票数?等价地,假设选票均匀分布的随机排列,以多大概率在整个点票过程中,韩梅梅的票数一直高于李雷的票数。
Problem 3
In each of the following cases, first answer what the [math]\displaystyle{ a_n }[/math]'s are, and then try to give the closed forms for the generating functions [math]\displaystyle{ A(x)=\sum_{n\ge 0}a_n x^n }[/math].
- [math]\displaystyle{ a_n }[/math] is the number of ways of distributing [math]\displaystyle{ n }[/math] identical objects into 4 distinct boxes;
- [math]\displaystyle{ a_n }[/math] is the number of ways of distributing [math]\displaystyle{ n }[/math] identical objects into 4 distinct boxes so that no box is empty;
- [math]\displaystyle{ a_n }[/math] is the number of ways of distributing [math]\displaystyle{ n }[/math] identical objects into 4 identical boxes so that no box is empty;
- [math]\displaystyle{ a_n }[/math] is the number of ways of distributing [math]\displaystyle{ n }[/math] identical objects into 4 identical boxes.
Problem 4
Let [math]\displaystyle{ (a_n) }[/math] be a sequence of numbers satisfying the recurrence relation:
- [math]\displaystyle{ a_n-p \cdot a_{n-1}+(p-q)\cdot q \cdot a_{n-2}=0 }[/math]
with initial condition [math]\displaystyle{ a_0=1 }[/math] and [math]\displaystyle{ a_1=p }[/math], where [math]\displaystyle{ p }[/math] and [math]\displaystyle{ q }[/math] are distinct nonzero constants. Solve the recurrence relation.
Problem 5
Consider the decimal expansion [math]\displaystyle{ 1/9899=0.0001010203050813213455\cdots }[/math]
Why do the Fibonacci numbers 1,1,2,3,5,8,13,21,34,55 appear?
Problem 6
Let [math]\displaystyle{ f(n,r,s) }[/math] denote the number of subsets [math]\displaystyle{ S }[/math] of [math]\displaystyle{ [2n] }[/math] consisting of [math]\displaystyle{ r }[/math] odd and [math]\displaystyle{ s }[/math] even integers, with no two elements of [math]\displaystyle{ S }[/math] differing by [math]\displaystyle{ 1 }[/math]. Give a combinatorial proof that [math]\displaystyle{ f(n,r,s)=\binom{n-r}{s}\binom{n-s}{r} }[/math].
- Hint: Note that [math]\displaystyle{ \left({{n-r-s+1}\choose s}\right)=\binom{n-r}{s} }[/math] and [math]\displaystyle{ \left({{n-r-s+1}\choose r}\right)=\binom{n-s}{r} }[/math].