概率论与数理统计 (Spring 2023)/Problem Set 2: Difference between revisions

From TCS Wiki
Jump to navigation Jump to search
Zhangxy (talk | contribs)
No edit summary
Zhangxy (talk | contribs)
Line 13: Line 13:


<ul>
<ul>
<li><strong>CDF</strong> Given <math>(\Omega, \mathcal{F}, \mathbf{Pr})</math>, let <math>X</math> be a random variable such that <math>X:\Omega\rightarrow \mathbb{R}</math> with cumulative distribution function <math>F</math>.
<li><strong>[CDF]</strong> Given <math>(\Omega, \mathcal{F}, \mathbf{Pr})</math>, let <math>X</math> be a random variable such that <math>X:\Omega\rightarrow \mathbb{R}</math> with cumulative distribution function <math>F</math>.
<ol>
<ol>
<li>Show that <math>Y = aX+b</math> is a random variable where <math>a</math> and <math>b</math> are real constants, and express the CDF of <math>Y</math> by <math>F</math>.</li>
<li>Show that <math>Y = aX+b</math> is a random variable where <math>a</math> and <math>b</math> are real constants, and express the CDF of <math>Y</math> by <math>F</math>.</li>
Line 22: Line 22:
</ul></li>
</ul></li>
</ol></li>
</ol></li>
<li><strong>PMF</strong> We toss <math>n</math> coins, and each one shows heads with probability <math>p</math>, independently of each of the others. Each coin which shows head is tossed again. (If the coin shows tail, it won't be tossed again.) Let <math>X</math> be the number of heads resulting from the <strong>second</strong> round of tosses, and <math>Y</math> be the number of heads resulting from <strong>all</strong> tosses, which includes the first and (possible) second round of each toss.
<li><strong>[PMF]</strong> We toss <math>n</math> coins, and each one shows heads with probability <math>p</math>, independently of each of the others. Each coin which shows head is tossed again. (If the coin shows tail, it won't be tossed again.) Let <math>X</math> be the number of heads resulting from the <strong>second</strong> round of tosses, and <math>Y</math> be the number of heads resulting from <strong>all</strong> tosses, which includes the first and (possible) second round of each toss.
<ol>
<ol>
<li>Find the PMF of <math>X</math> and <math>Y</math>.</li>
<li>Find the PMF of <math>X</math> and <math>Y</math>.</li>
<li>Find <math>\mathbb{E}[X]</math> and <math>\mathbb{E}[Y]</math>.</li>
<li>Find <math>\mathbb{E}[X]</math> and <math>\mathbb{E}[Y]</math>.</li>
<li>Let <math>f(k)</math> for <math>0\leq k\leq n</math> be the PMF of <math>X</math>, show that  
<li>Let <math>f(k)</math> for <math>0\leq k\leq n</math> be the PMF of <math>X</math>, show that [math]f(k-1)f(k+1)\leq f(k)^2[/math] for <math>1\leq k \leq n-1</math>.</li>
$$f(k-1)f(k+1)\leq f(k)^2$$
for <math>1\leq k \leq n-1</math>.</li>
</ol></li>
</ol></li>
</ul>
</ul>

Revision as of 10:45, 27 March 2023

Problem 1 (Warm-up problems)

  • [Function of random variable (I)] Let [math]X[/math] be a random variable and [math]g:\mathbb{R} \to \mathbb{R}[/math] be a continuous and strictly increasing function. Show that [math]Y = g(X)[/math] is a random variable.
  • [Function of random variable (II)] Let [math]X[/math] be a random variable with distribution function [math]\max(0,\min(1,x))[/math]. Let [math]F[/math] be a distribution function which is continuous and strictly increasing. Show that [math]Y=F^{-1}(X)[/math] be a random variable with distribution function [math]F[/math].
  • [Marginal distribution] Let [math](X_1, X_2)[/math] be a random vector satisfying [math]\mathbf{Pr}[(X_1,X_2) = (0,0)] = \mathbf{Pr}[(X_1,X_2) = (1,0)] = \mathbf{Pr}[(X_1,X_2)=(0,1)]=\frac{1}{3}[/math]. Find out the marginal distribution of [math]X_1[/math].
  • [Independence] Show that discrete random variables [math]X[/math] and [math]Y[/math] are independent if and only if [math]f_{X,Y}(x,y) = f_X(x) f_Y(y)[/math], where [math]f_{X,Y}[/math] is the joint mass function of [math](X,Y)[/math], and [math]f_X[/math] (respectively, [math]f_Y[/math]) is the mass function of [math]X[/math] (respectively, [math]Y[/math]).
  • [Entropy of discrete random variable] Let [math]X[/math] be a discrete random variable with range of values [math]\mathbb{N}_+[/math] and probability mass function [math]p[/math]. Define [math]H(X) = -\sum_{n \ge 1} p(n) \log p(n)[/math] with convention [math]0\log 0 = 0[/math]. Prove that [math]H(X) \ge 0[/math] using Jensen's inequality.
  • [Law of total expectation] Let [math]X \sim \mathrm{Geom}(p)[/math] for some parameter [math]p \in (0,1)[/math]. Calculate [math]\mathbf{E}[X][/math] using the law of total expectation.

Problem 2 (Distribution of random variable)

  • [CDF] Given [math]\displaystyle{ (\Omega, \mathcal{F}, \mathbf{Pr}) }[/math], let [math]\displaystyle{ X }[/math] be a random variable such that [math]\displaystyle{ X:\Omega\rightarrow \mathbb{R} }[/math] with cumulative distribution function [math]\displaystyle{ F }[/math].
    1. Show that [math]\displaystyle{ Y = aX+b }[/math] is a random variable where [math]\displaystyle{ a }[/math] and [math]\displaystyle{ b }[/math] are real constants, and express the CDF of [math]\displaystyle{ Y }[/math] by [math]\displaystyle{ F }[/math].
    2. Let [math]\displaystyle{ G }[/math] be the CDF of random variable [math]\displaystyle{ Z:\Omega\rightarrow \mathbb{R} }[/math] and [math]\displaystyle{ 0\leq \lambda \leq 1 }[/math], show that
      • [math]\displaystyle{ \lambda F + (1-\lambda)G }[/math] is a CDF function.
      • The product [math]\displaystyle{ FG }[/math] is a CDF function, and if [math]\displaystyle{ Z }[/math] and [math]\displaystyle{ X }[/math] are independent, then [math]\displaystyle{ FG }[/math] is the CDF of [math]\displaystyle{ \max\{X,Z\} }[/math].
  • [PMF] We toss [math]\displaystyle{ n }[/math] coins, and each one shows heads with probability [math]\displaystyle{ p }[/math], independently of each of the others. Each coin which shows head is tossed again. (If the coin shows tail, it won't be tossed again.) Let [math]\displaystyle{ X }[/math] be the number of heads resulting from the second round of tosses, and [math]\displaystyle{ Y }[/math] be the number of heads resulting from all tosses, which includes the first and (possible) second round of each toss.
    1. Find the PMF of [math]\displaystyle{ X }[/math] and [math]\displaystyle{ Y }[/math].
    2. Find [math]\displaystyle{ \mathbb{E}[X] }[/math] and [math]\displaystyle{ \mathbb{E}[Y] }[/math].
    3. Let [math]\displaystyle{ f(k) }[/math] for [math]\displaystyle{ 0\leq k\leq n }[/math] be the PMF of [math]\displaystyle{ X }[/math], show that [math]f(k-1)f(k+1)\leq f(k)^2[/math] for [math]\displaystyle{ 1\leq k \leq n-1 }[/math].