组合数学 (Fall 2023)/Problem Set 2: Difference between revisions
Line 2: | Line 2: | ||
== Problem 2 == | == Problem 2 == | ||
Let <math>D_n</math> denote the number of derangements of <math>\{1,2,\ldots,n\}</math>. | |||
* Give a ''' combinatorial''' proof that <math>D(n)=nD(n-1)+(-1)^n</math>. | |||
* For a permutation <math>p_1,p_2,...,p_n</math>, for <math>1\leq i<n</math>, we call position<math>i</math> ascent if <math>p_i<p_{i+1}</math>. Let <math>\mathcal{E}_n</math> denote the set of permutations whose first ascent is in an even position (where we always count <math>n</math> as an ascent). For instance, <math>\mathcal{E}(3)=\{213, 312\}</math> and <math>\mathcal{E}(4)=\{2134, 2143, 3124, 3142, 3241, 4123, 4132, 4231, 4321\}</math>. Set <math>E(n)=|\mathcal{E}(n)|</math>. Show that <math>E(n)=nE(n-1)+(-1)^n</math>. Hence (since <math>E(1)=D(1)=0</math>) we have <math>E(n)=D(n)</math>. | |||
* Give a bijection between the permutations being counted by <math>E(n)</math> and the derangements of <math>[n]</math>. | |||
== Problem 3 == | == Problem 3 == |
Revision as of 13:08, 13 April 2023
Problem 1
Problem 2
Let [math]\displaystyle{ D_n }[/math] denote the number of derangements of [math]\displaystyle{ \{1,2,\ldots,n\} }[/math].
- Give a combinatorial proof that [math]\displaystyle{ D(n)=nD(n-1)+(-1)^n }[/math].
- For a permutation [math]\displaystyle{ p_1,p_2,...,p_n }[/math], for [math]\displaystyle{ 1\leq i\lt n }[/math], we call position[math]\displaystyle{ i }[/math] ascent if [math]\displaystyle{ p_i\lt p_{i+1} }[/math]. Let [math]\displaystyle{ \mathcal{E}_n }[/math] denote the set of permutations whose first ascent is in an even position (where we always count [math]\displaystyle{ n }[/math] as an ascent). For instance, [math]\displaystyle{ \mathcal{E}(3)=\{213, 312\} }[/math] and [math]\displaystyle{ \mathcal{E}(4)=\{2134, 2143, 3124, 3142, 3241, 4123, 4132, 4231, 4321\} }[/math]. Set [math]\displaystyle{ E(n)=|\mathcal{E}(n)| }[/math]. Show that [math]\displaystyle{ E(n)=nE(n-1)+(-1)^n }[/math]. Hence (since [math]\displaystyle{ E(1)=D(1)=0 }[/math]) we have [math]\displaystyle{ E(n)=D(n) }[/math].
- Give a bijection between the permutations being counted by [math]\displaystyle{ E(n) }[/math] and the derangements of [math]\displaystyle{ [n] }[/math].
Problem 3
Let [math]\displaystyle{ S=\{P_1,...,P_n\} }[/math] be a set of properties, and let [math]\displaystyle{ f_k }[/math] (respectively, [math]\displaystyle{ f_{\geq k} }[/math]) denote the number of objects in a finite set [math]\displaystyle{ U }[/math] that satisfy exactly [math]\displaystyle{ k }[/math] (respectively, at least [math]\displaystyle{ k }[/math]) of the properties. Let [math]\displaystyle{ A_i }[/math] denote the set of objects that satisfy [math]\displaystyle{ P_i }[/math] in [math]\displaystyle{ U }[/math], for any [math]\displaystyle{ I\subseteq\{1,...,n\} }[/math], we denote [math]\displaystyle{ A_I=\bigcap_{i\in I}A_i }[/math] with the convention that [math]\displaystyle{ A_\emptyset=U }[/math]. Show that
- [math]\displaystyle{ f_k=\sum_{i=k}^n(-1)^{i-k}\binom{i}{k}g_i }[/math]
- [math]\displaystyle{ f_{\geq k}=\sum_{i=k}^n(-1)^{i-k}\binom{i-1}{k-1}g_i. }[/math]
where [math]\displaystyle{ g_i=\sum_{I\subseteq\{1,...,n\},|I|=i }|A_I|. }[/math]
Problem 4
For any [math]\displaystyle{ k }[/math]-size subset [math]\displaystyle{ A }[/math] of vertices set [math]\displaystyle{ \{1,2,\dots,n\} }[/math], there are [math]\displaystyle{ T_{n,k} }[/math] forests on the [math]\displaystyle{ n }[/math] vertices with exactly [math]\displaystyle{ k }[/math] connected components that each element of [math]\displaystyle{ A }[/math] is in a different component.
- Prove [math]\displaystyle{ T_{n,k}=\sum_{i=0}^{n-k}\binom{n-k}{i}T_{n-1,k+i-1} }[/math].
- Prove [math]\displaystyle{ T_{n,k}=k\cdot n^{n-k-1} }[/math].