概率论与数理统计 (Spring 2023)/Problem Set 4: Difference between revisions
Jump to navigation
Jump to search
Line 25: | Line 25: | ||
Let <math>X</math> be a random variable with mean <math>\mu</math> and continuous cumulative distribution function (CDF) <math>F</math>. | Let <math>X</math> be a random variable with mean <math>\mu</math> and continuous cumulative distribution function (CDF) <math>F</math>. | ||
<li> | |||
(a) Show that <math>\int_{-\infty}^a F(x) dx = \int_{a}^{\infty} [1-F(x)] dx</math> if and only if <math>a = \mu</math>. | (a) Show that <math>\int_{-\infty}^a F(x) dx = \int_{a}^{\infty} [1-F(x)] dx</math> if and only if <math>a = \mu</math>. | ||
</li> | |||
<li> | |||
(b) Suppose <math>X</math> further has finite variance. Show that <math>g(a) = \mathbb{E}((X-a)^2)</math> is a minimum when <math>a = \mu</math>. | (b) Suppose <math>X</math> further has finite variance. Show that <math>g(a) = \mathbb{E}((X-a)^2)</math> is a minimum when <math>a = \mu</math>. | ||
</li> | |||
</li> | </li> | ||
Revision as of 09:36, 22 May 2023
- 目前作业非最终版本!
- 每道题目的解答都要有完整的解题过程,中英文不限。
- 我们推荐大家使用LaTeX, markdown等对作业进行排版。
Assumption throughout Problem Set 4
Without further notice, we are working on probability space [math]\displaystyle{ (\Omega,\mathcal{F},\mathbf{Pr}) }[/math].
Without further notice, we assume that the expectation of random variables are well-defined.
The term [math]\displaystyle{ \log }[/math] used in this context refers to the natural logarithm.
Problem 1 (Continuous Random Variables, 30 points)
- [Density function] Determine the value of [math]\displaystyle{ C }[/math] such that [math]\displaystyle{ f(x) = C\exp(-x-e^{-x}), x\in \mathbb{R} }[/math] is a probability density function (PDF) for a continuous random variable.
- [Independence] Let [math]\displaystyle{ X }[/math] and [math]\displaystyle{ Y }[/math] be independent and identically distributed continuous random variables with cumulative distribution function (CDF) [math]\displaystyle{ F }[/math] and probability density function (PDF) [math]\displaystyle{ f }[/math]. Find out the density functions of [math]\displaystyle{ V = \max\{X,Y\} }[/math] and [math]\displaystyle{ U = \min\{X,Y\} }[/math].
- [Expectation] Let [math]\displaystyle{ X }[/math] be a random variable with mean [math]\displaystyle{ \mu }[/math] and continuous cumulative distribution function (CDF) [math]\displaystyle{ F }[/math].
- (a) Show that [math]\displaystyle{ \int_{-\infty}^a F(x) dx = \int_{a}^{\infty} [1-F(x)] dx }[/math] if and only if [math]\displaystyle{ a = \mu }[/math].
- (b) Suppose [math]\displaystyle{ X }[/math] further has finite variance. Show that [math]\displaystyle{ g(a) = \mathbb{E}((X-a)^2) }[/math] is a minimum when [math]\displaystyle{ a = \mu }[/math].
- [Random process]
Given a real number [math]\displaystyle{ U\lt 1 }[/math] as input of the following process, find out the expected returning value.
Algorithm - Input: real numbers [math]\displaystyle{ U \lt 1 }[/math];
- initialize [math]\displaystyle{ x = 1 }[/math] and [math]\displaystyle{ count = 0 }[/math];
- while [math]\displaystyle{ x \gt U }[/math] do
- choose [math]\displaystyle{ y \in (0,1) }[/math] uniformly at random;
- update [math]\displaystyle{ x = x * y }[/math] and [math]\displaystyle{ count = count + 1 }[/math];
- return [math]\displaystyle{ count }[/math];
- [Random semicircle] We sample [math]\displaystyle{ n }[/math] points within a circle [math]\displaystyle{ C=\{(x,y) \in \mathbb{R}^2 \mid x^2+y^2 \le 1\} }[/math] independently and uniformly at random (i.e., the density function [math]\displaystyle{ f(x,y) \propto 1_{(x,y) \in C} }[/math]). Find out the probability that they all lie within some semicircle with radius [math]\displaystyle{ 1 }[/math]. (Hint: you may apply the technique of change of variables, see function of random variables or Chapter 4.7 in [GS])