概率论与数理统计 (Spring 2023)/Problem Set 4: Difference between revisions

From TCS Wiki
Jump to navigation Jump to search
Zhangxy (talk | contribs)
Zhangxy (talk | contribs)
Line 19: Line 19:


<li>
<li>
[<strong>Independence</strong>] Let <math>X</math> and <math>Y</math> be independent and identically distributed continuous random variables with cumulative distribution function (CDF) <math>F</math> and probability density function (PDF) <math>f</math>. Find out the density functions of <math>V = \max\{X,Y\}</math> and <math>U = \min\{X,Y\}</math>.
[<strong>Independence (I)</strong>] Let <math>X</math> and <math>Y</math> be independent and identically distributed continuous random variables with cumulative distribution function (CDF) <math>F</math> and probability density function (PDF) <math>f</math>. Find out the density functions of <math>V = \max\{X,Y\}</math> and <math>U = \min\{X,Y\}</math>.
</li>
 
<li>
Let <math>X</math> be uniformly distributed on <math>[-1,1]</math> and <math>Y_i = \cos(n \pi X)</math> for $i=1,2,\ldots,n$. Are the random variables <math>Y_1,Y_2,\ldots,Y_n</math> correlated? independent? You should prove your claim rigorously.
</li>
 
<li>
[<strong>Independence</strong>] Let <math>X, Y</math> be two nonnegative
</li>
</li>



Revision as of 10:04, 22 May 2023

  • 目前作业非最终版本!
  • 每道题目的解答都要有完整的解题过程,中英文不限。
  • 我们推荐大家使用LaTeX, markdown等对作业进行排版。

Assumption throughout Problem Set 4

Without further notice, we are working on probability space [math]\displaystyle{ (\Omega,\mathcal{F},\mathbf{Pr}) }[/math].

Without further notice, we assume that the expectation of random variables are well-defined.

The term [math]\displaystyle{ \log }[/math] used in this context refers to the natural logarithm.

Problem 1 (Continuous Random Variables, 30 points)

  • [Density function] Determine the value of [math]\displaystyle{ C }[/math] such that [math]\displaystyle{ f(x) = C\exp(-x-e^{-x}), x\in \mathbb{R} }[/math] is a probability density function (PDF) for a continuous random variable.
  • [Independence (I)] Let [math]\displaystyle{ X }[/math] and [math]\displaystyle{ Y }[/math] be independent and identically distributed continuous random variables with cumulative distribution function (CDF) [math]\displaystyle{ F }[/math] and probability density function (PDF) [math]\displaystyle{ f }[/math]. Find out the density functions of [math]\displaystyle{ V = \max\{X,Y\} }[/math] and [math]\displaystyle{ U = \min\{X,Y\} }[/math].
  • Let [math]\displaystyle{ X }[/math] be uniformly distributed on [math]\displaystyle{ [-1,1] }[/math] and [math]\displaystyle{ Y_i = \cos(n \pi X) }[/math] for $i=1,2,\ldots,n$. Are the random variables [math]\displaystyle{ Y_1,Y_2,\ldots,Y_n }[/math] correlated? independent? You should prove your claim rigorously.
  • [Independence] Let [math]\displaystyle{ X, Y }[/math] be two nonnegative
  • [Expectation of random variables] Let [math]\displaystyle{ X }[/math] be a random variable with mean [math]\displaystyle{ \mu }[/math] and continuous cumulative distribution function (CDF) [math]\displaystyle{ F }[/math].
    • Suppose [math]\displaystyle{ X \ge 0 }[/math]. Show that [math]\displaystyle{ \int_{0}^a F(x) dx = \int_{a}^{\infty} [1-F(x)] dx }[/math] if and only if [math]\displaystyle{ a = \mu }[/math].
    • Suppose [math]\displaystyle{ X }[/math] further has finite variance. Show that [math]\displaystyle{ g(a) = \mathbb{E}((X-a)^2) }[/math] is a minimum when [math]\displaystyle{ a = \mu }[/math].
  • [Random process] Given a real number [math]\displaystyle{ U\lt 1 }[/math] as input of the following process, find out the expected returning value.
    Algorithm
    Input: real numbers [math]\displaystyle{ U \lt 1 }[/math];

    initialize [math]\displaystyle{ x = 1 }[/math] and [math]\displaystyle{ count = 0 }[/math];
    while [math]\displaystyle{ x \gt U }[/math] do
    • choose [math]\displaystyle{ y \in (0,1) }[/math] uniformly at random;
    • update [math]\displaystyle{ x = x * y }[/math] and [math]\displaystyle{ count = count + 1 }[/math];
    return [math]\displaystyle{ count }[/math];
  • [Random semicircle] We sample [math]\displaystyle{ n }[/math] points within a circle [math]\displaystyle{ C=\{(x,y) \in \mathbb{R}^2 \mid x^2+y^2 \le 1\} }[/math] independently and uniformly at random (i.e., the density function [math]\displaystyle{ f(x,y) \propto 1_{(x,y) \in C} }[/math]). Find out the probability that they all lie within some semicircle with radius [math]\displaystyle{ 1 }[/math]. (Hint: you may apply the technique of change of variables, see function of random variables or Chapter 4.7 in [GS])