Randomized Algorithms (Spring 2010)/Tail inequalities: Difference between revisions
Jump to navigation
Jump to search
imported>WikiSysop |
imported>WikiSysop |
||
Line 10: | Line 10: | ||
== Chernoff Bound == | == Chernoff Bound == | ||
{|border="1" | |||
|'''Theorem (Chernoff bound):''' | |||
:Let <math>X_1, X_2, \ldots, X_n</math> be independent Poisson trials such that <math>\mathbf{E}[X_i]=\Pr[X_i=1]=p_i</math>. Let <math>X=\sum_{i=1}^n X_i</math> and <math>\mu=\mathbf{E}[X]</math>. | |||
:Then for any <math>\delta>0</math>, | |||
::<math>\Pr[X\ge (1+\delta)\mu]<\left(\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}}\right)^{\mu}.</math> | |||
|} | |||
{|border="1" | |||
|'''Corollary:''' | |||
:Let <math>X_1, X_2, \ldots, X_n</math> be independent Poisson trials, <math>X=\sum_{i=1}^n X_i</math> and <math>\mu=\mathbf{E}[X]</math>. Then | |||
:1. for <math>0<\delta\le 1</math>, | |||
::<math>\Pr[X\ge (1+\delta)\mu]<e^{-\mu\delta^2/3};</math> | |||
:2. for <math>R\ge 6\mu</math>, | |||
::<math>\Pr[X\ge R]\le 2^{-R}.</math> | |||
|} | |||
== Permutation Routing == | == Permutation Routing == |
Revision as of 11:17, 25 January 2010
Select the Median
The selection problem is the problem of finding the [math]\displaystyle{ k }[/math]th smallest element in a set [math]\displaystyle{ S }[/math]. A typical case of selection problem is finding the median, the [math]\displaystyle{ (\lceil n/2\rceil) }[/math]th element in the sorted order of [math]\displaystyle{ S }[/math].
The median can be found in [math]\displaystyle{ O(n\log n) }[/math] time by sorting. There is a linear-time deterministic algorithm, "median of medians" algorithm, which is very sophisticated. Here we introduce a much simpler randomized algorithm which also runs in linear time. The idea of this randomized algorithm is by sampling.
Randomized median algorithm
Analysis
Chernoff Bound
Theorem (Chernoff bound):
|
Corollary:
|