Randomized Algorithms (Spring 2010)/Tail inequalities: Difference between revisions
Jump to navigation
Jump to search
imported>WikiSysop |
imported>WikiSysop |
||
Line 20: | Line 20: | ||
{|border="1" | {|border="1" | ||
|''' | |'''Chernoff bound (lower tail):''' | ||
:Let <math>X_1, X_2, \ldots, X_n</math> be independent Poisson trials, <math>X=\sum_{i=1}^n X_i</math>, and <math>\mu=\mathbf{E}[X]</math>. | |||
:Then for any <math>\delta>0</math>, | |||
::<math>\Pr[X\le (1-\delta)\mu]<\left(\frac{e^{-\delta}}{(1-\delta)^{(1-\delta)}}\right)^{\mu}.</math> | |||
|} | |||
{|border="1" | |||
|'''Useful forms of the Chernoff bound''' | |||
:Let <math>X_1, X_2, \ldots, X_n</math> be independent Poisson trials, <math>X=\sum_{i=1}^n X_i</math>, and <math>\mu=\mathbf{E}[X]</math>. Then | :Let <math>X_1, X_2, \ldots, X_n</math> be independent Poisson trials, <math>X=\sum_{i=1}^n X_i</math>, and <math>\mu=\mathbf{E}[X]</math>. Then | ||
:1. for <math> | :1. for <math>\delta>0</math>, | ||
::<math>\Pr[X\ge (1+\delta)\mu]<e^{-\mu\delta^2/3};</math> | ::<math>\Pr[X\ge (1+\delta)\mu]<e^{-\mu\delta^2/3};</math> | ||
:2. for <math> | ::<math>\Pr[X\le (1-\delta)\mu]<e^{-\mu\delta^2/2};</math> | ||
::<math>\Pr[X\ge | :2. for <math>t>0</math>, | ||
::<math>\Pr[X\ge\mu+t]\le e^{-2t^2/n};</math> | |||
::<math>\Pr[X\le\mu-t]\le e^{-2t^2/n};</math> | |||
:3. for <math>t\ge 2e\mu</math>, | |||
::<math>\Pr[X\ge t]\le 2^{-t}.</math> | |||
|} | |} | ||
== Permutation Routing == | == Permutation Routing == |
Revision as of 03:16, 26 January 2010
Select the Median
The selection problem is the problem of finding the [math]\displaystyle{ k }[/math]th smallest element in a set [math]\displaystyle{ S }[/math]. A typical case of selection problem is finding the median, the [math]\displaystyle{ (\lceil n/2\rceil) }[/math]th element in the sorted order of [math]\displaystyle{ S }[/math].
The median can be found in [math]\displaystyle{ O(n\log n) }[/math] time by sorting. There is a linear-time deterministic algorithm, "median of medians" algorithm, which is very sophisticated. Here we introduce a much simpler randomized algorithm which also runs in linear time. The idea of this randomized algorithm is by sampling.
Randomized median algorithm
Analysis
Chernoff Bound
Chernoff bound (upper tail):
|
Chernoff bound (lower tail):
|
Useful forms of the Chernoff bound
|