|
|
Line 33: |
Line 33: |
|
| |
|
| {|border="1" | | {|border="1" |
| |'''Chernoff-Hoeffding bound:''' | | |'''Chernoff-Hoeffding bound (for continuous random variables):''' |
| :Let <math>X=\sum_{i=1}^n X_i</math>, where for each <math>1\le i\le n</math>, <math>X_i</math> is independently distributed over the range <math>[0,1]</math>. Let <math>\mu=\mathbf{E}[X]</math>. | | :Let <math>X=\sum_{i=1}^n X_i</math>, where for each <math>1\le i\le n</math>, <math>X_i</math> is independently distributed over the range <math>[0,1]</math>. Let <math>\mu=\mathbf{E}[X]</math>. |
| :Then for any <math>\delta>0</math>, | | :Then for any <math>\delta>0</math>, |
Revision as of 05:38, 26 January 2010
Select the Median
The selection problem is the problem of finding the [math]\displaystyle{ k }[/math]th smallest element in a set [math]\displaystyle{ S }[/math]. A typical case of selection problem is finding the median, the [math]\displaystyle{ (\lceil n/2\rceil) }[/math]th element in the sorted order of [math]\displaystyle{ S }[/math].
The median can be found in [math]\displaystyle{ O(n\log n) }[/math] time by sorting. There is a linear-time deterministic algorithm, "median of medians" algorithm, which is very sophisticated. Here we introduce a much simpler randomized algorithm which also runs in linear time. The idea of this randomized algorithm is by sampling.
Randomized median algorithm
Analysis
Chernoff Bound
Binomial distribution
Moment generating functions
The Chernoff bound
Chernoff bound (the upper tail):
- Let [math]\displaystyle{ X=\sum_{i=1}^n X_i }[/math], where [math]\displaystyle{ X_1, X_2, \ldots, X_n }[/math] are independent Poisson trials. Let [math]\displaystyle{ \mu=\mathbf{E}[X] }[/math].
- Then for any [math]\displaystyle{ \delta\gt 0 }[/math],
- [math]\displaystyle{ \Pr[X\ge (1+\delta)\mu]\lt \left(\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}}\right)^{\mu}. }[/math]
|
Chernoff bound (the lower tail):
- Let [math]\displaystyle{ X=\sum_{i=1}^n X_i }[/math], where [math]\displaystyle{ X_1, X_2, \ldots, X_n }[/math] are independent Poisson trials. Let [math]\displaystyle{ \mu=\mathbf{E}[X] }[/math].
- Then for any [math]\displaystyle{ 0\lt \delta\lt 1 }[/math],
- [math]\displaystyle{ \Pr[X\le (1-\delta)\mu]\lt \left(\frac{e^{-\delta}}{(1-\delta)^{(1-\delta)}}\right)^{\mu}. }[/math]
|
Chernoff-Hoeffding bound (for continuous random variables):
- Let [math]\displaystyle{ X=\sum_{i=1}^n X_i }[/math], where for each [math]\displaystyle{ 1\le i\le n }[/math], [math]\displaystyle{ X_i }[/math] is independently distributed over the range [math]\displaystyle{ [0,1] }[/math]. Let [math]\displaystyle{ \mu=\mathbf{E}[X] }[/math].
- Then for any [math]\displaystyle{ \delta\gt 0 }[/math],
- [math]\displaystyle{ \Pr[X\ge (1+\delta)\mu]\lt \left(\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}}\right)^{\mu}; }[/math]
- and for any [math]\displaystyle{ 0\lt \delta\lt 1 }[/math],
- [math]\displaystyle{ \Pr[X\ge (1-\delta)\mu]\lt \left(\frac{e^{-\delta}}{(1-\delta)^{(1-\delta)}}\right)^{\mu}. }[/math]
|
Useful forms of the Chernoff bound
- Let [math]\displaystyle{ X=\sum_{i=1}^n X_i }[/math], where for each [math]\displaystyle{ 1\le i\le n }[/math], [math]\displaystyle{ X_i }[/math] is independently distributed over the range [math]\displaystyle{ [0,1] }[/math]. Let [math]\displaystyle{ \mu=\mathbf{E}[X] }[/math]. Then
- 1. for [math]\displaystyle{ 0\lt \delta\le 1 }[/math],
- [math]\displaystyle{ \Pr[X\ge (1+\delta)\mu]\lt \exp\left(-\frac{\mu\delta^2}{3}\right); }[/math]
- [math]\displaystyle{ \Pr[X\le (1-\delta)\mu]\lt \exp\left(-\frac{\mu\delta^2}{2}\right); }[/math]
- 2. for [math]\displaystyle{ t\gt 0 }[/math],
- [math]\displaystyle{ \Pr[X\ge\mu+t]\le \exp\left(-\frac{2t^2}{n}\right); }[/math]
- [math]\displaystyle{ \Pr[X\le\mu-t]\le \exp\left(-\frac{2t^2}{n}\right); }[/math]
- 3. for [math]\displaystyle{ t\ge 2e\mu }[/math],
- [math]\displaystyle{ \Pr[X\ge t]\le 2^{-t}. }[/math]
|
Permutation Routing