Randomized Algorithms (Spring 2010)/Martingales: Difference between revisions
Jump to navigation
Jump to search
imported>WikiSysop |
imported>WikiSysop |
||
Line 6: | Line 6: | ||
{|border="1" | {|border="1" | ||
|'''Azuma's Inequality:''' | |'''Azuma's Inequality:''' | ||
:Let <math>X_0,X_1,\ldots</math> be a martingale such that for | :Let <math>X_0,X_1,\ldots</math> be a martingale such that, for all <math>k\ge 1</math>, | ||
::<math> | ::<math> | ||
|X_{k}-X_{k-1}|\le c_k, | |X_{k}-X_{k-1}|\le c_k, | ||
Line 13: | Line 13: | ||
::<math>\begin{align} | ::<math>\begin{align} | ||
\Pr\left[|X_n-X_0|\ge t\right]\le 2\exp\left(-\frac{t^2}{2\sum_{k=1}^nc_k^2}\right). | \Pr\left[|X_n-X_0|\ge t\right]\le 2\exp\left(-\frac{t^2}{2\sum_{k=1}^nc_k^2}\right). | ||
\end{align}</math> | |||
|} | |||
{|border="1" | |||
|'''Azuma's Inequality:''' | |||
:Let <math>X_0,X_1,\ldots</math> be a martingale such that, for all <math>k\ge 1</math>, | |||
::<math> | |||
|X_{k}-X_{k-1}|\le c, | |||
</math> | |||
Then | |||
::<math>\begin{align} | |||
\Pr\left[|X_n-X_0|\ge ct\sqrt{n}\right]\le 2 e^{-t^2/2}. | |||
\end{align}</math> | \end{align}</math> | ||
|} | |} |
Revision as of 07:44, 6 April 2010
Martingales
Review of conditional probability
Martingales and Azuma's Inequality
Azuma's Inequality:
Then
|
Azuma's Inequality:
Then
|