Randomized Algorithms (Spring 2010)/Martingales: Difference between revisions

From TCS Wiki
Jump to navigation Jump to search
imported>WikiSysop
imported>WikiSysop
Line 30: Line 30:


=== Generalizations ===
=== Generalizations ===
{|border="1"
|'''Azuma's Inequality (general version):'''
:Let <math>Y_0,Y_1,\ldots</math> be a martingale with respect to the sequence <math>X_0,X_1,\ldots</math> such that, for all <math>k\ge 1</math>,
::<math>
|Y_{k}-Y_{k-1}|\le c_k,
</math>
Then
::<math>\begin{align}
\Pr\left[|Y_n-Y_0|\ge t\right]\le 2\exp\left(-\frac{t^2}{2\sum_{k=1}^nc_k^2}\right).
\end{align}</math>
|}


== The Method of Bounded Differences ==
== The Method of Bounded Differences ==


== Applications ==
== Applications ==

Revision as of 07:51, 6 April 2010

Martingales

Review of conditional probability

Martingales and Azuma's Inequality

Azuma's Inequality:
Let [math]\displaystyle{ X_0,X_1,\ldots }[/math] be a martingale such that, for all [math]\displaystyle{ k\ge 1 }[/math],
[math]\displaystyle{ |X_{k}-X_{k-1}|\le c_k, }[/math]

Then

[math]\displaystyle{ \begin{align} \Pr\left[|X_n-X_0|\ge t\right]\le 2\exp\left(-\frac{t^2}{2\sum_{k=1}^nc_k^2}\right). \end{align} }[/math]


Corollary:
Let [math]\displaystyle{ X_0,X_1,\ldots }[/math] be a martingale such that, for all [math]\displaystyle{ k\ge 1 }[/math],
[math]\displaystyle{ |X_{k}-X_{k-1}|\le c, }[/math]

Then

[math]\displaystyle{ \begin{align} \Pr\left[|X_n-X_0|\ge ct\sqrt{n}\right]\le 2 e^{-t^2/2}. \end{align} }[/math]

Generalizations

Azuma's Inequality (general version):
Let [math]\displaystyle{ Y_0,Y_1,\ldots }[/math] be a martingale with respect to the sequence [math]\displaystyle{ X_0,X_1,\ldots }[/math] such that, for all [math]\displaystyle{ k\ge 1 }[/math],
[math]\displaystyle{ |Y_{k}-Y_{k-1}|\le c_k, }[/math]

Then

[math]\displaystyle{ \begin{align} \Pr\left[|Y_n-Y_0|\ge t\right]\le 2\exp\left(-\frac{t^2}{2\sum_{k=1}^nc_k^2}\right). \end{align} }[/math]

The Method of Bounded Differences

Applications