Randomized Algorithms (Spring 2010)/Martingales: Difference between revisions
imported>WikiSysop |
imported>WikiSysop |
||
Line 50: | Line 50: | ||
;Example 2 | ;Example 2 | ||
:Consider an infinite grid. A '''random walk''' starts from the origin, and at each step moves to one of the four directions with equal probability. Let <math>X_i</math> be the distance from the origin, measured by <math>\ell_1</math>-distance (the length of the shortest path on the grid). The sequence <math>X_0,X_1,\ldots</math> defines a martingale. | :Consider an infinite grid. A '''random walk''' starts from the origin, and at each step moves to one of the four directions with equal probability. Let <math>X_i</math> be the distance from the origin, measured by <math>\ell_1</math>-distance (the length of the shortest path on the grid). The sequence <math>X_0,X_1,\ldots</math> defines a martingale. | ||
::[[File:Gridwalk.png|300px]] | |||
:The proof is almost the same as the previous one. | |||
{|border="1" | {|border="1" |
Revision as of 05:28, 8 April 2010
Martingales
Review of conditional probability
The conditional expectation of a random variable [math]\displaystyle{ Y }[/math] with respect to an event [math]\displaystyle{ \mathcal{E} }[/math] is defined by
- [math]\displaystyle{ \mathbf{E}[Y\mid \mathcal{E}]=\sum_{y}y\Pr[Y=y\mid\mathcal{E}]. }[/math]
In particular, if the event [math]\displaystyle{ \mathcal{E} }[/math] is [math]\displaystyle{ X=a }[/math], the conditional expectation
- [math]\displaystyle{ \mathbf{E}[Y\mid X=a] }[/math]
defines a function
- [math]\displaystyle{ f(a)=\mathbf{E}[Y\mid X=a]. }[/math]
Thus, [math]\displaystyle{ \mathbf{E}[Y\mid X] }[/math] can be regarded as a random variable [math]\displaystyle{ f(X) }[/math].
- Example
- Suppose that we uniformly sample a human from all human beings. Let [math]\displaystyle{ Y }[/math] be his/her height, and let [math]\displaystyle{ X }[/math] be the country where he/she is from. For any country [math]\displaystyle{ a }[/math], [math]\displaystyle{ \mathbf{E}[Y\mid X=a] }[/math] gives the average height of that country. And [math]\displaystyle{ \mathbf{E}[Y\mid X] }[/math] is the random variable which can be defined in either ways:
- We choose a human uniformly at random from all human beings, and [math]\displaystyle{ \mathbf{E}[Y\mid X] }[/math] is the average height of the country where he/she comes from.
- We choose a country at random with a probability proportional to its population, and [math]\displaystyle{ \mathbf{E}[Y\mid X] }[/math] is the average height of the chosen country.
Martingales and Azuma's Inequality
Definition (martingale):
|
- Example 1
- A fair coin is flipped for a number of times. Let [math]\displaystyle{ Z_j\in\{-1,1\} }[/math] denote the outcome of the [math]\displaystyle{ j }[/math]th flip. Let
- [math]\displaystyle{ X_0=0\quad \mbox{ and } \quad X_i=\sum_{j\le i}Z_j }[/math].
- The random variables [math]\displaystyle{ X_0,X_1,\ldots }[/math] defines a martingale.
- Proof
- We first observe that [math]\displaystyle{ \mathbf{E}[X_i\mid X_0,\ldots,X_{i-1}] = \mathbf{E}[X_i\mid X_{i-1}] }[/math], which intuitively says that the next number of HEADs depends only on the current number of HEADs. This property is also called the Markov property in statistic processes.
- [math]\displaystyle{ \begin{align} \mathbf{E}[X_i\mid X_0,\ldots,X_{i-1}] &= \mathbf{E}[X_i\mid X_{i-1}]\\ &= \mathbf{E}[X_{i-1}+Z_{i}\mid X_{i-1}]\\ &= \mathbf{E}[X_{i-1}\mid X_{i-1}]+\mathbf{E}[Z_{i}\mid X_{i-1}]\\ &= X_{i-1}+\mathbf{E}[Z_{i}\mid X_{i-1}]\\ &= X_{i-1}+\mathbf{E}[Z_{i}] &\quad (\mbox{independence of coin flips})\\ &= X_{i-1} \end{align} }[/math]
- Example 2
- Consider an infinite grid. A random walk starts from the origin, and at each step moves to one of the four directions with equal probability. Let [math]\displaystyle{ X_i }[/math] be the distance from the origin, measured by [math]\displaystyle{ \ell_1 }[/math]-distance (the length of the shortest path on the grid). The sequence [math]\displaystyle{ X_0,X_1,\ldots }[/math] defines a martingale.
- The proof is almost the same as the previous one.
Azuma's Inequality:
|
Corollary:
|
Generalizations
Definition (martingale, general version):
|
Therefore, a sequence [math]\displaystyle{ X_0,X_1,\ldots }[/math] is a martingale if it is a martingale with respect to itself.
Azuma's Inequality (general version):
|
Definition (The Doob sequence):
|
The Method of Bounded Differences
For arbitrary random variables
Theorem (The method of averaged bounded differences):
|
Define the Doob Martingale sequence [math]\displaystyle{ Y_0,Y_1,\ldots,Y_n }[/math] by setting [math]\displaystyle{ Y_0=\mathbf{E}[f(X_1,\ldots,X_n)] }[/math] and, for [math]\displaystyle{ 1\le i\le n }[/math], [math]\displaystyle{ Y_i=\mathbf{E}[f(X_1,\ldots,X_n)\mid X_1,\ldots,X_i] }[/math]. Then the above theorem is a restatement of the Azuma's inequality holding for [math]\displaystyle{ Y_0,Y_1,\ldots,Y_n }[/math].
For independent random variables
Definition (Lipschitz condition):
|
In other words, the function satisfies the Lipschitz condition if an arbitrary change in the value of any one argument does not change the value of the function by more than 1.
Definition (Lipschitz condition, general version):
|
Corollary (Method of bounded differences):
|