Combinatorics (Fall 2010)/Basic enumeration: Difference between revisions

From TCS Wiki
Jump to navigation Jump to search
imported>WikiSysop
imported>WikiSysop
Line 7: Line 7:
== The twelvfold way ==
== The twelvfold way ==


{|border="2"  cellspacing="4" cellpadding="3" rules="all" style="margin:1em 1em 1em 0; border:solid 1px #AAAAAA; border-collapse:collapse;empty-cells:show;"
{|border="2"  cellspacing="4" cellpadding="10" rules="all" style="margin:1em 1em 1em 0; border:solid 1px #AAAAAA; border-collapse:collapse;empty-cells:show;"
|-
|-
|bgcolor="#A7C1F2" | Elements of <math>N</math>
!bgcolor="#A7C1F2" | Elements of <math>N</math>
|bgcolor="#A7C1F2" | Elements of <math>M</math>  
!bgcolor="#A7C1F2" | Elements of <math>M</math>  
|bgcolor="#A7C1F2" | Any <math>f</math>  
!bgcolor="#A7C1F2" | Any <math>f</math>  
|bgcolor="#A7C1F2" | Injective (1-1) <math>f</math>  
!bgcolor="#A7C1F2" | Injective (1-1) <math>f</math>  
|bgcolor="#A7C1F2" | Surjective (on-to) <math>f</math>  
!bgcolor="#A7C1F2" | Surjective (on-to) <math>f</math>  
|-
|-
| distinguishable
|align="center"| ''distinguishable''
| distinguishable
|align="center"| ''distinguishable''
| <math>m^n</math>
|align="center"| <math>m^n\,</math>
|  
|align="center"| <math>\left(m\right)_n</math>
|
|align="center"| <math>m!S(n, m)\,</math>
|-
|-
| indistinguishable
|align="center"| ''indistinguishable''
| distinguishable
|align="center"| ''distinguishable''
|  
|align="center"| <math>\left({m\choose n}\right)</math>
|<math>{m\choose n}</math>
|align="center"|<math>{m\choose n}</math>
|
|align="center"|<math>\left({m\choose n-m}\right)</math>
|-
|-
| distinguishable
|align="center"| ''distinguishable''
| indistinguishable
|align="center"| ''indistinguishable''
|
|align="center"| <math>\sum_{k=1}^m S(n,k)</math>
|  
|align="center"| <math>\begin{cases}1 & \mbox{if }n\le m\\ 0& \mbox{if }n>m\end{cases}</math>
|
|align="center"| <math>S(n,m)\,</math>
|-
|-
| indistinguishable
|align="center"| ''indistinguishable''
| indistinguishable
|align="center"| ''indistinguishable''
|  
|align="center"| <math>\sum_{k=1}^m p_k(n)</math>
|
|align="center"| <math>\begin{cases}1 & \mbox{if }n\le m\\ 0& \mbox{if }n>m\end{cases}</math>
|
|align="center"| <math>p_m(n)\,</math>
|}
|}

Revision as of 05:22, 8 July 2010

Counting Problems

Sets and Multisets

Permutations

The twelvfold way

Elements of [math]\displaystyle{ N }[/math] Elements of [math]\displaystyle{ M }[/math] Any [math]\displaystyle{ f }[/math] Injective (1-1) [math]\displaystyle{ f }[/math] Surjective (on-to) [math]\displaystyle{ f }[/math]
distinguishable distinguishable [math]\displaystyle{ m^n\, }[/math] [math]\displaystyle{ \left(m\right)_n }[/math] [math]\displaystyle{ m!S(n, m)\, }[/math]
indistinguishable distinguishable [math]\displaystyle{ \left({m\choose n}\right) }[/math] [math]\displaystyle{ {m\choose n} }[/math] [math]\displaystyle{ \left({m\choose n-m}\right) }[/math]
distinguishable indistinguishable [math]\displaystyle{ \sum_{k=1}^m S(n,k) }[/math] [math]\displaystyle{ \begin{cases}1 & \mbox{if }n\le m\\ 0& \mbox{if }n\gt m\end{cases} }[/math] [math]\displaystyle{ S(n,m)\, }[/math]
indistinguishable indistinguishable [math]\displaystyle{ \sum_{k=1}^m p_k(n) }[/math] [math]\displaystyle{ \begin{cases}1 & \mbox{if }n\le m\\ 0& \mbox{if }n\gt m\end{cases} }[/math] [math]\displaystyle{ p_m(n)\, }[/math]