Combinatorics (Fall 2010)/Partitions, sieve methods: Difference between revisions
Jump to navigation
Jump to search
imported>WikiSysop |
imported>WikiSysop |
||
Line 1: | Line 1: | ||
== Principle of Inclusion-Exclusion == | == Principle of Inclusion-Exclusion == | ||
Let <math>A_1,A_2,\ldots,A_n</math> be a family of subsets of <math>U</math>. | |||
For an <math>I\subseteq\{1,2,\ldots,n\}</math>, we denote | For an <math>I\subseteq\{1,2,\ldots,n\}</math>, we denote | ||
:<math>A_I=\bigcap_{i\in I}A_i</math>. | :<math>A_I=\bigcap_{i\in I}A_i</math> | ||
with the convention that <math>A_\emptyset=U</math>. | |||
{{Theorem|Principle of Inclusion-Exclusion| | {{Theorem|Principle of Inclusion-Exclusion| | ||
:Let <math>A_1,A_2,\ldots,A_n</math> be a family of subsets of <math>U</math>. Then the number of elements of <math>U</math> which lie in none of the subsets <math>A_i</math> is | :Let <math>A_1,A_2,\ldots,A_n</math> be a family of subsets of <math>U</math>. Then the number of elements of <math>U</math> which lie in none of the subsets <math>A_i</math> is | ||
::<math>\sum_{I\subseteq\{1,\ldots, n\}}(-1)^{|I|}|A_I|</math>. | ::<math>\sum_{I\subseteq\{1,\ldots, n\}}(-1)^{|I|}|A_I|</math>. | ||
}} | }} | ||
Let <math>S_k=\sum_{|I|=k}|A_I|\,</math>. Conventionally, <math>S_0=|A_\emptyset|</math>. The principle of inclusion-exclusion can be written as | |||
:<math> | |||
S_0-S_1+S_2+\cdots+(-1)^nS_n. | |||
</math> | |||
== Permutations == | == Permutations == |
Revision as of 13:19, 14 July 2010
Principle of Inclusion-Exclusion
Let [math]\displaystyle{ A_1,A_2,\ldots,A_n }[/math] be a family of subsets of [math]\displaystyle{ U }[/math]. For an [math]\displaystyle{ I\subseteq\{1,2,\ldots,n\} }[/math], we denote
- [math]\displaystyle{ A_I=\bigcap_{i\in I}A_i }[/math]
with the convention that [math]\displaystyle{ A_\emptyset=U }[/math].
Principle of Inclusion-Exclusion - Let [math]\displaystyle{ A_1,A_2,\ldots,A_n }[/math] be a family of subsets of [math]\displaystyle{ U }[/math]. Then the number of elements of [math]\displaystyle{ U }[/math] which lie in none of the subsets [math]\displaystyle{ A_i }[/math] is
- [math]\displaystyle{ \sum_{I\subseteq\{1,\ldots, n\}}(-1)^{|I|}|A_I| }[/math].
- Let [math]\displaystyle{ A_1,A_2,\ldots,A_n }[/math] be a family of subsets of [math]\displaystyle{ U }[/math]. Then the number of elements of [math]\displaystyle{ U }[/math] which lie in none of the subsets [math]\displaystyle{ A_i }[/math] is
Let [math]\displaystyle{ S_k=\sum_{|I|=k}|A_I|\, }[/math]. Conventionally, [math]\displaystyle{ S_0=|A_\emptyset| }[/math]. The principle of inclusion-exclusion can be written as
- [math]\displaystyle{ S_0-S_1+S_2+\cdots+(-1)^nS_n. }[/math]