Combinatorics (Fall 2010)/Partitions, sieve methods: Difference between revisions

From TCS Wiki
Jump to navigation Jump to search
imported>WikiSysop
imported>WikiSysop
Line 1: Line 1:
== Principle of Inclusion-Exclusion ==
== Principle of Inclusion-Exclusion ==
 
Let <math>A_1,A_2,\ldots,A_n</math> be a family of subsets of <math>U</math>.
For an <math>I\subseteq\{1,2,\ldots,n\}</math>, we denote
For an <math>I\subseteq\{1,2,\ldots,n\}</math>, we denote
:<math>A_I=\bigcap_{i\in I}A_i</math>.
:<math>A_I=\bigcap_{i\in I}A_i</math>
with the convention that <math>A_\emptyset=U</math>.
{{Theorem|Principle of Inclusion-Exclusion|
{{Theorem|Principle of Inclusion-Exclusion|
:Let <math>A_1,A_2,\ldots,A_n</math> be a family of subsets of <math>U</math>. Then the number of elements of <math>U</math> which lie in none of the subsets <math>A_i</math> is
:Let <math>A_1,A_2,\ldots,A_n</math> be a family of subsets of <math>U</math>. Then the number of elements of <math>U</math> which lie in none of the subsets <math>A_i</math> is
::<math>\sum_{I\subseteq\{1,\ldots, n\}}(-1)^{|I|}|A_I|</math>.
::<math>\sum_{I\subseteq\{1,\ldots, n\}}(-1)^{|I|}|A_I|</math>.
}}
}}
Let <math>S_k=\sum_{|I|=k}|A_I|\,</math>. Conventionally, <math>S_0=|A_\emptyset|</math>. The principle of inclusion-exclusion can be written as
:<math>
S_0-S_1+S_2+\cdots+(-1)^nS_n.
</math>


== Permutations ==
== Permutations ==

Revision as of 13:19, 14 July 2010

Principle of Inclusion-Exclusion

Let [math]\displaystyle{ A_1,A_2,\ldots,A_n }[/math] be a family of subsets of [math]\displaystyle{ U }[/math]. For an [math]\displaystyle{ I\subseteq\{1,2,\ldots,n\} }[/math], we denote

[math]\displaystyle{ A_I=\bigcap_{i\in I}A_i }[/math]

with the convention that [math]\displaystyle{ A_\emptyset=U }[/math].

Principle of Inclusion-Exclusion
Let [math]\displaystyle{ A_1,A_2,\ldots,A_n }[/math] be a family of subsets of [math]\displaystyle{ U }[/math]. Then the number of elements of [math]\displaystyle{ U }[/math] which lie in none of the subsets [math]\displaystyle{ A_i }[/math] is
[math]\displaystyle{ \sum_{I\subseteq\{1,\ldots, n\}}(-1)^{|I|}|A_I| }[/math].

Let [math]\displaystyle{ S_k=\sum_{|I|=k}|A_I|\, }[/math]. Conventionally, [math]\displaystyle{ S_0=|A_\emptyset| }[/math]. The principle of inclusion-exclusion can be written as

[math]\displaystyle{ S_0-S_1+S_2+\cdots+(-1)^nS_n. }[/math]

Permutations

Partitions

Posets and Möbius function