Combinatorics (Fall 2010)/Random graphs: Difference between revisions
Jump to navigation
Jump to search
imported>WikiSysop |
imported>WikiSysop |
||
Line 4: | Line 4: | ||
=== The probabilistic method === | === The probabilistic method === | ||
==== Coloring large-girth graphs ==== | ==== Coloring large-girth graphs ==== | ||
{{Theorem|Definition| | |||
Let <math>G(V,E)</math> be an undirected graph. | |||
* A '''cycle''' of length <math>k</math> in <math>G</math> is a sequence of distinct vertices <math>v_1,v_2,\ldots,v_{k}</math> such that <math>v_iv_{i+1}\in E</math> for all <math>i=1,2,\ldots,k-1</math> and <math>v_kv_1\in E</math>. | |||
* The '''girth''' of <math>G</math>, dented <math>g(G)</math>, is the length of the shortest cycle in <math>G</math>. | |||
* The '''chromatic number''' of <math>G</math>, denoted <math>\chi(G)</math>, is the minimal number of colors which we need to color the vertices of <math>G</math> so that no two adjacent vertices have the same color. Formally, | |||
::<math>\chi(G)=\min\{C\in\mathbb{N}\mid \exists f:V\rightarrow[C]\mbox{ such that }\forall uv\in E, f(u)\neq f(v)\}</math>. | |||
* The '''independence number''' of <math>G</math>, denoted <math>\alpha(G)</math>, is the size of the largest independent set in <math>G</math>. Formally, | |||
::<math>\alpha(G)=\max\{|S|\mid S\subseteq V\mbox{ and }\forall u,v\in S, uv\not\in E\}</math>. | |||
}} | |||
{{Theorem| Theorem (Erdős 1959)| | |||
: For all <math>k,\ell</math> there exists a graph <math>G</math> with <math>g(G)>\ell</math> and <math>\chi(G)>k\,</math>. | |||
}} | |||
==== Expander graphs ==== | ==== Expander graphs ==== |
Revision as of 07:46, 5 October 2010
Erdős–Rényi Random Graphs
The probabilistic method
Coloring large-girth graphs
Definition Let [math]\displaystyle{ G(V,E) }[/math] be an undirected graph.
- A cycle of length [math]\displaystyle{ k }[/math] in [math]\displaystyle{ G }[/math] is a sequence of distinct vertices [math]\displaystyle{ v_1,v_2,\ldots,v_{k} }[/math] such that [math]\displaystyle{ v_iv_{i+1}\in E }[/math] for all [math]\displaystyle{ i=1,2,\ldots,k-1 }[/math] and [math]\displaystyle{ v_kv_1\in E }[/math].
- The girth of [math]\displaystyle{ G }[/math], dented [math]\displaystyle{ g(G) }[/math], is the length of the shortest cycle in [math]\displaystyle{ G }[/math].
- The chromatic number of [math]\displaystyle{ G }[/math], denoted [math]\displaystyle{ \chi(G) }[/math], is the minimal number of colors which we need to color the vertices of [math]\displaystyle{ G }[/math] so that no two adjacent vertices have the same color. Formally,
- [math]\displaystyle{ \chi(G)=\min\{C\in\mathbb{N}\mid \exists f:V\rightarrow[C]\mbox{ such that }\forall uv\in E, f(u)\neq f(v)\} }[/math].
- The independence number of [math]\displaystyle{ G }[/math], denoted [math]\displaystyle{ \alpha(G) }[/math], is the size of the largest independent set in [math]\displaystyle{ G }[/math]. Formally,
- [math]\displaystyle{ \alpha(G)=\max\{|S|\mid S\subseteq V\mbox{ and }\forall u,v\in S, uv\not\in E\} }[/math].
Theorem (Erdős 1959) - For all [math]\displaystyle{ k,\ell }[/math] there exists a graph [math]\displaystyle{ G }[/math] with [math]\displaystyle{ g(G)\gt \ell }[/math] and [math]\displaystyle{ \chi(G)\gt k\, }[/math].