Combinatorics (Fall 2010)/Finite set systems: Difference between revisions
Jump to navigation
Jump to search
imported>WikiSysop m Protected "Combinatorics (Fall 2010)/Finite set systems" ([edit=sysop] (indefinite) [move=sysop] (indefinite)) |
imported>WikiSysop |
||
Line 2: | Line 2: | ||
=== Hall's theorem === | === Hall's marriage theorem === | ||
=== König | {{Theorem|Hall's Theorem| | ||
:The sets <math>S_1,S_2,\ldots,S_m</math> have a system of distinct representatives (SDR) if and only if | |||
::<math>\left|\bigcup_{i\in I}S_i\right|\ge |I|</math> for all <math>I\subseteq\{1,2,\ldots,m\}</math>. | |||
}} | |||
=== König-Egerváry theorem === | |||
{{Theorem|Theorem (König 1931; Egerváry 1931)| | |||
:In any bipartite graph, the size of a maximum matching equals the size of a minimum vertex cover. | |||
}} | |||
=== Menger's theorem === | === Menger's theorem === | ||
{{Theorem|Theorem (Menger 1927)| | |||
:Let <math>G</math> be a graph and let <math>s</math> and <math>t</math> be two vertices of <math>G</math>. The maximum number of internally disjoint paths from <math>s</math> to <math>t</math> equals the minimum number of vertices in a<math>s</math>-<math>t</math> separating set. | |||
}} | |||
=== Birkhoff's theorem === | === Birkhoff's theorem === | ||
{{Theorem|Theorem (Birkhoff 1949; von Neumann 1953)| | |||
:Every doubly stochastic matrix is a convex combination of permutation matrices. | |||
}} | |||
== Chains and Anti-chains == | == Chains and Anti-chains == |
Revision as of 13:33, 17 October 2010
Systems of Distinct Representatives (SDR)
Hall's marriage theorem
Hall's Theorem - The sets [math]\displaystyle{ S_1,S_2,\ldots,S_m }[/math] have a system of distinct representatives (SDR) if and only if
- [math]\displaystyle{ \left|\bigcup_{i\in I}S_i\right|\ge |I| }[/math] for all [math]\displaystyle{ I\subseteq\{1,2,\ldots,m\} }[/math].
- The sets [math]\displaystyle{ S_1,S_2,\ldots,S_m }[/math] have a system of distinct representatives (SDR) if and only if
König-Egerváry theorem
Theorem (König 1931; Egerváry 1931) - In any bipartite graph, the size of a maximum matching equals the size of a minimum vertex cover.
Menger's theorem
Theorem (Menger 1927) - Let [math]\displaystyle{ G }[/math] be a graph and let [math]\displaystyle{ s }[/math] and [math]\displaystyle{ t }[/math] be two vertices of [math]\displaystyle{ G }[/math]. The maximum number of internally disjoint paths from [math]\displaystyle{ s }[/math] to [math]\displaystyle{ t }[/math] equals the minimum number of vertices in a[math]\displaystyle{ s }[/math]-[math]\displaystyle{ t }[/math] separating set.
Birkhoff's theorem
Theorem (Birkhoff 1949; von Neumann 1953) - Every doubly stochastic matrix is a convex combination of permutation matrices.