Combinatorics (Fall 2010)/Finite set systems: Difference between revisions
Jump to navigation
Jump to search
imported>WikiSysop No edit summary |
imported>WikiSysop |
||
Line 7: | Line 7: | ||
:The sets <math>S_1,S_2,\ldots,S_m</math> have a system of distinct representatives (SDR) if and only if | :The sets <math>S_1,S_2,\ldots,S_m</math> have a system of distinct representatives (SDR) if and only if | ||
::<math>\left|\bigcup_{i\in I}S_i\right|\ge |I|</math> for all <math>I\subseteq\{1,2,\ldots,m\}</math>. | ::<math>\left|\bigcup_{i\in I}S_i\right|\ge |I|</math> for all <math>I\subseteq\{1,2,\ldots,m\}</math>. | ||
}} | }} | ||
Revision as of 13:50, 17 October 2010
Systems of Distinct Representatives (SDR)
Hall's marriage theorem
Hall's Theorem - The sets [math]\displaystyle{ S_1,S_2,\ldots,S_m }[/math] have a system of distinct representatives (SDR) if and only if
- [math]\displaystyle{ \left|\bigcup_{i\in I}S_i\right|\ge |I| }[/math] for all [math]\displaystyle{ I\subseteq\{1,2,\ldots,m\} }[/math].
- The sets [math]\displaystyle{ S_1,S_2,\ldots,S_m }[/math] have a system of distinct representatives (SDR) if and only if
Doubly stochastic matrices
Theorem (Birkhoff 1949; von Neumann 1953) - Every doubly stochastic matrix is a convex combination of permutation matrices.
Cuckoo hashing
Min-max theorems
- König-Egerváry theorem
- Menger's theorem
- Dilworth's theorem
Theorem (König 1931; Egerváry 1931) - In any bipartite graph, the size of a maximum matching equals the size of a minimum vertex cover.
Theorem (Menger 1927) - Let [math]\displaystyle{ G }[/math] be a graph and let [math]\displaystyle{ s }[/math] and [math]\displaystyle{ t }[/math] be two vertices of [math]\displaystyle{ G }[/math]. The maximum number of internally disjoint paths from [math]\displaystyle{ s }[/math] to [math]\displaystyle{ t }[/math] equals the minimum number of vertices in a[math]\displaystyle{ s }[/math]-[math]\displaystyle{ t }[/math] separating set.