Combinatorics (Fall 2010)/Finite set systems: Difference between revisions
imported>WikiSysop |
imported>WikiSysop |
||
Line 49: | Line 49: | ||
}} | }} | ||
{{Proof| | {{Proof| | ||
We prove a more general result: | |||
: Every <math>n\times n</math> nonnegative matrix <math>A=(a_{ij})</math> with | |||
::<math>\forall i, \sum_{j=1}^na_{ij}=\gamma</math> and <math>\forall j, \sum_{i=1}^na_{ij}=\gamma</math>, for some <math>\gamma>0</math>, | |||
:can be expressed as a linear combination <math>A=\sum_{i=1}^s\lambda_iP_i</math> of permutation matrices <math>P_1,\ldots,P_s</math>, where <math>\lambda_1,\ldots,\lambda_{s}</math> are nonnegative reals such that <math>\sum_{i=1}^s\lambda_i=\gamma</math>. | |||
The Birkhoff-von Neumann theorem is a special case of above statement with <math>\gamma=1</math>. | |||
We prove by induction on the number of non-zero entries in <math>A</math>, denoted by <math>m</math>. Since all the row and column sums equal to some <math>\gamma>0</math>, there are at least <math>n</math> such entries. If there are exactly <math>n</math> non-zero entries, the only possible <math>A</math> with <math>\forall i, \sum_{j=1}^na_{ij}=\gamma</math> and <math>\forall j, \sum_{i=1}^na_{ij}=\gamma</math> is that <math>A=\gamma P</math> for some permutation matrix <math>P</math>. | |||
Now suppose <math>A</math> has <math>m>n</math> non-zero entries and the theorem holds for matrices with a smaller number of non-zero entries. Define | |||
:<math>S_i=\{j\mid a_{ij}>0\},\quad i=1,2,\ldots,n,</math> | |||
and observe that <math>S_1, S_2,\ldots, S_n</math> satisfy Hall's condition. Otherwise if there exists an <math>I\subseteq\{1,2,\ldots,m\}</math> such that <math>\left|\bigcup_{i\in I}S_i\right|<|I|</math>, then all the non-zero entries of the rows in <math>I</math> would occupy less than <math>|I|</math> columns; hence the sum of these entries | |||
:<math>\sum_{i\in I}\sum_{j\in S_j}a_{ij}\le\sum_{j\in\bigcup_{i\in I}S_i}\sum_{i=1}^na_{ij}<|I|\gamma</math>, | |||
which contradicts that | |||
:<math>\sum_{i\in I}\sum_{j\in S_j}a_{ij}=\sum_{i\in I}\sum_{j=1}^na_{ij}=|I|\gamma</math>. | |||
By Hall's theorem, there is an SDR | |||
:<math>j_1\in S_1,\ldots,j_n\in S_n</math>. | |||
Take the permutation matrix <math>P=(p_{ij})</math> with entries <math>p_{ij}=1</math> if and only if <math>j=j_i</math>. Let <math>\lambda=\min\{a_{ij}\mid j=j_i, i=1,2,\ldots,n\}</math>, and consider the matrix <math>A'=A-\lambda P</math>. It is obvious that <math>A'</math> has less non-zero entries than <math>A</math> has. Moreover, <math>A'</math> satisfies that | |||
:<math>\forall i, \sum_{j=1}^na'_{ij}=\gamma-\lambda</math> and <math>\forall j, \sum_{i=1}^na'_{ij}=\gamma-\lambda</math>. | |||
Apply the induction hypothesis, <math>A'=\sum_{i=1}^s\lambda_iP_i</math> for permutation matrices <math>P_1,\ldots,P_m</math> and <math>\lambda_1,\ldots,\lambda_s>0</math> with <math>\sum_{i=1}^s\lambda_i=\gamma-\lambda</math>. Therefore, | |||
:<math>A=A'+\lambda P=\sum_{i=1}^s\lambda_iP_i+\lambda P</math> where <math>\sum_{i=1}^s\lambda_i=\gamma-\lambda+\lambda=\gamma</math>. | |||
}} | }} | ||
Revision as of 09:07, 24 October 2010
Systems of Distinct Representatives (SDR)
A system of distinct representatives (SDR) (also called a transversal) for a sequence of (not necessarily distinct) sets [math]\displaystyle{ S_1,S_2,\ldots,S_m }[/math] is a sequence of distinct elements [math]\displaystyle{ x_1,x_2,\ldots,x_m }[/math] such that [math]\displaystyle{ x_i\in S_i }[/math] for all [math]\displaystyle{ i=1,2,\ldots,m }[/math].
Hall's marriage theorem
Hall's Theorem (SDR) - The sets [math]\displaystyle{ S_1,S_2,\ldots,S_m }[/math] have a system of distinct representatives (SDR) if and only if
- [math]\displaystyle{ \left|\bigcup_{i\in I}S_i\right|\ge |I| }[/math] for all [math]\displaystyle{ I\subseteq\{1,2,\ldots,m\} }[/math].
- The sets [math]\displaystyle{ S_1,S_2,\ldots,S_m }[/math] have a system of distinct representatives (SDR) if and only if
The condition that [math]\displaystyle{ \left|\bigcup_{i\in I}S_i\right|\ge |I| }[/math] for all [math]\displaystyle{ I\subseteq\{1,2,\ldots,m\} }[/math] is also called the Hall's condition.
Proof. The necessity of Hall's condition for the existence of SDR is obvious. Suppose that [math]\displaystyle{ x_1\in S_1, x_2\in S_2,\ldots,x_m\in S_m }[/math] is an SDR.
- [math]\displaystyle{ \forall I\subseteq\{1,2,\ldots,m\}, \bigcup_{i\in I}S_i\supseteq \{x_i\mid i\in I\} }[/math]
thus [math]\displaystyle{ \left|\bigcup_{i\in I}S_i\right|\ge | \{x_i\mid i\in I\}|=|I| }[/math].
Now we prove the sufficiency of Hall's condition by induction on [math]\displaystyle{ m }[/math]. When [math]\displaystyle{ m=1 }[/math], the theorem trivially holds. Now assume the theorem hold for any integer smaller than [math]\displaystyle{ m }[/math]. We show the theorem hold for [math]\displaystyle{ m }[/math].
A subcollection of sets [math]\displaystyle{ \{S_i\mid i\in I\} }[/math], [math]\displaystyle{ |I|\lt m\, }[/math], is called a critical family if [math]\displaystyle{ \left|\bigcup_{i\in I}S_i\right|=|I| }[/math].
Case.1: There is no critical family, i.e. for each [math]\displaystyle{ I\subset\{1,2,\ldots,m\} }[/math], [math]\displaystyle{ \left|\bigcup_{i\in I}S_i\right|\gt |I| }[/math].
Take [math]\displaystyle{ S_m }[/math] and choose an arbitrary [math]\displaystyle{ x\in S_m }[/math] as its representative. Remove [math]\displaystyle{ x }[/math] from all other sets by letting [math]\displaystyle{ S'_i=S_i\setminus \{x\} }[/math] for [math]\displaystyle{ 1\le i\le m-1 }[/math]. Then for all [math]\displaystyle{ I\subseteq\{1,2,\ldots,m-1\} }[/math],
- [math]\displaystyle{ \left|\bigcup_{i\in I}S_i'\right|\ge \left|\bigcup_{i\in I}S_i\right|-1\ge |I| }[/math].
Due to the induction hypothesis, [math]\displaystyle{ S_1,\ldots,S_m }[/math] have an SDR, say [math]\displaystyle{ x_1\in S_1,\ldots,x_{m-1}\in S_{m-1} }[/math]. It is obvious that none of them equals [math]\displaystyle{ x }[/math] because [math]\displaystyle{ x }[/math] is removed. Thus, [math]\displaystyle{ x_1,\ldots,x_{m-1} }[/math] and [math]\displaystyle{ x\, }[/math] form an SDR for [math]\displaystyle{ S_1,S_2,\ldots,S_m }[/math].
Case.1: There is a critical family, i.e. [math]\displaystyle{ \exists I\subset\{1,2,\ldots,m\}, |I|\lt m }[/math], such that [math]\displaystyle{ \left|\bigcup_{i\in I}S_i\right|=|I| }[/math].
Suppose [math]\displaystyle{ S_{m-k+1},\ldots, S_m }[/math] are such a collection of [math]\displaystyle{ k\lt m }[/math] sets. Hall's condition certainly holds for these sets. Since [math]\displaystyle{ k\lt m }[/math], due to the induction hypothesis, there is an SDR for the sets, say [math]\displaystyle{ x_{m-k+1}\in S_{m-k+1},\ldots,x_m\in S_m }[/math].
Again, remove the [math]\displaystyle{ k }[/math] elements from the remaining sets by letting [math]\displaystyle{ S'_i=S_i\setminus\{x_{m-k+1},\ldots,x_m\} }[/math] for [math]\displaystyle{ 1\le i\le m-k }[/math]. By the Hall's condition, for any [math]\displaystyle{ I\subseteq\{1,2,\ldots,m-k\} }[/math], writing that [math]\displaystyle{ S=\bigcup_{i\in I}S_i\cup\bigcup_{i=m-k+1}^m S_i }[/math],
- [math]\displaystyle{ \left|S\right|\ge |I|+k }[/math],
thus
- [math]\displaystyle{ \left|\bigcup_{i\in I}S_i'\right|\ge |S|-\left|\bigcup_{i=m-k+1}^m S_i\right|\ge |I| }[/math].
Due to the induction hypothesis, there is an SDR for [math]\displaystyle{ S_1,\ldots, S_{m-k} }[/math], say [math]\displaystyle{ x_1\in S_1,\ldots, x_{m-k}\in S_{m-k} }[/math]. Combining it with the SDR [math]\displaystyle{ x_{m-k+1},\ldots, x_{m} }[/math] for [math]\displaystyle{ S_{m-k+1},\ldots, S_{m} }[/math], we have an SDR for [math]\displaystyle{ S_{1},\ldots, S_{m} }[/math].
- [math]\displaystyle{ \square }[/math]
Hall's Theorem (matching in bipartite graph) - A bipartite graph [math]\displaystyle{ G(U,V,E) }[/math] has a matching of [math]\displaystyle{ U }[/math] if and only if
- [math]\displaystyle{ \left|N(S)\right|\ge |S| }[/math] for all [math]\displaystyle{ S\subseteq U }[/math].
- A bipartite graph [math]\displaystyle{ G(U,V,E) }[/math] has a matching of [math]\displaystyle{ U }[/math] if and only if
Doubly stochastic matrices
Theorem (Birkhoff 1949; von Neumann 1953) - Every doubly stochastic matrix is a convex combination of permutation matrices.
Proof. We prove a more general result:
- Every [math]\displaystyle{ n\times n }[/math] nonnegative matrix [math]\displaystyle{ A=(a_{ij}) }[/math] with
- [math]\displaystyle{ \forall i, \sum_{j=1}^na_{ij}=\gamma }[/math] and [math]\displaystyle{ \forall j, \sum_{i=1}^na_{ij}=\gamma }[/math], for some [math]\displaystyle{ \gamma\gt 0 }[/math],
- can be expressed as a linear combination [math]\displaystyle{ A=\sum_{i=1}^s\lambda_iP_i }[/math] of permutation matrices [math]\displaystyle{ P_1,\ldots,P_s }[/math], where [math]\displaystyle{ \lambda_1,\ldots,\lambda_{s} }[/math] are nonnegative reals such that [math]\displaystyle{ \sum_{i=1}^s\lambda_i=\gamma }[/math].
The Birkhoff-von Neumann theorem is a special case of above statement with [math]\displaystyle{ \gamma=1 }[/math].
We prove by induction on the number of non-zero entries in [math]\displaystyle{ A }[/math], denoted by [math]\displaystyle{ m }[/math]. Since all the row and column sums equal to some [math]\displaystyle{ \gamma\gt 0 }[/math], there are at least [math]\displaystyle{ n }[/math] such entries. If there are exactly [math]\displaystyle{ n }[/math] non-zero entries, the only possible [math]\displaystyle{ A }[/math] with [math]\displaystyle{ \forall i, \sum_{j=1}^na_{ij}=\gamma }[/math] and [math]\displaystyle{ \forall j, \sum_{i=1}^na_{ij}=\gamma }[/math] is that [math]\displaystyle{ A=\gamma P }[/math] for some permutation matrix [math]\displaystyle{ P }[/math].
Now suppose [math]\displaystyle{ A }[/math] has [math]\displaystyle{ m\gt n }[/math] non-zero entries and the theorem holds for matrices with a smaller number of non-zero entries. Define
- [math]\displaystyle{ S_i=\{j\mid a_{ij}\gt 0\},\quad i=1,2,\ldots,n, }[/math]
and observe that [math]\displaystyle{ S_1, S_2,\ldots, S_n }[/math] satisfy Hall's condition. Otherwise if there exists an [math]\displaystyle{ I\subseteq\{1,2,\ldots,m\} }[/math] such that [math]\displaystyle{ \left|\bigcup_{i\in I}S_i\right|\lt |I| }[/math], then all the non-zero entries of the rows in [math]\displaystyle{ I }[/math] would occupy less than [math]\displaystyle{ |I| }[/math] columns; hence the sum of these entries
- [math]\displaystyle{ \sum_{i\in I}\sum_{j\in S_j}a_{ij}\le\sum_{j\in\bigcup_{i\in I}S_i}\sum_{i=1}^na_{ij}\lt |I|\gamma }[/math],
which contradicts that
- [math]\displaystyle{ \sum_{i\in I}\sum_{j\in S_j}a_{ij}=\sum_{i\in I}\sum_{j=1}^na_{ij}=|I|\gamma }[/math].
By Hall's theorem, there is an SDR
- [math]\displaystyle{ j_1\in S_1,\ldots,j_n\in S_n }[/math].
Take the permutation matrix [math]\displaystyle{ P=(p_{ij}) }[/math] with entries [math]\displaystyle{ p_{ij}=1 }[/math] if and only if [math]\displaystyle{ j=j_i }[/math]. Let [math]\displaystyle{ \lambda=\min\{a_{ij}\mid j=j_i, i=1,2,\ldots,n\} }[/math], and consider the matrix [math]\displaystyle{ A'=A-\lambda P }[/math]. It is obvious that [math]\displaystyle{ A' }[/math] has less non-zero entries than [math]\displaystyle{ A }[/math] has. Moreover, [math]\displaystyle{ A' }[/math] satisfies that
- [math]\displaystyle{ \forall i, \sum_{j=1}^na'_{ij}=\gamma-\lambda }[/math] and [math]\displaystyle{ \forall j, \sum_{i=1}^na'_{ij}=\gamma-\lambda }[/math].
Apply the induction hypothesis, [math]\displaystyle{ A'=\sum_{i=1}^s\lambda_iP_i }[/math] for permutation matrices [math]\displaystyle{ P_1,\ldots,P_m }[/math] and [math]\displaystyle{ \lambda_1,\ldots,\lambda_s\gt 0 }[/math] with [math]\displaystyle{ \sum_{i=1}^s\lambda_i=\gamma-\lambda }[/math]. Therefore,
- [math]\displaystyle{ A=A'+\lambda P=\sum_{i=1}^s\lambda_iP_i+\lambda P }[/math] where [math]\displaystyle{ \sum_{i=1}^s\lambda_i=\gamma-\lambda+\lambda=\gamma }[/math].
- Every [math]\displaystyle{ n\times n }[/math] nonnegative matrix [math]\displaystyle{ A=(a_{ij}) }[/math] with
- [math]\displaystyle{ \square }[/math]
Min-max theorems
- König-Egerváry theorem (König 1931; Egerváry 1931): in a bipartite graph, the maximum number of edges in a matching equals the minimum number of vertices in a vertex cover.
- Menger's theorem (Menger 1927): the minimum number of vertices separating two given vertices in a graph equals the maximum number of vertex-disjoint paths between the two vertices.
- Dilworth's theorem (Dilworth 1950): the minimum number of chains which cover a partially ordered set equals the maximum number of elements in an antichain.
König-Egerváry Theorem (graph theory form) - In any bipartite graph, the size of a maximum matching equals the size of a minimum vertex cover.
König-Egerváry Theorem (matrix form) - Let [math]\displaystyle{ A }[/math] be an [math]\displaystyle{ m\times n }[/math] 0-1 matrix. The maximum number of independent 1's is equal to the minimum number of rows and columns required to cover all the 1's in [math]\displaystyle{ A }[/math].
Menger's Theorem - Let [math]\displaystyle{ G }[/math] be a graph and let [math]\displaystyle{ s }[/math] and [math]\displaystyle{ t }[/math] be two vertices of [math]\displaystyle{ G }[/math]. The maximum number of internally disjoint paths from [math]\displaystyle{ s }[/math] to [math]\displaystyle{ t }[/math] equals the minimum number of vertices in an [math]\displaystyle{ s }[/math]-[math]\displaystyle{ t }[/math] separating set.
Chains and antichains
Dilworth's theorem
Dilworth's Theorem - Suppose that the largest antichain in the poset [math]\displaystyle{ P }[/math] has size [math]\displaystyle{ r }[/math]. Then [math]\displaystyle{ P }[/math] can be partitioned into [math]\displaystyle{ r }[/math] chains.
Application: Erdős-Szekeres Theorem
Erdős-Szekeres Theorem - A sequence of more than [math]\displaystyle{ mn }[/math] different real numbers must contain either an increasing subsequence of length [math]\displaystyle{ m+1 }[/math], or a decreasing subsequence of length [math]\displaystyle{ n+1 }[/math].
Proof by Dilworth's theorem (Original proof of Erdős-Szekeres)
- [math]\displaystyle{ \square }[/math]
Application: Hall's Theorem
Hall's Theorem - The sets [math]\displaystyle{ S_1,S_2,\ldots,S_m }[/math] have a system of distinct representatives (SDR) if and only if
- [math]\displaystyle{ \left|\bigcup_{i\in I}S_i\right|\ge |I| }[/math] for all [math]\displaystyle{ I\subseteq\{1,2,\ldots,m\} }[/math].
- The sets [math]\displaystyle{ S_1,S_2,\ldots,S_m }[/math] have a system of distinct representatives (SDR) if and only if
Proof by Dilworth's theorem - [math]\displaystyle{ \square }[/math]