Combinatorics (Fall 2010)/Extremal set theory: Difference between revisions
Jump to navigation
Jump to search
imported>WikiSysop |
imported>WikiSysop |
||
Line 1: | Line 1: | ||
== Sperner system == | == Sperner system == | ||
{{Theorem|Theorem (Sperner 1928)| | {{Theorem|Theorem (Sperner 1928)| | ||
:Let <math>| | :Let <math>|X|=n</math> and <math>\mathcal{F}\subseteq 2^X</math> be an antichain. Then | ||
::<math>|\mathcal{F}|\le{n\choose \lfloor n/2\rfloor}</math>. | ::<math>|\mathcal{F}|\le{n\choose \lfloor n/2\rfloor}</math>. | ||
}} | }} | ||
Line 7: | Line 7: | ||
=== First proof (shadowing)=== | === First proof (shadowing)=== | ||
{{Theorem|Definition| | {{Theorem|Definition| | ||
:Let <math>| | :Let <math>|X|=n\,</math> and <math>\mathcal{F}\subseteq {X\choose k}</math>, <math>k<n\,</math>. | ||
:The '''shade''' of <math>\mathcal{F}</math> is defined to be | :The '''shade''' of <math>\mathcal{F}</math> is defined to be | ||
::<math>\nabla\mathcal{F}=\left\{A\in { | ::<math>\nabla\mathcal{F}=\left\{A\in {X\choose k+1}\,\,\bigg|\,\, \exists B\in\mathcal{F}\mbox{ such that } B\subset A\right\}</math>. | ||
:Thus the shade <math>\nabla\mathcal{F}</math> of <math>\mathcal{F}</math> consists of all subsets of <math> | :Thus the shade <math>\nabla\mathcal{F}</math> of <math>\mathcal{F}</math> consists of all subsets of <math>X</math> which can be obtained by adding an element to a set in <math>\mathcal{F}</math>. | ||
:Similarly, the '''shadow''' of <math>\mathcal{F}</math> is defined to be | :Similarly, the '''shadow''' of <math>\mathcal{F}</math> is defined to be | ||
::<math>\Delta\mathcal{F}=\left\{A\in { | ::<math>\Delta\mathcal{F}=\left\{A\in {X\choose k-1}\,\,\bigg|\,\, \exists B\in\mathcal{F}\mbox{ such that } A\subset B\right\}</math>. | ||
:Thus the shadow <math>\Delta\mathcal{F}</math> of <math>\mathcal{F}</math> consists of all subsets of <math> | :Thus the shadow <math>\Delta\mathcal{F}</math> of <math>\mathcal{F}</math> consists of all subsets of <math>X</math> which can be obtained by removing an element from a set in <math>\mathcal{F}</math>. | ||
}} | }} | ||
{{Theorem|Lemma (Sperner)| | {{Theorem|Lemma (Sperner)| | ||
:Let <math>| | :Let <math>|X|=n\,</math> and <math>\mathcal{F}\subseteq {X\choose k}</math>. Then | ||
::<math> | ::<math> | ||
\begin{align} | \begin{align} | ||
Line 36: | Line 36: | ||
{{Theorem|Theorem (Lubell, Yamamoto 1954; Meschalkin 1963)| | {{Theorem|Theorem (Lubell, Yamamoto 1954; Meschalkin 1963)| | ||
:Let <math>| | :Let <math>|X|=n</math> and <math>\mathcal{F}\subseteq 2^X</math> be an antichain. For <math>k=0,1,\ldots,n</math>, let <math>f_k=|\{A\in\mathcal{F}\mid |A|=k\}|</math>. Then | ||
::<math>\sum_{A\in\mathcal{F}}\frac{1}{{n\choose |A|}}=\sum_{k=0}^n\frac{f_k}{{n\choose k}}\le 1</math>. | ::<math>\sum_{A\in\mathcal{F}}\frac{1}{{n\choose |A|}}=\sum_{k=0}^n\frac{f_k}{{n\choose k}}\le 1</math>. | ||
}} | }} |
Revision as of 06:30, 26 October 2010
Sperner system
Theorem (Sperner 1928) - Let [math]\displaystyle{ |X|=n }[/math] and [math]\displaystyle{ \mathcal{F}\subseteq 2^X }[/math] be an antichain. Then
- [math]\displaystyle{ |\mathcal{F}|\le{n\choose \lfloor n/2\rfloor} }[/math].
- Let [math]\displaystyle{ |X|=n }[/math] and [math]\displaystyle{ \mathcal{F}\subseteq 2^X }[/math] be an antichain. Then
First proof (shadowing)
Definition - Let [math]\displaystyle{ |X|=n\, }[/math] and [math]\displaystyle{ \mathcal{F}\subseteq {X\choose k} }[/math], [math]\displaystyle{ k\lt n\, }[/math].
- The shade of [math]\displaystyle{ \mathcal{F} }[/math] is defined to be
- [math]\displaystyle{ \nabla\mathcal{F}=\left\{A\in {X\choose k+1}\,\,\bigg|\,\, \exists B\in\mathcal{F}\mbox{ such that } B\subset A\right\} }[/math].
- Thus the shade [math]\displaystyle{ \nabla\mathcal{F} }[/math] of [math]\displaystyle{ \mathcal{F} }[/math] consists of all subsets of [math]\displaystyle{ X }[/math] which can be obtained by adding an element to a set in [math]\displaystyle{ \mathcal{F} }[/math].
- Similarly, the shadow of [math]\displaystyle{ \mathcal{F} }[/math] is defined to be
- [math]\displaystyle{ \Delta\mathcal{F}=\left\{A\in {X\choose k-1}\,\,\bigg|\,\, \exists B\in\mathcal{F}\mbox{ such that } A\subset B\right\} }[/math].
- Thus the shadow [math]\displaystyle{ \Delta\mathcal{F} }[/math] of [math]\displaystyle{ \mathcal{F} }[/math] consists of all subsets of [math]\displaystyle{ X }[/math] which can be obtained by removing an element from a set in [math]\displaystyle{ \mathcal{F} }[/math].
Lemma (Sperner) - Let [math]\displaystyle{ |X|=n\, }[/math] and [math]\displaystyle{ \mathcal{F}\subseteq {X\choose k} }[/math]. Then
- [math]\displaystyle{ \begin{align} &|\nabla\mathcal{F}|\ge\frac{n-k}{k+1}|\mathcal{F}| &\text{ if } k\lt n\\ &|\Delta\mathcal{F}|\ge\frac{k}{n-k+1}|\mathcal{F}| &\text{ if } k\gt 0. \end{align} }[/math]
- Let [math]\displaystyle{ |X|=n\, }[/math] and [math]\displaystyle{ \mathcal{F}\subseteq {X\choose k} }[/math]. Then
Proof of Sperner's theorem (original proof of Sperner)
- [math]\displaystyle{ \square }[/math]
Second proof (double counting)
Proof of Sperner's theorem (Lubell 1966)
- [math]\displaystyle{ \square }[/math]
The LYM inequality
Theorem (Lubell, Yamamoto 1954; Meschalkin 1963) - Let [math]\displaystyle{ |X|=n }[/math] and [math]\displaystyle{ \mathcal{F}\subseteq 2^X }[/math] be an antichain. For [math]\displaystyle{ k=0,1,\ldots,n }[/math], let [math]\displaystyle{ f_k=|\{A\in\mathcal{F}\mid |A|=k\}| }[/math]. Then
- [math]\displaystyle{ \sum_{A\in\mathcal{F}}\frac{1}{{n\choose |A|}}=\sum_{k=0}^n\frac{f_k}{{n\choose k}}\le 1 }[/math].
- Let [math]\displaystyle{ |X|=n }[/math] and [math]\displaystyle{ \mathcal{F}\subseteq 2^X }[/math] be an antichain. For [math]\displaystyle{ k=0,1,\ldots,n }[/math], let [math]\displaystyle{ f_k=|\{A\in\mathcal{F}\mid |A|=k\}| }[/math]. Then
Third proof (the probabilistic method) (Due to Alon.)
- [math]\displaystyle{ \square }[/math]
Proposition - [math]\displaystyle{ \sum_{A\in\mathcal{F}}\frac{1}{{n\choose |A|}}\le 1 }[/math] implies that [math]\displaystyle{ |\mathcal{F}|\le{n\choose \lfloor n/2\rfloor} }[/math].
Sunflowers
Sunflower Lemma - Let [math]\displaystyle{ \mathcal{F}\subset {X\choose k} }[/math]. If [math]\displaystyle{ |\mathcal{F}|\gt k!(r-1)^k }[/math] then [math]\displaystyle{ |\mathcal{F}| }[/math] contains a sunflower of size [math]\displaystyle{ r }[/math].