Combinatorics (Fall 2010)/Extremal set theory: Difference between revisions
Jump to navigation
Jump to search
imported>WikiSysop |
imported>WikiSysop No edit summary |
||
Line 9: | Line 9: | ||
:Let <math>|X|=n\,</math> and <math>\mathcal{F}\subseteq {X\choose k}</math>, <math>k<n\,</math>. | :Let <math>|X|=n\,</math> and <math>\mathcal{F}\subseteq {X\choose k}</math>, <math>k<n\,</math>. | ||
:The '''shade''' of <math>\mathcal{F}</math> is defined to be | :The '''shade''' of <math>\mathcal{F}</math> is defined to be | ||
::<math>\nabla\mathcal{F}=\left\{ | ::<math>\nabla\mathcal{F}=\left\{T\in {X\choose k+1}\,\,\bigg|\,\, \exists S\in\mathcal{F}\mbox{ such that } S\subset T\right\}</math>. | ||
:Thus the shade <math>\nabla\mathcal{F}</math> of <math>\mathcal{F}</math> consists of all subsets of <math>X</math> which can be obtained by adding an element to a set in <math>\mathcal{F}</math>. | :Thus the shade <math>\nabla\mathcal{F}</math> of <math>\mathcal{F}</math> consists of all subsets of <math>X</math> which can be obtained by adding an element to a set in <math>\mathcal{F}</math>. | ||
:Similarly, the '''shadow''' of <math>\mathcal{F}</math> is defined to be | :Similarly, the '''shadow''' of <math>\mathcal{F}</math> is defined to be | ||
::<math>\Delta\mathcal{F}=\left\{ | ::<math>\Delta\mathcal{F}=\left\{T\in {X\choose k-1}\,\,\bigg|\,\, \exists S\in\mathcal{F}\mbox{ such that } T\subset S\right\}</math>. | ||
:Thus the shadow <math>\Delta\mathcal{F}</math> of <math>\mathcal{F}</math> consists of all subsets of <math>X</math> which can be obtained by removing an element from a set in <math>\mathcal{F}</math>. | :Thus the shadow <math>\Delta\mathcal{F}</math> of <math>\mathcal{F}</math> consists of all subsets of <math>X</math> which can be obtained by removing an element from a set in <math>\mathcal{F}</math>. | ||
}} | }} | ||
Line 36: | Line 36: | ||
{{Theorem|Theorem (Lubell, Yamamoto 1954; Meschalkin 1963)| | {{Theorem|Theorem (Lubell, Yamamoto 1954; Meschalkin 1963)| | ||
:Let <math>|X|=n</math> and <math>\mathcal{F}\subseteq 2^X</math> be an antichain. For <math>k=0,1,\ldots,n</math>, let <math>f_k=|\{ | :Let <math>|X|=n</math> and <math>\mathcal{F}\subseteq 2^X</math> be an antichain. For <math>k=0,1,\ldots,n</math>, let <math>f_k=|\{S\in\mathcal{F}\mid |S|=k\}|</math>. Then | ||
::<math>\sum_{ | ::<math>\sum_{S\in\mathcal{F}}\frac{1}{{n\choose |S|}}=\sum_{k=0}^n\frac{f_k}{{n\choose k}}\le 1</math>. | ||
}} | }} | ||
Line 44: | Line 44: | ||
{{Theorem|Proposition| | {{Theorem|Proposition| | ||
:<math>\sum_{ | :<math>\sum_{S\in\mathcal{F}}\frac{1}{{n\choose |S|}}\le 1</math> implies that <math>|\mathcal{F}|\le{n\choose \lfloor n/2\rfloor}</math>. | ||
}} | }} | ||
== Sunflowers == | ==Intersecting Families == | ||
=== Sunflowers === | |||
{{Theorem|Sunflower Lemma| | {{Theorem|Sunflower Lemma| | ||
:Let <math>\mathcal{F}\subset {X\choose k}</math>. If <math>|\mathcal{F}|>k!(r-1)^k</math>, then <math>|\mathcal{F}|</math> contains a sunflower of size <math>r</math>. | :Let <math>\mathcal{F}\subset {X\choose k}</math>. If <math>|\mathcal{F}|>k!(r-1)^k</math>, then <math>|\mathcal{F}|</math> contains a sunflower of size <math>r</math>. | ||
}} | }} | ||
== Erdős–Ko–Rado theorem == | === Erdős–Ko–Rado theorem === | ||
{{Theorem|Erdős–Ko–Rado theorem| | |||
:Let <math>\mathcal{F}\subseteq {X\choose k}</math>. If for any <math>S,T\in\mathcal{F}</math>, <math>S\cap T\neq\emptyset</math>, then | |||
::<math>|\mathcal{F}|\le{n-1\choose k-1}</math>. | |||
}} | |||
== Kruskal–Katona theorem == | == Kruskal–Katona theorem == | ||
{{Theorem|Theorem (Kruskal 1963, Katona 1966)| | |||
:Let <math>\mathcal{F}\subseteq {X\choose k}</math> with <math>|\mathcal{F}|=m</math>, and suppose that | |||
::<math>m={n_k\choose k}+{n_{k-1}\choose k-1}+\cdots+{n_t\choose t}</math> | |||
:where <math>a_k>a_{k-1}>\cdots>a_t\ge t\ge 1</math>. Then | |||
::<math>|\Delta\mathcal{F}|\ge {n_k\choose k-1}+{n_{k-1}\choose k-2}+\cdots+{n_t\choose t-1}</math>. | |||
}} |
Revision as of 02:34, 27 October 2010
Sperner system
Theorem (Sperner 1928) - Let [math]\displaystyle{ |X|=n }[/math] and [math]\displaystyle{ \mathcal{F}\subseteq 2^X }[/math] be an antichain. Then
- [math]\displaystyle{ |\mathcal{F}|\le{n\choose \lfloor n/2\rfloor} }[/math].
- Let [math]\displaystyle{ |X|=n }[/math] and [math]\displaystyle{ \mathcal{F}\subseteq 2^X }[/math] be an antichain. Then
First proof (shadowing)
Definition - Let [math]\displaystyle{ |X|=n\, }[/math] and [math]\displaystyle{ \mathcal{F}\subseteq {X\choose k} }[/math], [math]\displaystyle{ k\lt n\, }[/math].
- The shade of [math]\displaystyle{ \mathcal{F} }[/math] is defined to be
- [math]\displaystyle{ \nabla\mathcal{F}=\left\{T\in {X\choose k+1}\,\,\bigg|\,\, \exists S\in\mathcal{F}\mbox{ such that } S\subset T\right\} }[/math].
- Thus the shade [math]\displaystyle{ \nabla\mathcal{F} }[/math] of [math]\displaystyle{ \mathcal{F} }[/math] consists of all subsets of [math]\displaystyle{ X }[/math] which can be obtained by adding an element to a set in [math]\displaystyle{ \mathcal{F} }[/math].
- Similarly, the shadow of [math]\displaystyle{ \mathcal{F} }[/math] is defined to be
- [math]\displaystyle{ \Delta\mathcal{F}=\left\{T\in {X\choose k-1}\,\,\bigg|\,\, \exists S\in\mathcal{F}\mbox{ such that } T\subset S\right\} }[/math].
- Thus the shadow [math]\displaystyle{ \Delta\mathcal{F} }[/math] of [math]\displaystyle{ \mathcal{F} }[/math] consists of all subsets of [math]\displaystyle{ X }[/math] which can be obtained by removing an element from a set in [math]\displaystyle{ \mathcal{F} }[/math].
Lemma (Sperner) - Let [math]\displaystyle{ |X|=n\, }[/math] and [math]\displaystyle{ \mathcal{F}\subseteq {X\choose k} }[/math]. Then
- [math]\displaystyle{ \begin{align} &|\nabla\mathcal{F}|\ge\frac{n-k}{k+1}|\mathcal{F}| &\text{ if } k\lt n\\ &|\Delta\mathcal{F}|\ge\frac{k}{n-k+1}|\mathcal{F}| &\text{ if } k\gt 0. \end{align} }[/math]
- Let [math]\displaystyle{ |X|=n\, }[/math] and [math]\displaystyle{ \mathcal{F}\subseteq {X\choose k} }[/math]. Then
Proof of Sperner's theorem (original proof of Sperner)
- [math]\displaystyle{ \square }[/math]
Second proof (double counting)
Proof of Sperner's theorem (Lubell 1966)
- [math]\displaystyle{ \square }[/math]
The LYM inequality
Theorem (Lubell, Yamamoto 1954; Meschalkin 1963) - Let [math]\displaystyle{ |X|=n }[/math] and [math]\displaystyle{ \mathcal{F}\subseteq 2^X }[/math] be an antichain. For [math]\displaystyle{ k=0,1,\ldots,n }[/math], let [math]\displaystyle{ f_k=|\{S\in\mathcal{F}\mid |S|=k\}| }[/math]. Then
- [math]\displaystyle{ \sum_{S\in\mathcal{F}}\frac{1}{{n\choose |S|}}=\sum_{k=0}^n\frac{f_k}{{n\choose k}}\le 1 }[/math].
- Let [math]\displaystyle{ |X|=n }[/math] and [math]\displaystyle{ \mathcal{F}\subseteq 2^X }[/math] be an antichain. For [math]\displaystyle{ k=0,1,\ldots,n }[/math], let [math]\displaystyle{ f_k=|\{S\in\mathcal{F}\mid |S|=k\}| }[/math]. Then
Third proof (the probabilistic method) (Due to Alon.)
- [math]\displaystyle{ \square }[/math]
Proposition - [math]\displaystyle{ \sum_{S\in\mathcal{F}}\frac{1}{{n\choose |S|}}\le 1 }[/math] implies that [math]\displaystyle{ |\mathcal{F}|\le{n\choose \lfloor n/2\rfloor} }[/math].
Intersecting Families
Sunflowers
Sunflower Lemma - Let [math]\displaystyle{ \mathcal{F}\subset {X\choose k} }[/math]. If [math]\displaystyle{ |\mathcal{F}|\gt k!(r-1)^k }[/math], then [math]\displaystyle{ |\mathcal{F}| }[/math] contains a sunflower of size [math]\displaystyle{ r }[/math].
Erdős–Ko–Rado theorem
Erdős–Ko–Rado theorem - Let [math]\displaystyle{ \mathcal{F}\subseteq {X\choose k} }[/math]. If for any [math]\displaystyle{ S,T\in\mathcal{F} }[/math], [math]\displaystyle{ S\cap T\neq\emptyset }[/math], then
- [math]\displaystyle{ |\mathcal{F}|\le{n-1\choose k-1} }[/math].
- Let [math]\displaystyle{ \mathcal{F}\subseteq {X\choose k} }[/math]. If for any [math]\displaystyle{ S,T\in\mathcal{F} }[/math], [math]\displaystyle{ S\cap T\neq\emptyset }[/math], then
Kruskal–Katona theorem
Theorem (Kruskal 1963, Katona 1966) - Let [math]\displaystyle{ \mathcal{F}\subseteq {X\choose k} }[/math] with [math]\displaystyle{ |\mathcal{F}|=m }[/math], and suppose that
- [math]\displaystyle{ m={n_k\choose k}+{n_{k-1}\choose k-1}+\cdots+{n_t\choose t} }[/math]
- where [math]\displaystyle{ a_k\gt a_{k-1}\gt \cdots\gt a_t\ge t\ge 1 }[/math]. Then
- [math]\displaystyle{ |\Delta\mathcal{F}|\ge {n_k\choose k-1}+{n_{k-1}\choose k-2}+\cdots+{n_t\choose t-1} }[/math].
- Let [math]\displaystyle{ \mathcal{F}\subseteq {X\choose k} }[/math] with [math]\displaystyle{ |\mathcal{F}|=m }[/math], and suppose that