Combinatorics (Fall 2010)/Extremal set theory: Difference between revisions
imported>WikiSysop |
imported>WikiSysop |
||
Line 65: | Line 65: | ||
:<math>\sum_{S\in\mathcal{F}}\frac{1}{{n\choose |S|}}=\sum_{S\in\mathcal{F}}\frac{|S|!(n-|S|)!}{n!}\le 1</math>, | :<math>\sum_{S\in\mathcal{F}}\frac{1}{{n\choose |S|}}=\sum_{S\in\mathcal{F}}\frac{|S|!(n-|S|)!}{n!}\le 1</math>, | ||
where | where | ||
:<math>\sum_{S\in\mathcal{F}}\frac{1}{{n\choose |S|}}\ge \frac{|\mathcal{F}|}{{n\choose \lfloor n/2\rfloor}}</math> | :<math>\sum_{S\in\mathcal{F}}\frac{1}{{n\choose |S|}}\ge \frac{|\mathcal{F}|}{{n\choose \lfloor n/2\rfloor}}</math>. | ||
The Sperner's theorem follows directly. | The Sperner's theorem follows directly. | ||
}} | }} |
Revision as of 09:04, 31 October 2010
Sperner system
A set family [math]\displaystyle{ \mathcal{F}\subseteq 2^X }[/math] with the relation [math]\displaystyle{ \subseteq }[/math] define a poset. Thus, a chain is a sequence [math]\displaystyle{ S_1\subseteq S_2\subseteq\cdots\subseteq S_k }[/math].
A set family [math]\displaystyle{ \mathcal{F}\subseteq 2^X }[/math] is an antichain (also called a Sperner system) if for all [math]\displaystyle{ S,T\in\mathcal{F} }[/math] that [math]\displaystyle{ S\neq T }[/math], we have [math]\displaystyle{ S\not\subseteq T }[/math].
The [math]\displaystyle{ k }[/math]-uniform [math]\displaystyle{ {X\choose k} }[/math] is an antichain. Let [math]\displaystyle{ n=|X| }[/math]. The size of [math]\displaystyle{ {X\choose k} }[/math] is maximized when [math]\displaystyle{ k=\lfloor n/2\rfloor }[/math]. We wonder whether this is also the largest possible size of any antichain [math]\displaystyle{ \mathcal{F}\subseteq 2^X }[/math].
In 1928, Emanuel Sperner answered this positively with a theorem, which initiated the studies of extremal set theory.
Theorem (Sperner 1928) - Let [math]\displaystyle{ \mathcal{F}\subseteq 2^X }[/math] where [math]\displaystyle{ |X|=n }[/math]. If [math]\displaystyle{ \mathcal{F} }[/math] is an antichain, then
- [math]\displaystyle{ |\mathcal{F}|\le{n\choose \lfloor n/2\rfloor} }[/math].
- Let [math]\displaystyle{ \mathcal{F}\subseteq 2^X }[/math] where [math]\displaystyle{ |X|=n }[/math]. If [math]\displaystyle{ \mathcal{F} }[/math] is an antichain, then
First proof (shadows)
Definition - Let [math]\displaystyle{ |X|=n\, }[/math] and [math]\displaystyle{ \mathcal{F}\subseteq {X\choose k} }[/math], [math]\displaystyle{ k\lt n\, }[/math].
- The shade of [math]\displaystyle{ \mathcal{F} }[/math] is defined to be
- [math]\displaystyle{ \nabla\mathcal{F}=\left\{T\in {X\choose k+1}\,\,\bigg|\,\, \exists S\in\mathcal{F}\mbox{ such that } S\subset T\right\} }[/math].
- Thus the shade [math]\displaystyle{ \nabla\mathcal{F} }[/math] of [math]\displaystyle{ \mathcal{F} }[/math] consists of all subsets of [math]\displaystyle{ X }[/math] which can be obtained by adding an element to a set in [math]\displaystyle{ \mathcal{F} }[/math].
- Similarly, the shadow of [math]\displaystyle{ \mathcal{F} }[/math] is defined to be
- [math]\displaystyle{ \Delta\mathcal{F}=\left\{T\in {X\choose k-1}\,\,\bigg|\,\, \exists S\in\mathcal{F}\mbox{ such that } T\subset S\right\} }[/math].
- Thus the shadow [math]\displaystyle{ \Delta\mathcal{F} }[/math] of [math]\displaystyle{ \mathcal{F} }[/math] consists of all subsets of [math]\displaystyle{ X }[/math] which can be obtained by removing an element from a set in [math]\displaystyle{ \mathcal{F} }[/math].
Lemma (Sperner) - Let [math]\displaystyle{ |X|=n\, }[/math] and [math]\displaystyle{ \mathcal{F}\subseteq {X\choose k} }[/math]. Then
- [math]\displaystyle{ \begin{align} &|\nabla\mathcal{F}|\ge\frac{n-k}{k+1}|\mathcal{F}| &\text{ if } k\lt n\\ &|\Delta\mathcal{F}|\ge\frac{k}{n-k+1}|\mathcal{F}| &\text{ if } k\gt 0. \end{align} }[/math]
- Let [math]\displaystyle{ |X|=n\, }[/math] and [math]\displaystyle{ \mathcal{F}\subseteq {X\choose k} }[/math]. Then
Proof. The lemma is proved by double counting. We prove the inequality of [math]\displaystyle{ |\nabla\mathcal{F}| }[/math]. Assume that [math]\displaystyle{ 0\le k\lt n }[/math].
Define
- [math]\displaystyle{ \mathcal{R}=\{(S,T)\mid S\in\mathcal{F}, T\in\nabla\mathcal{F}, S\subset T\} }[/math].
We estimate [math]\displaystyle{ |\mathcal{R}| }[/math] in two ways.
For each [math]\displaystyle{ S\in\mathcal{F} }[/math], there are [math]\displaystyle{ n-k }[/math] different [math]\displaystyle{ T\in\nabla\mathcal{F} }[/math] that [math]\displaystyle{ S\subset T }[/math].
- [math]\displaystyle{ |\mathcal{R}|=(n-k)|\mathcal{F}| }[/math].
For each [math]\displaystyle{ T\in\nabla\mathcal{F} }[/math], there are [math]\displaystyle{ k+1 }[/math] ways to choose an [math]\displaystyle{ S\subset T }[/math] with [math]\displaystyle{ |S|=k }[/math], some of which may not be in [math]\displaystyle{ \mathcal{F} }[/math].
- [math]\displaystyle{ |\mathcal{R}|\le k|\nabla\mathcal{F}| }[/math].
Altogether, we show that [math]\displaystyle{ |\nabla\mathcal{F}|\ge\frac{n-k}{k+1}|\mathcal{F}| }[/math].
The inequality of [math]\displaystyle{ |\Delta\mathcal{F}| }[/math] can be proved in the same way.
- [math]\displaystyle{ \square }[/math]
Proof of Sperner's theorem (original proof of Sperner)
- [math]\displaystyle{ \square }[/math]
Second proof (double counting)
Proof of Sperner's theorem (Lubell 1966) Let [math]\displaystyle{ \pi }[/math] be a permutation of [math]\displaystyle{ X }[/math]. We say that an [math]\displaystyle{ S\subseteq X }[/math] prefixes [math]\displaystyle{ \pi }[/math], if [math]\displaystyle{ S=\{\pi_1,\pi_2,\ldots, \pi_{|S|}\} }[/math], that is, [math]\displaystyle{ S }[/math] is precisely the set of the first [math]\displaystyle{ |S| }[/math] elements in the permutation [math]\displaystyle{ \pi }[/math].
Fix an [math]\displaystyle{ S\subseteq X }[/math]. It is easy to see that the number of permutations [math]\displaystyle{ \pi }[/math] of [math]\displaystyle{ X }[/math] prefixed by [math]\displaystyle{ S }[/math] is [math]\displaystyle{ |S|!(n-|S|)! }[/math]. Also, since [math]\displaystyle{ \mathcal{F} }[/math] is an antichain, no permutation [math]\displaystyle{ \pi }[/math] of [math]\displaystyle{ X }[/math] can be prefixed by more than one members of [math]\displaystyle{ \mathcal{F} }[/math], otherwise one of the member sets must contain the other, which contradicts that [math]\displaystyle{ \mathcal{F} }[/math] is an antichain. Thus, the number of permutations [math]\displaystyle{ \pi }[/math] prefixed by some [math]\displaystyle{ S\in\mathcal{F} }[/math] is
- [math]\displaystyle{ \sum_{S\in\mathcal{F}}|S|!(n-|S|)! }[/math],
which cannot be larger than the total number of permutations, [math]\displaystyle{ n! }[/math], therefore,
- [math]\displaystyle{ \sum_{S\in\mathcal{F}}|S|!(n-|S|)!\le n! }[/math].
Dividing both sides by [math]\displaystyle{ n! }[/math], we have
- [math]\displaystyle{ \sum_{S\in\mathcal{F}}\frac{1}{{n\choose |S|}}=\sum_{S\in\mathcal{F}}\frac{|S|!(n-|S|)!}{n!}\le 1 }[/math],
where
- [math]\displaystyle{ \sum_{S\in\mathcal{F}}\frac{1}{{n\choose |S|}}\ge \frac{|\mathcal{F}|}{{n\choose \lfloor n/2\rfloor}} }[/math].
The Sperner's theorem follows directly.
- [math]\displaystyle{ \square }[/math]
The LYM inequality
Theorem (Lubell, Yamamoto 1954; Meschalkin 1963) - Let [math]\displaystyle{ \mathcal{F}\subseteq 2^X }[/math] where [math]\displaystyle{ |X|=n }[/math], and let [math]\displaystyle{ f_k=|\{S\in\mathcal{F}\mid |S|=k\}| }[/math], for [math]\displaystyle{ k=0,1,\ldots,n }[/math].
- If [math]\displaystyle{ \mathcal{F} }[/math] is an antichain, then
- [math]\displaystyle{ \sum_{S\in\mathcal{F}}\frac{1}{{n\choose |S|}}=\sum_{k=0}^n\frac{f_k}{{n\choose k}}\le 1 }[/math].
Third proof (the probabilistic method) (Due to Alon.)
- [math]\displaystyle{ \square }[/math]
Proposition - [math]\displaystyle{ \sum_{S\in\mathcal{F}}\frac{1}{{n\choose |S|}}\le 1 }[/math] implies that [math]\displaystyle{ |\mathcal{F}|\le{n\choose \lfloor n/2\rfloor} }[/math].
Intersecting Families
Sunflowers
Definition (sunflower) - A set family [math]\displaystyle{ \mathcal{F}\subseteq 2^X }[/math] is a sunflower of size [math]\displaystyle{ r }[/math] with a core [math]\displaystyle{ C\subseteq X }[/math] if
- [math]\displaystyle{ \forall S,T\in\mathcal{F} }[/math] that [math]\displaystyle{ S\neq T }[/math], [math]\displaystyle{ S\cap T=C }[/math].
- A set family [math]\displaystyle{ \mathcal{F}\subseteq 2^X }[/math] is a sunflower of size [math]\displaystyle{ r }[/math] with a core [math]\displaystyle{ C\subseteq X }[/math] if
Note that we do not require the core to be nonempty, thus a family of disjoint sets is also a sunflower (with the core [math]\displaystyle{ \emptyset }[/math]).
Sunflower Lemma - Let [math]\displaystyle{ \mathcal{F}\subseteq {X\choose k} }[/math]. If [math]\displaystyle{ |\mathcal{F}|\gt k!(r-1)^k }[/math], then [math]\displaystyle{ \mathcal{F} }[/math] contains a sunflower of size [math]\displaystyle{ r }[/math].
Proof. We proceed by induction on [math]\displaystyle{ k }[/math]. For [math]\displaystyle{ k=1 }[/math], [math]\displaystyle{ \mathcal{F}\subseteq{X\choose 1} }[/math], thus all sets in [math]\displaystyle{ \mathcal{F} }[/math] are disjoint. And since [math]\displaystyle{ |\mathcal{F}|\gt r-1 }[/math], we can choose [math]\displaystyle{ r }[/math] of these sets and form a sunflower.
Now let [math]\displaystyle{ k\ge 2 }[/math] and assume the lemma holds for all smaller [math]\displaystyle{ k }[/math]. Take a maximal family [math]\displaystyle{ \mathcal{G}\subseteq \mathcal{F} }[/math] whose members are disjoint, i.e. for any [math]\displaystyle{ S,T\in \mathcal{G} }[/math] that [math]\displaystyle{ S\neq T }[/math], [math]\displaystyle{ S\cap T=\emptyset }[/math].
If [math]\displaystyle{ |\mathcal{G}|\ge r }[/math], then [math]\displaystyle{ \mathcal{G} }[/math] is a sunflower of size at least [math]\displaystyle{ r }[/math] and we are done.
Assume that [math]\displaystyle{ |\mathcal{G}|\le r-1 }[/math], and let [math]\displaystyle{ Y=\bigcup_{S\in\mathcal{G}}S }[/math]. Then [math]\displaystyle{ |Y|=k|\mathcal{G}|\le k(r-1) }[/math] (since all members of [math]\displaystyle{ \mathcal{G} }[/math]) are disjoint). We claim that [math]\displaystyle{ Y }[/math] intersets all members of [math]\displaystyle{ \mathcal{F} }[/math], since if otherwise, there exists an [math]\displaystyle{ S\in\mathcal{F} }[/math] such that [math]\displaystyle{ S\cap Y=\emptyset }[/math], then we can enlarge [math]\displaystyle{ \mathcal{G} }[/math] by adding [math]\displaystyle{ S }[/math] into [math]\displaystyle{ \mathcal{G} }[/math] and still have all members of [math]\displaystyle{ \mathcal{G} }[/math] disjoint, which contradicts the assumption that [math]\displaystyle{ \mathcal{G} }[/math] is the maximum of such families.
By the pigeonhole principle, some elements [math]\displaystyle{ y\in Y }[/math] must contained in at least
- [math]\displaystyle{ \frac{|\mathcal{F}|}{|Y|}\gt \frac{k!(r-1)^k}{k(r-1)}=(k-1)!(r-1)^{k-1} }[/math]
members of [math]\displaystyle{ \mathcal{F} }[/math]. We delete this [math]\displaystyle{ y }[/math] from these sets and consider the family
- [math]\displaystyle{ \mathcal{H}=\{S\setminus\{y\}\mid S\in\mathcal{F}\wedge y\in S\} }[/math].
We have [math]\displaystyle{ \mathcal{H}\subseteq {X\choose k-1} }[/math] and [math]\displaystyle{ |\mathcal{H}|\gt (k-1)!(r-1)^{k-1} }[/math], thus by the induction hypothesis, [math]\displaystyle{ \mathcal{H} }[/math]contains a sunflower of size [math]\displaystyle{ r }[/math]. Adding [math]\displaystyle{ y }[/math] to the members of this sunflower, we get the desired sunflower in the original family [math]\displaystyle{ \mathcal{F} }[/math].
- [math]\displaystyle{ \square }[/math]
Erdős–Ko–Rado theorem
Erdős–Ko–Rado theorem - Let [math]\displaystyle{ \mathcal{F}\subseteq {X\choose k} }[/math] where [math]\displaystyle{ |X|=n }[/math]. If for any [math]\displaystyle{ S,T\in\mathcal{F} }[/math], [math]\displaystyle{ S\cap T\neq\emptyset }[/math], then
- [math]\displaystyle{ |\mathcal{F}|\le{n-1\choose k-1} }[/math].
- Let [math]\displaystyle{ \mathcal{F}\subseteq {X\choose k} }[/math] where [math]\displaystyle{ |X|=n }[/math]. If for any [math]\displaystyle{ S,T\in\mathcal{F} }[/math], [math]\displaystyle{ S\cap T\neq\emptyset }[/math], then
Katona's proof
Erdős' shifting technique
Definition (shifting) - For [math]\displaystyle{ |X|=n }[/math], [math]\displaystyle{ \mathcal{F}\subseteq 2^X }[/math] and [math]\displaystyle{ 1\le i\lt j\le n }[/math], define the [math]\displaystyle{ (i,j) }[/math]-shift [math]\displaystyle{ S_{ij} }[/math] as an operator on [math]\displaystyle{ \mathcal{F} }[/math] and the sets [math]\displaystyle{ T\in\mathcal{F} }[/math] as follows:
- for each [math]\displaystyle{ T\in\mathcal{F} }[/math], write [math]\displaystyle{ T_{ij}=(T\setminus\{j\})\cup\{i\} }[/math], and let
- [math]\displaystyle{ S_{ij}(T)= \begin{cases} T_{ij} & \mbox{if }j\in T, i\not\in T, \mbox{ and }T_{ij} \not\in\mathcal{F},\\ T & \mbox{otherwise;} \end{cases} }[/math]
- let [math]\displaystyle{ S_{ij}(\mathcal{F})=\{S_{ij}(T)\mid T\in \mathcal{F}\} }[/math].
- For [math]\displaystyle{ |X|=n }[/math], [math]\displaystyle{ \mathcal{F}\subseteq 2^X }[/math] and [math]\displaystyle{ 1\le i\lt j\le n }[/math], define the [math]\displaystyle{ (i,j) }[/math]-shift [math]\displaystyle{ S_{ij} }[/math] as an operator on [math]\displaystyle{ \mathcal{F} }[/math] and the sets [math]\displaystyle{ T\in\mathcal{F} }[/math] as follows:
Proposition - [math]\displaystyle{ |S_{ij}(T)|=|T| }[/math] and [math]\displaystyle{ |S_{ij}(\mathcal{F})|=\mathcal{F} }[/math];
- if [math]\displaystyle{ \mathcal{F} }[/math] is intersecting, then so is [math]\displaystyle{ S_{ij}(\mathcal{F}) }[/math].