Combinatorics (Fall 2010)/Extremal set theory II: Difference between revisions
Jump to navigation
Jump to search
imported>WikiSysop No edit summary |
imported>WikiSysop No edit summary |
||
Line 1: | Line 1: | ||
== Kruskal–Katona theorem == | == Shifting == | ||
=== Sauer's lemma and VC-dimension === | |||
{{Theorem|Definition| | |||
:Let <math>\mathcal{F}\subseteq 2^X</math> be set family and let <math>R\subseteq X</math> be a subset. The '''restriction''' of <math>\mathcal{F}</math> on <math>R</math>, denoted <math>\mathcal{F}|_R</math> is defined as | |||
::<math>\mathcal{F}|_R=\{S\cap R\mid S\in\mathcal{F}\}</math>. | |||
:We say that <math>\mathcal{F}</math> '''shatters''' <math>R</math> if <math>\mathcal{F}|_R=2^R</math>, i.e. for all <math>T\subseteq R</math>, there exists an <math>S\in\mathcal{F}</math> such that <math>T=S\cap R</math>. | |||
}} | |||
{{Theorem|Sauer's Lemma (Sauer; Shelah-Perles; Vapnik-Chervonenkis)| | |||
:Let <math>\mathcal{F}\subseteq 2^X</math> where <math>|X|=n</math>. If <math>|\mathcal{F}|>\sum_{1\le i<k}{n\choose i}</math>, then there exists an <math>R\in{X\choose k}</math> such that <math>\mathcal{F}</math> shatters <math>R</math>. | |||
}} | |||
{{Theorem|Definition (VC-dimension)| | |||
:The '''Vapnik–Chervonenkis dimension''' ('''VC-dimension''') of a set family <math>\mathcal{F}\subseteq 2^X</math>, denoted <math>\text{VC-dim}(\mathcal{F})</math>, is the size of the largest <math>R\subseteq X</math> shattered by <math>\mathcal{F}</math>. | |||
}} | |||
=== Kruskal–Katona theorem === | |||
{{Theorem|Theorem (Kruskal 1963, Katona 1966)| | {{Theorem|Theorem (Kruskal 1963, Katona 1966)| | ||
:Let <math>\mathcal{F}\subseteq {X\choose k}</math> with <math>|\mathcal{F}|=m</math>, and suppose that | :Let <math>\mathcal{F}\subseteq {X\choose k}</math> with <math>|\mathcal{F}|=m</math>, and suppose that |
Revision as of 05:49, 29 October 2010
Shifting
Sauer's lemma and VC-dimension
Definition - Let [math]\displaystyle{ \mathcal{F}\subseteq 2^X }[/math] be set family and let [math]\displaystyle{ R\subseteq X }[/math] be a subset. The restriction of [math]\displaystyle{ \mathcal{F} }[/math] on [math]\displaystyle{ R }[/math], denoted [math]\displaystyle{ \mathcal{F}|_R }[/math] is defined as
- [math]\displaystyle{ \mathcal{F}|_R=\{S\cap R\mid S\in\mathcal{F}\} }[/math].
- We say that [math]\displaystyle{ \mathcal{F} }[/math] shatters [math]\displaystyle{ R }[/math] if [math]\displaystyle{ \mathcal{F}|_R=2^R }[/math], i.e. for all [math]\displaystyle{ T\subseteq R }[/math], there exists an [math]\displaystyle{ S\in\mathcal{F} }[/math] such that [math]\displaystyle{ T=S\cap R }[/math].
- Let [math]\displaystyle{ \mathcal{F}\subseteq 2^X }[/math] be set family and let [math]\displaystyle{ R\subseteq X }[/math] be a subset. The restriction of [math]\displaystyle{ \mathcal{F} }[/math] on [math]\displaystyle{ R }[/math], denoted [math]\displaystyle{ \mathcal{F}|_R }[/math] is defined as
Sauer's Lemma (Sauer; Shelah-Perles; Vapnik-Chervonenkis) - Let [math]\displaystyle{ \mathcal{F}\subseteq 2^X }[/math] where [math]\displaystyle{ |X|=n }[/math]. If [math]\displaystyle{ |\mathcal{F}|\gt \sum_{1\le i\lt k}{n\choose i} }[/math], then there exists an [math]\displaystyle{ R\in{X\choose k} }[/math] such that [math]\displaystyle{ \mathcal{F} }[/math] shatters [math]\displaystyle{ R }[/math].
Definition (VC-dimension) - The Vapnik–Chervonenkis dimension (VC-dimension) of a set family [math]\displaystyle{ \mathcal{F}\subseteq 2^X }[/math], denoted [math]\displaystyle{ \text{VC-dim}(\mathcal{F}) }[/math], is the size of the largest [math]\displaystyle{ R\subseteq X }[/math] shattered by [math]\displaystyle{ \mathcal{F} }[/math].
Kruskal–Katona theorem
Theorem (Kruskal 1963, Katona 1966) - Let [math]\displaystyle{ \mathcal{F}\subseteq {X\choose k} }[/math] with [math]\displaystyle{ |\mathcal{F}|=m }[/math], and suppose that
- [math]\displaystyle{ m={n_k\choose k}+{n_{k-1}\choose k-1}+\cdots+{n_t\choose t} }[/math]
- where [math]\displaystyle{ a_k\gt a_{k-1}\gt \cdots\gt a_t\ge t\ge 1 }[/math]. Then
- [math]\displaystyle{ |\Delta\mathcal{F}|\ge {n_k\choose k-1}+{n_{k-1}\choose k-2}+\cdots+{n_t\choose t-1} }[/math].
- Let [math]\displaystyle{ \mathcal{F}\subseteq {X\choose k} }[/math] with [math]\displaystyle{ |\mathcal{F}|=m }[/math], and suppose that
Blocking sets
Duality
Block sensitivity and certificates
The switching lemma
Hypergraph coloring
Theorem (Erdős 1963) - Let [math]\displaystyle{ \mathcal{F} }[/math] be a [math]\displaystyle{ k }[/math]-uniform. If [math]\displaystyle{ |\mathcal{F}|\lt 2^{k-1} }[/math] then [math]\displaystyle{ \mathcal{F} }[/math] is 2-colorable.
Lovász local lemma
Colorings
Theorem (Erdős-Lovász 1975) - Let [math]\displaystyle{ \mathcal{F} }[/math] be a [math]\displaystyle{ k }[/math]-uniform. If every member of [math]\displaystyle{ \mathcal{F} }[/math] intersects at most [math]\displaystyle{ 2^{k-3} }[/math] other members, then [math]\displaystyle{ \mathcal{F} }[/math] is 2-colorable.