Combinatorics (Fall 2010)/Extremal set theory II: Difference between revisions
imported>WikiSysop |
imported>WikiSysop |
||
Line 26: | Line 26: | ||
:where <math>m_k>m_{k-1}>\cdots>m_t\ge t\ge 1</math>. Then | :where <math>m_k>m_{k-1}>\cdots>m_t\ge t\ge 1</math>. Then | ||
::<math>|\Delta\mathcal{F}|\ge {m_k\choose k-1}+{m_{k-1}\choose k-2}+\cdots+{m_t\choose t-1}</math>. | ::<math>|\Delta\mathcal{F}|\ge {m_k\choose k-1}+{m_{k-1}\choose k-2}+\cdots+{m_t\choose t-1}</math>. | ||
}} | |||
{{Theorem|Proposition| | |||
:<math>\Delta(S_{ij}(\mathcal{F}))\subseteq S_{ij}(\Delta(\mathcal{F}))</math>. | |||
}} | |||
{{Proof| | |||
}} | |||
{{Theorem|Corollary| | |||
:<math>|\Delta(S_{ij}(\mathcal{F}))|\le |S_{ij}(\Delta(\mathcal{F}))|=|\Delta(\mathcal{F})|</math>. | |||
}} | |||
{{Prooftitle|Proof of Kruskal-Katonal theorem|(due to Frankl, by the shifting technique) | |||
Assume <math>\mathcal{F}</math> is shifted. | |||
Apply induction on <math>m</math> and for given <math>m</math> on <math>k</math>. The theorem holds trivially for the case that <math>k=1</math> and <math>m</math> is arbitrary. | |||
Define | |||
:<math>\mathcal{F}_0=\{A\in\mathcal{F}\mid 1\not\in A\}</math>, | |||
:<math>\mathcal{F}_1=\{A\in\mathcal{F}\mid 1\in A\}</math>. | |||
And let <math>\mathcal{F}_1'=\{A\setminus\{1\}\mid A\in\mathcal{F}_1\}</math>. | |||
Clearly <math>\mathcal{F}_0,\mathcal{F}_1\subseteq{X\choose k}</math>, <math>\mathcal{F}_1'\subseteq{X\choose k-1}</math>, and | |||
:<math>|\mathcal{F}|=|\mathcal{F}_0|+|\mathcal{F}_1|=|\mathcal{F}_0|+|\mathcal{F}_1'|</math>. | |||
We then make the following claim: | |||
{{Theorem|Claim 1| | |||
For shifted <math>\mathcal{F}</math>, it holds that <math>\Delta(\mathcal{F}_0)\subseteq \mathcal{F}_1'</math>. | |||
}} | |||
{{Proofbox| | |||
By contradiction, assume that there exists an <math>A</math> such that <math>A\in\Delta(\mathcal{F}_0)</math> but <math>A\not\in\mathcal{F}_1'</math>. Then obviously <math>1\not\in A</math>; <math>A\in\Delta(\mathcal{F}_0)</math> implies that there exists a <math>j\neq 1</math>, <math>j\not\in A</math>, such that <math>A\cup\{j\}\in \mathcal{F}_0</math>; and <math>A\not\in\mathcal{F}_1'</math> implies that <math>A\cup\{1\}\not\in\mathcal{F}_1</math>. Denoting <math>B=A\cup\{j\}</math> and <math>B_{1j}=B\setminus\{j\}\cup\{1\}=A\cup\{1\}</math>, from the above argument, we have that <math>B\in\mathcal{F}</math> and <math>B_{1j}\not\in\mathcal{F}</math>, which contradicts that <math>\mathcal{F}</math> is shifted. | |||
}} | |||
Our next claim is: | |||
{{Theorem|Claim 2| | |||
<math>|\mathcal{F}_1'|\ge{m_k-1\choose k-1}+{m_{k-1}-1\choose k-2}+\cdots+{m_t-1\choose t-1}</math>. | |||
}} | |||
{{Proofbox| | |||
By contradiction, assume that | |||
:<math>|\mathcal{F}_1'|<{m_k-1\choose k-1}+{m_{k-1}-1\choose k-2}+\cdots+{m_t-1\choose t-1}</math>. | |||
Then by <math>|\mathcal{F}|=|\mathcal{F}_0|+|\mathcal{F}_1'|</math>, it holds that | |||
:<math> | |||
\begin{align} | |||
|\mathcal{F}_0| &=m-|\mathcal{F}_1'|\\ | |||
&\ge {m_k\choose k}+{m_{k-1}\choose k-1}+\cdots+{m_t\choose t}\\ | |||
&\quad\,- {m_k-1\choose k-1}-{m_{k-1}-1\choose k-2}-\cdots-{m_t-1\choose t-1}+1\\ | |||
&={m_k-1\choose k}+{m_{k-1}-1\choose k-1}+\cdots+{m_t-1\choose t}+1. | |||
\end{align}</math> | |||
If <math>m_k>t</math>, then by the induction hypothesis, we have | |||
:<math>|\Delta(\mathcal{F}_0)|\ge{m_k-1\choose k-1}+{m_{k-1}-1\choose k-1}+\cdots+{m_t-1\choose t-1}</math>, | |||
and due to Claim 1, we have <math>|\mathcal{F}_1'|\ge|\Delta(\mathcal{F}_0)|\ge{m_k-1\choose k-1}+\cdots+{m_t-1\choose t-1}</math>, contradicting. | |||
If <math>m_k=t</math>, then let <math>s</math> be the largest integer so that <math>m_s=s</math> holds, <math>k\ge s\ge t</math>. Then | |||
:<math> | |||
\begin{align} | |||
|\mathcal{F}_0| & | |||
&\ge{m_k-1\choose k}+{m_{k-1}-1\choose k-1}+\cdots+{m_t-1\choose t}+1\\ | |||
&\ge {m_k-1\choose k}+{m_{k-1}-1\choose k-1}+\cdots+{m_{s+1}-1\choose s+1}+{s\choose a}. | |||
\end{align}</math> | |||
By the induction hypothesis, we have | |||
:<math>\begin{align} | |||
|\Delta(\mathcal{F}_0)| | |||
&\ge{m_k-1\choose k-1}+{m_{k-1}-1\choose k-1}+\cdots+{m_{s+1}-1\choose s}+{s\choose s-1}\\ | |||
&\ge{m_k-1\choose k-1}+{m_{k-1}-1\choose k-1}+\cdots+{m_{s+1}-1\choose s}+(s-t+1)\\ | |||
&={m_k-1\choose k-1}+{m_{k-1}-1\choose k-1}+\cdots+{m_{t}-1\choose t-1}, | |||
\end{align}</math> | |||
again by Claim 1 <math>|\mathcal{F}_1'|\ge|\Delta(\mathcal{F}_0)|</math>, in contradiction to the assumption <math>|\mathcal{F}_1'|<{m_k-1\choose k-1}+\cdots+{m_t-1\choose t-1}</math>. | |||
}} | |||
}} | }} |
Revision as of 08:59, 6 November 2010
Intersecting Families
Erdős–Ko–Rado theorem
Katona's theorem
Sauer's lemma and VC-dimension
Definition - Let [math]\displaystyle{ \mathcal{F}\subseteq 2^X }[/math] be set family and let [math]\displaystyle{ R\subseteq X }[/math] be a subset. The restriction of [math]\displaystyle{ \mathcal{F} }[/math] on [math]\displaystyle{ R }[/math], denoted [math]\displaystyle{ \mathcal{F}|_R }[/math] is defined as
- [math]\displaystyle{ \mathcal{F}|_R=\{S\cap R\mid S\in\mathcal{F}\} }[/math].
- We say that [math]\displaystyle{ \mathcal{F} }[/math] shatters [math]\displaystyle{ R }[/math] if [math]\displaystyle{ \mathcal{F}|_R=2^R }[/math], i.e. for all [math]\displaystyle{ T\subseteq R }[/math], there exists an [math]\displaystyle{ S\in\mathcal{F} }[/math] such that [math]\displaystyle{ T=S\cap R }[/math].
- Let [math]\displaystyle{ \mathcal{F}\subseteq 2^X }[/math] be set family and let [math]\displaystyle{ R\subseteq X }[/math] be a subset. The restriction of [math]\displaystyle{ \mathcal{F} }[/math] on [math]\displaystyle{ R }[/math], denoted [math]\displaystyle{ \mathcal{F}|_R }[/math] is defined as
Sauer's Lemma (Sauer; Shelah-Perles; Vapnik-Chervonenkis) - Let [math]\displaystyle{ \mathcal{F}\subseteq 2^X }[/math] where [math]\displaystyle{ |X|=n }[/math]. If [math]\displaystyle{ |\mathcal{F}|\gt \sum_{1\le i\lt k}{n\choose i} }[/math], then there exists an [math]\displaystyle{ R\in{X\choose k} }[/math] such that [math]\displaystyle{ \mathcal{F} }[/math] shatters [math]\displaystyle{ R }[/math].
Definition (VC-dimension) - The Vapnik–Chervonenkis dimension (VC-dimension) of a set family [math]\displaystyle{ \mathcal{F}\subseteq 2^X }[/math], denoted [math]\displaystyle{ \text{VC-dim}(\mathcal{F}) }[/math], is the size of the largest [math]\displaystyle{ R\subseteq X }[/math] shattered by [math]\displaystyle{ \mathcal{F} }[/math].
The Kruskal–Katona Theorem
Theorem (Kruskal 1963, Katona 1966) - Let [math]\displaystyle{ \mathcal{F}\subseteq {X\choose k} }[/math] with [math]\displaystyle{ |\mathcal{F}|=m }[/math], and suppose that
- [math]\displaystyle{ m={m_k\choose k}+{m_{k-1}\choose k-1}+\cdots+{m_t\choose t} }[/math]
- where [math]\displaystyle{ m_k\gt m_{k-1}\gt \cdots\gt m_t\ge t\ge 1 }[/math]. Then
- [math]\displaystyle{ |\Delta\mathcal{F}|\ge {m_k\choose k-1}+{m_{k-1}\choose k-2}+\cdots+{m_t\choose t-1} }[/math].
- Let [math]\displaystyle{ \mathcal{F}\subseteq {X\choose k} }[/math] with [math]\displaystyle{ |\mathcal{F}|=m }[/math], and suppose that
Proposition - [math]\displaystyle{ \Delta(S_{ij}(\mathcal{F}))\subseteq S_{ij}(\Delta(\mathcal{F})) }[/math].
Proof. - [math]\displaystyle{ \square }[/math]
Corollary - [math]\displaystyle{ |\Delta(S_{ij}(\mathcal{F}))|\le |S_{ij}(\Delta(\mathcal{F}))|=|\Delta(\mathcal{F})| }[/math].
Proof of Kruskal-Katonal theorem (due to Frankl, by the shifting technique) Assume [math]\displaystyle{ \mathcal{F} }[/math] is shifted.
Apply induction on [math]\displaystyle{ m }[/math] and for given [math]\displaystyle{ m }[/math] on [math]\displaystyle{ k }[/math]. The theorem holds trivially for the case that [math]\displaystyle{ k=1 }[/math] and [math]\displaystyle{ m }[/math] is arbitrary.
Define
- [math]\displaystyle{ \mathcal{F}_0=\{A\in\mathcal{F}\mid 1\not\in A\} }[/math],
- [math]\displaystyle{ \mathcal{F}_1=\{A\in\mathcal{F}\mid 1\in A\} }[/math].
And let [math]\displaystyle{ \mathcal{F}_1'=\{A\setminus\{1\}\mid A\in\mathcal{F}_1\} }[/math].
Clearly [math]\displaystyle{ \mathcal{F}_0,\mathcal{F}_1\subseteq{X\choose k} }[/math], [math]\displaystyle{ \mathcal{F}_1'\subseteq{X\choose k-1} }[/math], and
- [math]\displaystyle{ |\mathcal{F}|=|\mathcal{F}_0|+|\mathcal{F}_1|=|\mathcal{F}_0|+|\mathcal{F}_1'| }[/math].
We then make the following claim:
Claim 1 For shifted [math]\displaystyle{ \mathcal{F} }[/math], it holds that [math]\displaystyle{ \Delta(\mathcal{F}_0)\subseteq \mathcal{F}_1' }[/math].
By contradiction, assume that there exists an [math]\displaystyle{ A }[/math] such that [math]\displaystyle{ A\in\Delta(\mathcal{F}_0) }[/math] but [math]\displaystyle{ A\not\in\mathcal{F}_1' }[/math]. Then obviously [math]\displaystyle{ 1\not\in A }[/math]; [math]\displaystyle{ A\in\Delta(\mathcal{F}_0) }[/math] implies that there exists a [math]\displaystyle{ j\neq 1 }[/math], [math]\displaystyle{ j\not\in A }[/math], such that [math]\displaystyle{ A\cup\{j\}\in \mathcal{F}_0 }[/math]; and [math]\displaystyle{ A\not\in\mathcal{F}_1' }[/math] implies that [math]\displaystyle{ A\cup\{1\}\not\in\mathcal{F}_1 }[/math]. Denoting [math]\displaystyle{ B=A\cup\{j\} }[/math] and [math]\displaystyle{ B_{1j}=B\setminus\{j\}\cup\{1\}=A\cup\{1\} }[/math], from the above argument, we have that [math]\displaystyle{ B\in\mathcal{F} }[/math] and [math]\displaystyle{ B_{1j}\not\in\mathcal{F} }[/math], which contradicts that [math]\displaystyle{ \mathcal{F} }[/math] is shifted.
- [math]\displaystyle{ \square }[/math]
Our next claim is:
Claim 2 [math]\displaystyle{ |\mathcal{F}_1'|\ge{m_k-1\choose k-1}+{m_{k-1}-1\choose k-2}+\cdots+{m_t-1\choose t-1} }[/math].
By contradiction, assume that
- [math]\displaystyle{ |\mathcal{F}_1'|\lt {m_k-1\choose k-1}+{m_{k-1}-1\choose k-2}+\cdots+{m_t-1\choose t-1} }[/math].
Then by [math]\displaystyle{ |\mathcal{F}|=|\mathcal{F}_0|+|\mathcal{F}_1'| }[/math], it holds that
- [math]\displaystyle{ \begin{align} |\mathcal{F}_0| &=m-|\mathcal{F}_1'|\\ &\ge {m_k\choose k}+{m_{k-1}\choose k-1}+\cdots+{m_t\choose t}\\ &\quad\,- {m_k-1\choose k-1}-{m_{k-1}-1\choose k-2}-\cdots-{m_t-1\choose t-1}+1\\ &={m_k-1\choose k}+{m_{k-1}-1\choose k-1}+\cdots+{m_t-1\choose t}+1. \end{align} }[/math]
If [math]\displaystyle{ m_k\gt t }[/math], then by the induction hypothesis, we have
- [math]\displaystyle{ |\Delta(\mathcal{F}_0)|\ge{m_k-1\choose k-1}+{m_{k-1}-1\choose k-1}+\cdots+{m_t-1\choose t-1} }[/math],
and due to Claim 1, we have [math]\displaystyle{ |\mathcal{F}_1'|\ge|\Delta(\mathcal{F}_0)|\ge{m_k-1\choose k-1}+\cdots+{m_t-1\choose t-1} }[/math], contradicting.
If [math]\displaystyle{ m_k=t }[/math], then let [math]\displaystyle{ s }[/math] be the largest integer so that [math]\displaystyle{ m_s=s }[/math] holds, [math]\displaystyle{ k\ge s\ge t }[/math]. Then
- [math]\displaystyle{ \begin{align} |\mathcal{F}_0| & &\ge{m_k-1\choose k}+{m_{k-1}-1\choose k-1}+\cdots+{m_t-1\choose t}+1\\ &\ge {m_k-1\choose k}+{m_{k-1}-1\choose k-1}+\cdots+{m_{s+1}-1\choose s+1}+{s\choose a}. \end{align} }[/math]
By the induction hypothesis, we have
- [math]\displaystyle{ \begin{align} |\Delta(\mathcal{F}_0)| &\ge{m_k-1\choose k-1}+{m_{k-1}-1\choose k-1}+\cdots+{m_{s+1}-1\choose s}+{s\choose s-1}\\ &\ge{m_k-1\choose k-1}+{m_{k-1}-1\choose k-1}+\cdots+{m_{s+1}-1\choose s}+(s-t+1)\\ &={m_k-1\choose k-1}+{m_{k-1}-1\choose k-1}+\cdots+{m_{t}-1\choose t-1}, \end{align} }[/math]
again by Claim 1 [math]\displaystyle{ |\mathcal{F}_1'|\ge|\Delta(\mathcal{F}_0)| }[/math], in contradiction to the assumption [math]\displaystyle{ |\mathcal{F}_1'|\lt {m_k-1\choose k-1}+\cdots+{m_t-1\choose t-1} }[/math].
- [math]\displaystyle{ \square }[/math]
- [math]\displaystyle{ \square }[/math]