Combinatorics (Fall 2010)/Extremal set theory II: Difference between revisions
imported>WikiSysop |
imported>WikiSysop No edit summary |
||
Line 33: | Line 33: | ||
{{Theorem|Proposition| | {{Theorem|Proposition| | ||
:<math>\Delta | :<math>\Delta S_{ij}(\mathcal{F})\subseteq S_{ij}(\Delta\mathcal{F})</math>. | ||
}} | }} | ||
{{Proof| | {{Proof| | ||
Line 39: | Line 39: | ||
{{Theorem|Corollary| | {{Theorem|Corollary| | ||
:<math>|\Delta | :<math>|\Delta S_{ij}(\mathcal{F})|\le |S_{ij}(\Delta\mathcal{F})|=|\Delta\mathcal{F}|</math>. | ||
}} | }} | ||
Line 64: | Line 64: | ||
Our induction is based on the following observation regarding the size of the shadow. | Our induction is based on the following observation regarding the size of the shadow. | ||
{{Theorem|Claim 1| | {{Theorem|Claim 1| | ||
:<math>|\Delta | :<math>|\Delta\mathcal{F}|\ge|\Delta\mathcal{F}_1'|+|\mathcal{F}_1'|</math>. | ||
}} | }} | ||
{{Proof| | {{Proof| | ||
Obviously <math>\mathcal{F}\supseteq\mathcal{F}_1</math> and <math>\Delta | Obviously <math>\mathcal{F}\supseteq\mathcal{F}_1</math> and <math>\Delta\mathcal{F}\supseteq\Delta\mathcal{F}_1</math>. | ||
:<math>\begin{align} | :<math>\begin{align} | ||
\Delta | \Delta\mathcal{F}_1 | ||
&=\left\{A\in{X\choose k-1}\,\,\bigg|\,\, \exists B\in\mathcal{F}_1, A\subset B\right\}\\ | &=\left\{A\in{X\choose k-1}\,\,\bigg|\,\, \exists B\in\mathcal{F}_1, A\subset B\right\}\\ | ||
&=\left\{A\in{X\choose k-1}\,\,\bigg|\,\, 1\in A, \exists B\in\mathcal{F}_1, A\subset B\right\}\\ | &=\left\{A\in{X\choose k-1}\,\,\bigg|\,\, 1\in A, \exists B\in\mathcal{F}_1, A\subset B\right\}\\ | ||
&\quad\, \cup \left\{A\in{X\choose k-1}\,\,\bigg|\,\, 1\not\in A, \exists B\in\mathcal{F}_1, A\subset B\right\}\\ | &\quad\, \cup \left\{A\in{X\choose k-1}\,\,\bigg|\,\, 1\not\in A, \exists B\in\mathcal{F}_1, A\subset B\right\}\\ | ||
&=\{S\cup\{1\}\mid S\in\Delta | &=\{S\cup\{1\}\mid S\in\Delta\mathcal{F}_1'\}\cup\mathcal{F}_1'. | ||
\end{align}</math> | \end{align}</math> | ||
The union is taken over two disjoint families. Therefore, | The union is taken over two disjoint families. Therefore, | ||
:<math>|\Delta | :<math>|\Delta\mathcal{F}|\ge|\Delta\mathcal{F}_1|=|\Delta\mathcal{F}_1'|+|\mathcal{F}_1'|</math>. | ||
}} | }} | ||
The following property of shifted <math>\mathcal{F}</math> is essential for our proof. | The following property of shifted <math>\mathcal{F}</math> is essential for our proof. | ||
{{Theorem|Claim 2| | {{Theorem|Claim 2| | ||
:For shifted <math>\mathcal{F}</math>, it holds that <math>\Delta | :For shifted <math>\mathcal{F}</math>, it holds that <math>\Delta\mathcal{F}_0\subseteq \mathcal{F}_1'</math>. | ||
}} | }} | ||
{{Proof| | {{Proof| | ||
By contradiction, assume that there exists an <math>A</math> such that <math>A\in\Delta | By contradiction, assume that there exists an <math>A</math> such that <math>A\in\Delta\mathcal{F}_0</math> but <math>A\not\in\mathcal{F}_1'</math>. Then obviously <math>1\not\in A</math>; <math>A\in\Delta\mathcal{F}_0</math> implies that there exists a <math>j\neq 1</math>, <math>j\not\in A</math>, such that <math>A\cup\{j\}\in \mathcal{F}_0</math>; and <math>A\not\in\mathcal{F}_1'</math> implies that <math>A\cup\{1\}\not\in\mathcal{F}_1</math>. Denoting <math>B=A\cup\{j\}</math> and <math>B_{1j}=B\setminus\{j\}\cup\{1\}=A\cup\{1\}</math>, from the above argument, we have that <math>B\in\mathcal{F}</math> and <math>B_{1j}\not\in\mathcal{F}</math>, which contradicts that <math>\mathcal{F}</math> is shifted. | ||
}} | }} | ||
Line 104: | Line 104: | ||
\end{align}</math> | \end{align}</math> | ||
If <math>m_k>t</math>, then by the induction hypothesis, we have | If <math>m_k>t</math>, then by the induction hypothesis, we have | ||
:<math>|\Delta | :<math>|\Delta\mathcal{F}_0|\ge{m_k-1\choose k-1}+{m_{k-1}-1\choose k-1}+\cdots+{m_t-1\choose t-1}</math>, | ||
and due to Claim 2, we have <math>|\mathcal{F}_1'|\ge|\Delta | and due to Claim 2, we have <math>|\mathcal{F}_1'|\ge|\Delta\mathcal{F}_0|\ge{m_k-1\choose k-1}+\cdots+{m_t-1\choose t-1}</math>, contradicting. | ||
If <math>m_k=t</math>, then let <math>s</math> be the largest integer so that <math>m_s=s</math> holds, <math>k\ge s\ge t</math>. Then | If <math>m_k=t</math>, then let <math>s</math> be the largest integer so that <math>m_s=s</math> holds, <math>k\ge s\ge t</math>. Then | ||
Line 116: | Line 116: | ||
By the induction hypothesis, we have | By the induction hypothesis, we have | ||
:<math>\begin{align} | :<math>\begin{align} | ||
|\Delta | |\Delta\mathcal{F}_0| | ||
&\ge{m_k-1\choose k-1}+{m_{k-1}-1\choose k-1}+\cdots+{m_{s+1}-1\choose s}+{s\choose s-1}\\ | &\ge{m_k-1\choose k-1}+{m_{k-1}-1\choose k-1}+\cdots+{m_{s+1}-1\choose s}+{s\choose s-1}\\ | ||
&\ge{m_k-1\choose k-1}+{m_{k-1}-1\choose k-1}+\cdots+{m_{s+1}-1\choose s}+(s-t+1)\\ | &\ge{m_k-1\choose k-1}+{m_{k-1}-1\choose k-1}+\cdots+{m_{s+1}-1\choose s}+(s-t+1)\\ | ||
&={m_k-1\choose k-1}+{m_{k-1}-1\choose k-1}+\cdots+{m_{t}-1\choose t-1}, | &={m_k-1\choose k-1}+{m_{k-1}-1\choose k-1}+\cdots+{m_{t}-1\choose t-1}, | ||
\end{align}</math> | \end{align}</math> | ||
again by Claim 2 <math>|\mathcal{F}_1'|\ge|\Delta | again by Claim 2 <math>|\mathcal{F}_1'|\ge|\Delta\mathcal{F}_0|</math>, in contradiction to the assumption | ||
:<math>|\mathcal{F}_1'|<{m_k-1\choose k-1}+\cdots+{m_t-1\choose t-1}</math>. | :<math>|\mathcal{F}_1'|<{m_k-1\choose k-1}+\cdots+{m_t-1\choose t-1}</math>. | ||
}} | }} | ||
Now we officially apply the induction. By Claim 1, | Now we officially apply the induction. By Claim 1, | ||
:<math>|\Delta | :<math>|\Delta\mathcal{F}|\ge|\Delta\mathcal{F}_1'|+|\mathcal{F}_1'|</math>. | ||
Note that <math>\mathcal{F}_1'\subseteq{X\choose k-1}</math>, and due to Claim 3, | Note that <math>\mathcal{F}_1'\subseteq{X\choose k-1}</math>, and due to Claim 3, | ||
:<math>|\mathcal{F}_1'|\ge{m_k-1\choose k-1}+{m_{k-1}-1\choose k-2}+\cdots+{m_t-1\choose t-1}</math>, | :<math>|\mathcal{F}_1'|\ge{m_k-1\choose k-1}+{m_{k-1}-1\choose k-2}+\cdots+{m_t-1\choose t-1}</math>, | ||
thus by the induction hypothesis, | thus by the induction hypothesis, | ||
:<math>|\Delta | :<math>|\Delta\mathcal{F}_1'|\ge{m_k-1\choose k-2}+{m_{k-1}-1\choose k-3}+\cdots+{m_t-1\choose t-2}</math>. | ||
Combining them together, we have | Combining them together, we have | ||
:<math> | :<math> | ||
\begin{align} | \begin{align} | ||
|\Delta | |\Delta\mathcal{F}| | ||
&\ge |\Delta | &\ge |\Delta\mathcal{F}_1'|+|\mathcal{F}_1'|\\ | ||
&\ge {m_k-1\choose k-2}+\cdots+{m_t-1\choose t-2}+{m_k-1\choose k-1}+\cdots+{m_t-1\choose t-1}\\ | &\ge {m_k-1\choose k-2}+\cdots+{m_t-1\choose t-2}+{m_k-1\choose k-1}+\cdots+{m_t-1\choose t-1}\\ | ||
&= {m_k\choose k-1}+{m_{k-1}\choose k-2}+\cdots+{m_t\choose t-1}. | &= {m_k\choose k-1}+{m_{k-1}\choose k-2}+\cdots+{m_t\choose t-1}. | ||
Line 150: | Line 150: | ||
{{Theorem|Theorem (Lovász)| | {{Theorem|Theorem (Lovász)| | ||
:Let <math>\mathcal{F}\subseteq {X\choose k}</math> with <math>|\mathcal{F}|=m</math>, and suppose that <math>m={x\choose k}</math> for some real number <math>x\ge k</math>. Then | :Let <math>\mathcal{F}\subseteq {X\choose k}</math> with <math>|\mathcal{F}|=m</math>, and suppose that <math>m={x\choose k}</math> for some real number <math>x\ge k</math>. Then | ||
::<math>|\Delta | ::<math>|\Delta\mathcal{F}|\ge {x\choose k-1}</math>. | ||
}} | }} |
Revision as of 12:28, 6 November 2010
Intersecting Families
Erdős–Ko–Rado theorem
Katona's theorem
Sauer's lemma and VC-dimension
Definition - Let [math]\displaystyle{ \mathcal{F}\subseteq 2^X }[/math] be set family and let [math]\displaystyle{ R\subseteq X }[/math] be a subset. The restriction of [math]\displaystyle{ \mathcal{F} }[/math] on [math]\displaystyle{ R }[/math], denoted [math]\displaystyle{ \mathcal{F}|_R }[/math] is defined as
- [math]\displaystyle{ \mathcal{F}|_R=\{S\cap R\mid S\in\mathcal{F}\} }[/math].
- We say that [math]\displaystyle{ \mathcal{F} }[/math] shatters [math]\displaystyle{ R }[/math] if [math]\displaystyle{ \mathcal{F}|_R=2^R }[/math], i.e. for all [math]\displaystyle{ T\subseteq R }[/math], there exists an [math]\displaystyle{ S\in\mathcal{F} }[/math] such that [math]\displaystyle{ T=S\cap R }[/math].
- Let [math]\displaystyle{ \mathcal{F}\subseteq 2^X }[/math] be set family and let [math]\displaystyle{ R\subseteq X }[/math] be a subset. The restriction of [math]\displaystyle{ \mathcal{F} }[/math] on [math]\displaystyle{ R }[/math], denoted [math]\displaystyle{ \mathcal{F}|_R }[/math] is defined as
Sauer's Lemma (Sauer; Shelah-Perles; Vapnik-Chervonenkis) - Let [math]\displaystyle{ \mathcal{F}\subseteq 2^X }[/math] where [math]\displaystyle{ |X|=n }[/math]. If [math]\displaystyle{ |\mathcal{F}|\gt \sum_{1\le i\lt k}{n\choose i} }[/math], then there exists an [math]\displaystyle{ R\in{X\choose k} }[/math] such that [math]\displaystyle{ \mathcal{F} }[/math] shatters [math]\displaystyle{ R }[/math].
Definition (VC-dimension) - The Vapnik–Chervonenkis dimension (VC-dimension) of a set family [math]\displaystyle{ \mathcal{F}\subseteq 2^X }[/math], denoted [math]\displaystyle{ \text{VC-dim}(\mathcal{F}) }[/math], is the size of the largest [math]\displaystyle{ R\subseteq X }[/math] shattered by [math]\displaystyle{ \mathcal{F} }[/math].
The Kruskal–Katona Theorem
[math]\displaystyle{ k }[/math]-cascade representation of a number
Reverse lexicographic order of subsets
Theorem (Kruskal 1963, Katona 1966) - Let [math]\displaystyle{ \mathcal{F}\subseteq {X\choose k} }[/math] with [math]\displaystyle{ |\mathcal{F}|=m }[/math], and suppose that
- [math]\displaystyle{ m={m_k\choose k}+{m_{k-1}\choose k-1}+\cdots+{m_t\choose t} }[/math]
- where [math]\displaystyle{ m_k\gt m_{k-1}\gt \cdots\gt m_t\ge t\ge 1 }[/math]. Then
- [math]\displaystyle{ |\Delta\mathcal{F}|\ge {m_k\choose k-1}+{m_{k-1}\choose k-2}+\cdots+{m_t\choose t-1} }[/math].
- Let [math]\displaystyle{ \mathcal{F}\subseteq {X\choose k} }[/math] with [math]\displaystyle{ |\mathcal{F}|=m }[/math], and suppose that
Proposition - [math]\displaystyle{ \Delta S_{ij}(\mathcal{F})\subseteq S_{ij}(\Delta\mathcal{F}) }[/math].
Proof. - [math]\displaystyle{ \square }[/math]
Corollary - [math]\displaystyle{ |\Delta S_{ij}(\mathcal{F})|\le |S_{ij}(\Delta\mathcal{F})|=|\Delta\mathcal{F}| }[/math].
Frankl's shifting proof of Kruskal-Katonal theorem
Theorem (Kruskal 1963, Katona 1966) - Let [math]\displaystyle{ \mathcal{F}\subseteq {X\choose k} }[/math] with [math]\displaystyle{ |\mathcal{F}|=m }[/math], and suppose that
- [math]\displaystyle{ m={m_k\choose k}+{m_{k-1}\choose k-1}+\cdots+{m_t\choose t} }[/math]
- where [math]\displaystyle{ m_k\gt m_{k-1}\gt \cdots\gt m_t\ge t\ge 1 }[/math]. Then
- [math]\displaystyle{ |\Delta\mathcal{F}|\ge {m_k\choose k-1}+{m_{k-1}\choose k-2}+\cdots+{m_t\choose t-1} }[/math].
- Let [math]\displaystyle{ \mathcal{F}\subseteq {X\choose k} }[/math] with [math]\displaystyle{ |\mathcal{F}|=m }[/math], and suppose that
We know that shifts never enlarge the shadow, thus it is sufficient to prove the theorem for shifted [math]\displaystyle{ \mathcal{F} }[/math]. We then assume [math]\displaystyle{ \mathcal{F} }[/math] is shifted.
Apply induction on [math]\displaystyle{ m }[/math] and for given [math]\displaystyle{ m }[/math] on [math]\displaystyle{ k }[/math]. The theorem holds trivially for the case that [math]\displaystyle{ k=1 }[/math] and [math]\displaystyle{ m }[/math] is arbitrary.
Define
- [math]\displaystyle{ \mathcal{F}_0=\{A\in\mathcal{F}\mid 1\not\in A\} }[/math],
- [math]\displaystyle{ \mathcal{F}_1=\{A\in\mathcal{F}\mid 1\in A\} }[/math].
And let [math]\displaystyle{ \mathcal{F}_1'=\{A\setminus\{1\}\mid A\in\mathcal{F}_1\} }[/math].
Clearly [math]\displaystyle{ \mathcal{F}_0,\mathcal{F}_1\subseteq{X\choose k} }[/math], [math]\displaystyle{ \mathcal{F}_1'\subseteq{X\choose k-1} }[/math], and
- [math]\displaystyle{ |\mathcal{F}|=|\mathcal{F}_0|+|\mathcal{F}_1|=|\mathcal{F}_0|+|\mathcal{F}_1'| }[/math].
Our induction is based on the following observation regarding the size of the shadow.
Claim 1 - [math]\displaystyle{ |\Delta\mathcal{F}|\ge|\Delta\mathcal{F}_1'|+|\mathcal{F}_1'| }[/math].
Proof. Obviously [math]\displaystyle{ \mathcal{F}\supseteq\mathcal{F}_1 }[/math] and [math]\displaystyle{ \Delta\mathcal{F}\supseteq\Delta\mathcal{F}_1 }[/math].
- [math]\displaystyle{ \begin{align} \Delta\mathcal{F}_1 &=\left\{A\in{X\choose k-1}\,\,\bigg|\,\, \exists B\in\mathcal{F}_1, A\subset B\right\}\\ &=\left\{A\in{X\choose k-1}\,\,\bigg|\,\, 1\in A, \exists B\in\mathcal{F}_1, A\subset B\right\}\\ &\quad\, \cup \left\{A\in{X\choose k-1}\,\,\bigg|\,\, 1\not\in A, \exists B\in\mathcal{F}_1, A\subset B\right\}\\ &=\{S\cup\{1\}\mid S\in\Delta\mathcal{F}_1'\}\cup\mathcal{F}_1'. \end{align} }[/math]
The union is taken over two disjoint families. Therefore,
- [math]\displaystyle{ |\Delta\mathcal{F}|\ge|\Delta\mathcal{F}_1|=|\Delta\mathcal{F}_1'|+|\mathcal{F}_1'| }[/math].
- [math]\displaystyle{ \square }[/math]
The following property of shifted [math]\displaystyle{ \mathcal{F} }[/math] is essential for our proof.
Claim 2 - For shifted [math]\displaystyle{ \mathcal{F} }[/math], it holds that [math]\displaystyle{ \Delta\mathcal{F}_0\subseteq \mathcal{F}_1' }[/math].
Proof. By contradiction, assume that there exists an [math]\displaystyle{ A }[/math] such that [math]\displaystyle{ A\in\Delta\mathcal{F}_0 }[/math] but [math]\displaystyle{ A\not\in\mathcal{F}_1' }[/math]. Then obviously [math]\displaystyle{ 1\not\in A }[/math]; [math]\displaystyle{ A\in\Delta\mathcal{F}_0 }[/math] implies that there exists a [math]\displaystyle{ j\neq 1 }[/math], [math]\displaystyle{ j\not\in A }[/math], such that [math]\displaystyle{ A\cup\{j\}\in \mathcal{F}_0 }[/math]; and [math]\displaystyle{ A\not\in\mathcal{F}_1' }[/math] implies that [math]\displaystyle{ A\cup\{1\}\not\in\mathcal{F}_1 }[/math]. Denoting [math]\displaystyle{ B=A\cup\{j\} }[/math] and [math]\displaystyle{ B_{1j}=B\setminus\{j\}\cup\{1\}=A\cup\{1\} }[/math], from the above argument, we have that [math]\displaystyle{ B\in\mathcal{F} }[/math] and [math]\displaystyle{ B_{1j}\not\in\mathcal{F} }[/math], which contradicts that [math]\displaystyle{ \mathcal{F} }[/math] is shifted.
- [math]\displaystyle{ \square }[/math]
We then bound the size of [math]\displaystyle{ \mathcal{F}_1' }[/math] as:
Claim 3 - [math]\displaystyle{ |\mathcal{F}_1'|\ge{m_k-1\choose k-1}+{m_{k-1}-1\choose k-2}+\cdots+{m_t-1\choose t-1} }[/math].
Proof. By contradiction, assume that
- [math]\displaystyle{ |\mathcal{F}_1'|\lt {m_k-1\choose k-1}+{m_{k-1}-1\choose k-2}+\cdots+{m_t-1\choose t-1} }[/math].
Then by [math]\displaystyle{ |\mathcal{F}|=|\mathcal{F}_0|+|\mathcal{F}_1'| }[/math], it holds that
- [math]\displaystyle{ \begin{align} |\mathcal{F}_0| &=m-|\mathcal{F}_1'|\\ &\ge {m_k\choose k}+{m_{k-1}\choose k-1}+\cdots+{m_t\choose t}\\ &\quad\,- {m_k-1\choose k-1}-{m_{k-1}-1\choose k-2}-\cdots-{m_t-1\choose t-1}+1\\ &={m_k-1\choose k}+{m_{k-1}-1\choose k-1}+\cdots+{m_t-1\choose t}+1. \end{align} }[/math]
If [math]\displaystyle{ m_k\gt t }[/math], then by the induction hypothesis, we have
- [math]\displaystyle{ |\Delta\mathcal{F}_0|\ge{m_k-1\choose k-1}+{m_{k-1}-1\choose k-1}+\cdots+{m_t-1\choose t-1} }[/math],
and due to Claim 2, we have [math]\displaystyle{ |\mathcal{F}_1'|\ge|\Delta\mathcal{F}_0|\ge{m_k-1\choose k-1}+\cdots+{m_t-1\choose t-1} }[/math], contradicting.
If [math]\displaystyle{ m_k=t }[/math], then let [math]\displaystyle{ s }[/math] be the largest integer so that [math]\displaystyle{ m_s=s }[/math] holds, [math]\displaystyle{ k\ge s\ge t }[/math]. Then
- [math]\displaystyle{ \begin{align} |\mathcal{F}_0| &\ge{m_k-1\choose k}+{m_{k-1}-1\choose k-1}+\cdots+{m_t-1\choose t}+1\\ &\ge {m_k-1\choose k}+{m_{k-1}-1\choose k-1}+\cdots+{m_{s+1}-1\choose s+1}+{s\choose s}. \end{align} }[/math]
By the induction hypothesis, we have
- [math]\displaystyle{ \begin{align} |\Delta\mathcal{F}_0| &\ge{m_k-1\choose k-1}+{m_{k-1}-1\choose k-1}+\cdots+{m_{s+1}-1\choose s}+{s\choose s-1}\\ &\ge{m_k-1\choose k-1}+{m_{k-1}-1\choose k-1}+\cdots+{m_{s+1}-1\choose s}+(s-t+1)\\ &={m_k-1\choose k-1}+{m_{k-1}-1\choose k-1}+\cdots+{m_{t}-1\choose t-1}, \end{align} }[/math]
again by Claim 2 [math]\displaystyle{ |\mathcal{F}_1'|\ge|\Delta\mathcal{F}_0| }[/math], in contradiction to the assumption
- [math]\displaystyle{ |\mathcal{F}_1'|\lt {m_k-1\choose k-1}+\cdots+{m_t-1\choose t-1} }[/math].
- [math]\displaystyle{ \square }[/math]
Now we officially apply the induction. By Claim 1,
- [math]\displaystyle{ |\Delta\mathcal{F}|\ge|\Delta\mathcal{F}_1'|+|\mathcal{F}_1'| }[/math].
Note that [math]\displaystyle{ \mathcal{F}_1'\subseteq{X\choose k-1} }[/math], and due to Claim 3,
- [math]\displaystyle{ |\mathcal{F}_1'|\ge{m_k-1\choose k-1}+{m_{k-1}-1\choose k-2}+\cdots+{m_t-1\choose t-1} }[/math],
thus by the induction hypothesis,
- [math]\displaystyle{ |\Delta\mathcal{F}_1'|\ge{m_k-1\choose k-2}+{m_{k-1}-1\choose k-3}+\cdots+{m_t-1\choose t-2} }[/math].
Combining them together, we have
- [math]\displaystyle{ \begin{align} |\Delta\mathcal{F}| &\ge |\Delta\mathcal{F}_1'|+|\mathcal{F}_1'|\\ &\ge {m_k-1\choose k-2}+\cdots+{m_t-1\choose t-2}+{m_k-1\choose k-1}+\cdots+{m_t-1\choose t-1}\\ &= {m_k\choose k-1}+{m_{k-1}\choose k-2}+\cdots+{m_t\choose t-1}. \end{align} }[/math]
- [math]\displaystyle{ \square }[/math]
Lovász's simplification
Recall that
- [math]\displaystyle{ {x\choose k}=\frac{x(x-1)\cdots(x-k+1)}{k!} }[/math]
can be defined for any real values of [math]\displaystyle{ x }[/math].
Theorem (Lovász) - Let [math]\displaystyle{ \mathcal{F}\subseteq {X\choose k} }[/math] with [math]\displaystyle{ |\mathcal{F}|=m }[/math], and suppose that [math]\displaystyle{ m={x\choose k} }[/math] for some real number [math]\displaystyle{ x\ge k }[/math]. Then
- [math]\displaystyle{ |\Delta\mathcal{F}|\ge {x\choose k-1} }[/math].
- Let [math]\displaystyle{ \mathcal{F}\subseteq {X\choose k} }[/math] with [math]\displaystyle{ |\mathcal{F}|=m }[/math], and suppose that [math]\displaystyle{ m={x\choose k} }[/math] for some real number [math]\displaystyle{ x\ge k }[/math]. Then