Combinatorics (Fall 2010)/Flow and matching: Difference between revisions
imported>WikiSysop |
imported>WikiSysop |
||
Line 47: | Line 47: | ||
:If <math>u_k=t</math>, we simply call <math>P</math> an '''augmenting path'''. | :If <math>u_k=t</math>, we simply call <math>P</math> an '''augmenting path'''. | ||
}} | }} | ||
For a flow <math>f</math> in <math>G</math>, if there is an augmenting path <math>P</math>, we can increase the flow <math>f(u_i,u_{i+1})</math> of all edge <math>(u_{i},u_{i+1})\in E</math> by <math>\epsilon</math>, and decrease the flow <math>f(u_{i+1},u_i)</math> of all edge <math>(u_{i+1},u_{i})\in E</math> by <math>\epsilon</math>, without violating the capacity and conservation constraints. | |||
=== The max-flow min-cut theorem === | === The max-flow min-cut theorem === |
Revision as of 14:40, 18 December 2010
Flow
The maximum flow problem
An instance of the maximum flow problem consists of:
- a directed graph [math]\displaystyle{ G(V,E) }[/math];
- two distinguished vertices [math]\displaystyle{ s }[/math] (the source) and [math]\displaystyle{ t }[/math] (the sink), where the in-degree of [math]\displaystyle{ s }[/math] and the out-degree of [math]\displaystyle{ t }[/math] are both 0;
- the capacity function [math]\displaystyle{ c:E\rightarrow\mathbb{R}^+ }[/math] which associates each directed edge [math]\displaystyle{ (u,v)\in E }[/math] a nonnegative real number [math]\displaystyle{ c_{uv} }[/math] called the capacity of the edge.
The quadruple [math]\displaystyle{ (G,c,s,t) }[/math] is called a flow network.
A function [math]\displaystyle{ f:E\rightarrow\mathbb{R}^+ }[/math] is called a flow (or an [math]\displaystyle{ s }[/math]-[math]\displaystyle{ t }[/math] flow) in the network [math]\displaystyle{ G(V,E) }[/math] if it satisfies:
- Capacity constraint: [math]\displaystyle{ f_{uv}\le c_{uv} }[/math] for all [math]\displaystyle{ (u,v)\in E }[/math].
- Conservation constraint: [math]\displaystyle{ \sum_{u:(u,v)\in E}f_{uv}=\sum_{w:(v,w)\in E}f_{vw} }[/math] for all [math]\displaystyle{ v\in V\setminus\{s,t\} }[/math].
The value of the flow [math]\displaystyle{ f }[/math] is [math]\displaystyle{ \sum_{v:(s,v)\in E}f_{sv} }[/math].
Given a flow network, the maximum flow problem asks to find the flow of the maximum value.
The maximum flow problem can be described as the following linear program.
- [math]\displaystyle{ \begin{align} \text{maximize} \quad& \sum_{v:(s,v)\in E}f_{sv}\\ \begin{align} \text{subject to} \\ \\ \\ \\ \end{align} \quad & \begin{align} f_{uv}&\le c_{uv} &\quad& \forall (u,v)\in E\\ \sum_{u:(u,v)\in E}f_{uv}-\sum_{w:(v,w)\in E}f_{vw} &=0 &\quad& \forall v\in V\setminus\{s,t\}\\ f_{uv}&\ge 0 &\quad& \forall (u,v)\in E \end{align} \end{align} }[/math]
Cuts
The augmenting paths
Definition (Augmenting path) - Let [math]\displaystyle{ f }[/math] be a flow in [math]\displaystyle{ G }[/math]. A path [math]\displaystyle{ P=u_0u_1\cdots u_k }[/math] in the underlying undirected graph is an augmenting path to [math]\displaystyle{ u_k }[/math] if
- [math]\displaystyle{ u_0=s\, }[/math];
- and for each edge [math]\displaystyle{ u_{i}u_{i+1} }[/math] in [math]\displaystyle{ P }[/math] we have
- [math]\displaystyle{ f(u_i,u_{i+1})\lt c(u_i,u_{i+1})\, }[/math] when [math]\displaystyle{ (u_{i},u_{i+1})\in E }[/math], and
- [math]\displaystyle{ f(u_{i+1},u_i)\gt 0\, }[/math] when [math]\displaystyle{ (u_{i+1},u_{i})\in E }[/math].
- If [math]\displaystyle{ u_k=t }[/math], we simply call [math]\displaystyle{ P }[/math] an augmenting path.
- Let [math]\displaystyle{ f }[/math] be a flow in [math]\displaystyle{ G }[/math]. A path [math]\displaystyle{ P=u_0u_1\cdots u_k }[/math] in the underlying undirected graph is an augmenting path to [math]\displaystyle{ u_k }[/math] if
For a flow [math]\displaystyle{ f }[/math] in [math]\displaystyle{ G }[/math], if there is an augmenting path [math]\displaystyle{ P }[/math], we can increase the flow [math]\displaystyle{ f(u_i,u_{i+1}) }[/math] of all edge [math]\displaystyle{ (u_{i},u_{i+1})\in E }[/math] by [math]\displaystyle{ \epsilon }[/math], and decrease the flow [math]\displaystyle{ f(u_{i+1},u_i) }[/math] of all edge [math]\displaystyle{ (u_{i+1},u_{i})\in E }[/math] by [math]\displaystyle{ \epsilon }[/math], without violating the capacity and conservation constraints.