Combinatorics (Fall 2010)/Flow and matching: Difference between revisions

From TCS Wiki
Jump to navigation Jump to search
imported>WikiSysop
Line 73: Line 73:
Due to the definition of augmenting path, we can always find such a positive <math>\epsilon</math>.  
Due to the definition of augmenting path, we can always find such a positive <math>\epsilon</math>.  


Increase <math>f(u_i,u_{i+1})</math> by <math>\epsilon</math> for all forward edges <math>(u_{i},u_{i+1})\in E</math> in <math>P</math> and decrease <math>f(u_{i+1},u_i)</math> by <math>\epsilon</math> for all reverse edges <math>(u_{i+1},u_i)\in E</math> in <math>P</math>. Denote the modified flow by <math>f'</math>. It is easy to see that <math>f'</math> satisfies the capacity constraint and conservation constraint thus is still a valid flow. On the other hand, the value of the new flow <math>f'</math>
Increase <math>f(u_i,u_{i+1})</math> by <math>\epsilon</math> for all forward edges <math>(u_{i},u_{i+1})\in E</math> in <math>P</math> and decrease <math>f(u_{i+1},u_i)</math> by <math>\epsilon</math> for all reverse edges <math>(u_{i+1},u_i)\in E</math> in <math>P</math>. Denote the modified flow by <math>f'</math>. It can be verified that <math>f'</math> satisfies the capacity constraint and conservation constraint thus is still a valid flow. On the other hand, the value of the new flow <math>f'</math>
:<math>\sum_{v:(s,v)\in E}f_{sv}'=\epsilon+\sum_{v:(s,v)\in E}f_{sv}>\sum_{v:(s,v)\in E}f_{sv}</math>.
:<math>\sum_{v:(s,v)\in E}f_{sv}'=\epsilon+\sum_{v:(s,v)\in E}f_{sv}>\sum_{v:(s,v)\in E}f_{sv}</math>.
Therefore, the value of the flow can be "augmented" by adjusting the flow on the augmenting path. This immediately implies that if a flow is maximum, then there is no augmenting path. Surprisingly, the converse is also true, thus maximum flows are "characterized" by augmenting paths.
Therefore, the value of the flow can be "augmented" by adjusting the flow on the augmenting path. This immediately implies that if a flow is maximum, then there is no augmenting path. Surprisingly, the converse is also true, thus maximum flows are "characterized" by augmenting paths.

Revision as of 03:49, 26 December 2010

Flow and Cut

Flows

An instance of the maximum flow problem consists of:

  • a directed graph [math]\displaystyle{ G(V,E) }[/math];
  • two distinguished vertices [math]\displaystyle{ s }[/math] (the source) and [math]\displaystyle{ t }[/math] (the sink), where the in-degree of [math]\displaystyle{ s }[/math] and the out-degree of [math]\displaystyle{ t }[/math] are both 0;
  • the capacity function [math]\displaystyle{ c:E\rightarrow\mathbb{R}^+ }[/math] which associates each directed edge [math]\displaystyle{ (u,v)\in E }[/math] a nonnegative real number [math]\displaystyle{ c_{uv} }[/math] called the capacity of the edge.

The quadruple [math]\displaystyle{ (G,c,s,t) }[/math] is called a flow network.

A function [math]\displaystyle{ f:E\rightarrow\mathbb{R}^+ }[/math] is called a flow (to be specific an [math]\displaystyle{ s }[/math]-[math]\displaystyle{ t }[/math] flow) in the network [math]\displaystyle{ G(V,E) }[/math] if it satisfies:

  • Capacity constraint: [math]\displaystyle{ f_{uv}\le c_{uv} }[/math] for all [math]\displaystyle{ (u,v)\in E }[/math].
  • Conservation constraint: [math]\displaystyle{ \sum_{u:(u,v)\in E}f_{uv}=\sum_{w:(v,w)\in E}f_{vw} }[/math] for all [math]\displaystyle{ v\in V\setminus\{s,t\} }[/math].

The value of the flow [math]\displaystyle{ f }[/math] is [math]\displaystyle{ \sum_{v:(s,v)\in E}f_{sv} }[/math].

Given a flow network, the maximum flow problem asks to find the flow of the maximum value.

The maximum flow problem can be described as the following linear program.

[math]\displaystyle{ \begin{align} \text{maximize} \quad& \sum_{v:(s,v)\in E}f_{sv}\\ \begin{align} \text{subject to} \\ \\ \\ \\ \end{align} \quad & \begin{align} f_{uv}&\le c_{uv} &\quad& \forall (u,v)\in E\\ \sum_{u:(u,v)\in E}f_{uv}-\sum_{w:(v,w)\in E}f_{vw} &=0 &\quad& \forall v\in V\setminus\{s,t\}\\ f_{uv}&\ge 0 &\quad& \forall (u,v)\in E \end{align} \end{align} }[/math]

Cuts

Definition
Let [math]\displaystyle{ (G(V,E),c,s,t) }[/math] be a flow network. Let [math]\displaystyle{ S\subset V }[/math]. We call [math]\displaystyle{ (S,\bar{S}) }[/math] an [math]\displaystyle{ s }[/math]-[math]\displaystyle{ t }[/math] cut if [math]\displaystyle{ s\in S }[/math] and [math]\displaystyle{ t\not\in S }[/math].
The value of the cut (also called the capacity of the cut) is defined as [math]\displaystyle{ \sum_{u\in S,v\not\in S\atop (u,v)\in E}c_{uv} }[/math].

A fundamental fact in the theory of flow is that cuts always upper bound flows.

Lemma
Let [math]\displaystyle{ (G(V,E),c,s,t) }[/math] be a flow network. Let [math]\displaystyle{ f }[/math] be an arbitrary flow in [math]\displaystyle{ G }[/math], and let [math]\displaystyle{ (S,\bar{S}) }[/math] be an arbitrary [math]\displaystyle{ s }[/math]-[math]\displaystyle{ t }[/math] cut. Then
[math]\displaystyle{ \sum_{v:(s,v)}f_{sv}\le \sum_{u\in S,v\not\in S\atop (u,v)\in E}c_{uv} }[/math],
that is, the value of any flow is no greater than the value of any cut.
Proof.
By the definition of [math]\displaystyle{ s }[/math]-[math]\displaystyle{ t }[/math] cut, [math]\displaystyle{ s\in S }[/math] and [math]\displaystyle{ t\not\in S }[/math].

Due to the conservation of flow,

[math]\displaystyle{ \sum_{u\in S}\left(\sum_{v:(u,v)\in E}f_{uv}-\sum_{v:(v,u)\in E}f_{vu}\right)=\sum_{v:(s,v)\in E}f_{sv}+\sum_{u\in S\setminus\{s\}}\left(\sum_{v:(u,v)\in E}f_{uv}-\sum_{v:(v,u)\in E}f_{vu}\right)=\sum_{v:(s,v)\in E}f_{sv}\,. }[/math]

On the other hand, summing flow over edges,

[math]\displaystyle{ \sum_{v\in S}\left(\sum_{u:(u,v)\in E}f_{uv}-\sum_{u:(v,u)\in E}f_{vu}\right)=\sum_{u\in S,v\in S\atop (u,v)\in E}\left(f_{uv}-f_{uv}\right)+\sum_{u\in S,v\not\in S\atop (u,v)\in E}f_{uv}-\sum_{u\in S,v\not\in S\atop (v,u)\in E}f_{vu}=\sum_{u\in S,v\not\in S\atop (u,v)\in E}f_{uv}-\sum_{u\in S,v\not\in S\atop (v,u)\in E}f_{vu}\,. }[/math]

Therefore,

[math]\displaystyle{ \sum_{v:(s,v)\in E}f_{sv}=\sum_{u\in S,v\not\in S\atop (u,v)\in E}f_{uv}-\sum_{u\in S,v\not\in S\atop (v,u)\in E}f_{vu}\le\sum_{u\in S,v\not\in S\atop (u,v)\in E}f_{uv}\le \sum_{u\in S,v\not\in S\atop (u,v)\in E}c_{uv}\,, }[/math]
[math]\displaystyle{ \square }[/math]

Augmenting paths

Definition (Augmenting path)
Let [math]\displaystyle{ f }[/math] be a flow in [math]\displaystyle{ G }[/math]. An augmenting path to [math]\displaystyle{ u_k }[/math] is a sequence of distinct vertices [math]\displaystyle{ P=(u_0,u_1,\cdots, u_k) }[/math], such that
  • [math]\displaystyle{ u_0=s\, }[/math];
and each pair of consecutive vertices [math]\displaystyle{ u_{i}u_{i+1}\, }[/math] in [math]\displaystyle{ P }[/math] corresponds to either a forward edge [math]\displaystyle{ (u_{i},u_{i+1})\in E }[/math] or a reverse edge [math]\displaystyle{ (u_{i+1},u_{i})\in E }[/math], and
  • [math]\displaystyle{ f(u_i,u_{i+1})\lt c(u_i,u_{i+1})\, }[/math] when [math]\displaystyle{ u_{i}u_{i+1}\, }[/math] corresponds to a forward edge [math]\displaystyle{ (u_{i},u_{i+1})\in E }[/math], and
  • [math]\displaystyle{ f(u_{i+1},u_i)\gt 0\, }[/math] when [math]\displaystyle{ u_{i}u_{i+1}\, }[/math] corresponds to a reverse edge [math]\displaystyle{ (u_{i+1},u_{i})\in E }[/math].
If [math]\displaystyle{ u_k=t\, }[/math], we simply call [math]\displaystyle{ P }[/math] an augmenting path.

Let [math]\displaystyle{ f }[/math] be a flow in [math]\displaystyle{ G }[/math]. Suppose there is an augmenting path [math]\displaystyle{ P=u_0u_1\cdots u_k }[/math], where [math]\displaystyle{ u_0=s }[/math] and [math]\displaystyle{ u_k=t }[/math]. Let [math]\displaystyle{ \epsilon\gt 0 }[/math] be a positive constant satisfying

  • [math]\displaystyle{ \epsilon \le c(u_{i},u_{i+1})-f(u_i,u_{i+1}) }[/math] for all forward edges [math]\displaystyle{ (u_{i},u_{i+1})\in E }[/math] in [math]\displaystyle{ P }[/math];
  • [math]\displaystyle{ \epsilon \le f(u_{i+1},u_i) }[/math] for all reverse edges [math]\displaystyle{ (u_{i+1},u_i)\in E }[/math] in [math]\displaystyle{ P }[/math].

Due to the definition of augmenting path, we can always find such a positive [math]\displaystyle{ \epsilon }[/math].

Increase [math]\displaystyle{ f(u_i,u_{i+1}) }[/math] by [math]\displaystyle{ \epsilon }[/math] for all forward edges [math]\displaystyle{ (u_{i},u_{i+1})\in E }[/math] in [math]\displaystyle{ P }[/math] and decrease [math]\displaystyle{ f(u_{i+1},u_i) }[/math] by [math]\displaystyle{ \epsilon }[/math] for all reverse edges [math]\displaystyle{ (u_{i+1},u_i)\in E }[/math] in [math]\displaystyle{ P }[/math]. Denote the modified flow by [math]\displaystyle{ f' }[/math]. It can be verified that [math]\displaystyle{ f' }[/math] satisfies the capacity constraint and conservation constraint thus is still a valid flow. On the other hand, the value of the new flow [math]\displaystyle{ f' }[/math]

[math]\displaystyle{ \sum_{v:(s,v)\in E}f_{sv}'=\epsilon+\sum_{v:(s,v)\in E}f_{sv}\gt \sum_{v:(s,v)\in E}f_{sv} }[/math].

Therefore, the value of the flow can be "augmented" by adjusting the flow on the augmenting path. This immediately implies that if a flow is maximum, then there is no augmenting path. Surprisingly, the converse is also true, thus maximum flows are "characterized" by augmenting paths.

Lemma
A flow [math]\displaystyle{ f }[/math] is maximum if and only if there are no augmenting paths.
Proof.
We have already proved the "only if" direction above. Now we prove the "if" direction.

Let [math]\displaystyle{ S=\{u\in V\mid \exists\text{an augmenting path to }u\} }[/math]. Clearly [math]\displaystyle{ s\in S }[/math], and since there is no augmenting path [math]\displaystyle{ t\not\in S }[/math]. Therefore, [math]\displaystyle{ (S,\bar{S}) }[/math] defines an [math]\displaystyle{ s }[/math]-[math]\displaystyle{ t }[/math] cut.

We claim that

[math]\displaystyle{ \sum_{v:(s,v)}f_{sv}= \sum_{u\in S,v\not\in S\atop (u,v)\in E}c_{uv} }[/math],

that is, the value of flow [math]\displaystyle{ f }[/math] approach the value of the cut [math]\displaystyle{ (S,\bar{S}) }[/math] defined above. By the above lemma, this will imply that the current flow [math]\displaystyle{ f }[/math] is maximum.

To prove this claim, we first observe that

[math]\displaystyle{ \sum_{v:(s,v)}f_{sv}= \sum_{u\in S,v\not\in S\atop (u,v)\in E}f_{uv}-\sum_{u\in S,v\not\in S\atop (v,u)\in E}f_{vu} }[/math].

This identity is implied by the flow conservation constraint, and holds for any [math]\displaystyle{ s }[/math]-[math]\displaystyle{ t }[/math] cut [math]\displaystyle{ (S,\bar{S}) }[/math].

We then claim that

  • [math]\displaystyle{ f_{uv}=c_{uv} }[/math] for all [math]\displaystyle{ u\in S,v\not\in S, (u,v)\in E }[/math]; and
  • [math]\displaystyle{ f_{vu}=0 }[/math] for all [math]\displaystyle{ u\in S,v\not\in S, (v,u)\in E }[/math].

If otherwise, then the augmenting path to [math]\displaystyle{ u }[/math] apending [math]\displaystyle{ uv }[/math] becomes a new augmenting path to [math]\displaystyle{ v }[/math], which contradicts that [math]\displaystyle{ S }[/math] includes all vertices to which there exist augmenting paths.

Therefore,

[math]\displaystyle{ \sum_{v:(s,v)}f_{sv}= \sum_{u\in S,v\not\in S\atop (u,v)\in E}f_{uv}-\sum_{u\in S,v\not\in S\atop (v,u)\in E}f_{vu} = \sum_{u\in S,v\not\in S\atop (u,v)\in E}c_{uv} }[/math].

As discussed above, this proves the theorem.

[math]\displaystyle{ \square }[/math]

The max-flow min-cut theorem

Max-Flow Min-Cut Theorem
In a flow network, the maximum value of any [math]\displaystyle{ s }[/math]-[math]\displaystyle{ t }[/math] flow equals the minimum value of any [math]\displaystyle{ s }[/math]-[math]\displaystyle{ t }[/math] cut.
Flow Integrality Theorem
Let [math]\displaystyle{ (G,c,s,t) }[/math] be a flow network with integral capacity [math]\displaystyle{ c }[/math]. There exists an integral flow which is maximum.
Proof.

Let [math]\displaystyle{ f }[/math] be an integral flow of maximum value. If there is an augmenting path, since both [math]\displaystyle{ c }[/math] and [math]\displaystyle{ f }[/math] are integral, a new flow can be constructed of value 1+the value of [math]\displaystyle{ f }[/math], contradicting that [math]\displaystyle{ f }[/math] is maximum over all integral flows. Therefore, there is no augmenting path, which means that [math]\displaystyle{ f }[/math] is maximum over all flows, integral or not.

[math]\displaystyle{ \square }[/math]

Unimodularity

Integrality of polytopes

Unimodularity and total unimodularity