随机算法 (Fall 2011): Difference between revisions
Jump to navigation
Jump to search
imported>WikiSysop Created page with '= Lecture Notes = # Introduction # Complexity classes, lower bounds # […' |
imported>WikiSysop |
||
Line 4: | Line 4: | ||
# [[随机算法 (Fall 2011)/Balls and bins|Balls and bins]] | # [[随机算法 (Fall 2011)/Balls and bins|Balls and bins]] | ||
# [[随机算法 (Fall 2011)/Tail inequalities|Tail inequalities]] | # [[随机算法 (Fall 2011)/Tail inequalities|Tail inequalities]] | ||
# [[随机算法 (Fall 2011)/ | # [[随机算法 (Fall 2011)/Chernoff bounds| Chernoff bounds]] | ||
# [[随机算法 (Fall 2011)/Martingales | Martingales]] | |||
# [[随机算法 (Fall 2011)/Hashing, limited independence | Hashing, limited independence]] | # [[随机算法 (Fall 2011)/Hashing, limited independence | Hashing, limited independence]] | ||
# [[随机算法 (Fall 2011)/ | # [[随机算法 (Fall 2011)/Fingerprinting|Fingerprinting]] | ||
# [[随机算法 (Fall 2011)/The probabilistic method | The probabilistic method]] | # [[随机算法 (Fall 2011)/The probabilistic method | The probabilistic method]] | ||
# [[随机算法 (Fall 2011)/Markov chains and random walks | Markov chains and random walks]] | # [[随机算法 (Fall 2011)/Markov chains and random walks | Markov chains and random walks]] | ||
# [[随机算法 (Fall 2011)/Expander graphs | # [[随机算法 (Fall 2011)/Expander graphs | Expander graphs]] | ||
# [[随机算法 (Fall 2011)/Rapid mixing random walks | Rapid mixing random walks]] | |||
# [[随机算法 (Fall 2011)/Random sampling | Random sampling, MCMC]] | # [[随机算法 (Fall 2011)/Random sampling | Random sampling, MCMC]] | ||
# [[随机算法 (Fall 2011)/Approximate counting | # [[随机算法 (Fall 2011)/Approximate counting|Approximate counting]] | ||
# [[随机算法 (Fall 2011)/Randomized approximation algorithms|Randomized approximation algorithms]] | # [[随机算法 (Fall 2011)/Randomized approximation algorithms|Randomized approximation algorithms]] | ||
# [[随机算法 (Fall 2011)/Distributed algorithms, data streams|Distributed algorithms, data streams]] | # [[随机算法 (Fall 2011)/Distributed algorithms, data streams|Distributed algorithms, data streams]] | ||
Revision as of 01:03, 22 March 2011
Lecture Notes
- Introduction
- Complexity classes, lower bounds
- Balls and bins
- Tail inequalities
- Chernoff bounds
- Martingales
- Hashing, limited independence
- Fingerprinting
- The probabilistic method
- Markov chains and random walks
- Expander graphs
- Rapid mixing random walks
- Random sampling, MCMC
- Approximate counting
- Randomized approximation algorithms
- Distributed algorithms, data streams
Future plan
Topics that I'm considering to cover at next time when I teach this class (perhaps):
- Janson's inequality,
- Talagrand's inequality
- The Poisson Approximation
- Fourier analysis
- Random graphs
- Entropy and randomness
- Derandomization
- Color-coding
- On-line algorithms
- Property testing
- Learning and boosting
- Compressed sensing