随机算法 (Fall 2011)/Verifying Matrix Multiplication: Difference between revisions
imported>WikiSysop No edit summary |
imported>WikiSysop No edit summary |
||
Line 1: | Line 1: | ||
= | = Verifying Matrix Multiplication= | ||
Consider the following problem: | Consider the following problem: | ||
* | * '''Input''': Three <math>n\times n</math> matrices <math>A,B</math> and <math>C</math>. | ||
* | * '''Output''': return "yes" if <math>C=AB</math> and "no" if otherwise. | ||
A naive way of checking the equality is first computing <math>AB</math> and then comparing the result with <math>C</math>. The (asymptotically) fastest matrix multiplication algorithm known today runs in time <math>O(n^{2.376})</math>. The naive algorithm will take asymptotically the same amount of time. | |||
= Freivalds Algorithm = | |||
The following is a very simple randomized algorithm, due to Freivalds, running in only <math>O(n^2)</math> time: | The following is a very simple randomized algorithm, due to Freivalds, running in only <math>O(n^2)</math> time: | ||
Revision as of 15:13, 22 July 2011
Verifying Matrix Multiplication
Consider the following problem:
- Input: Three [math]\displaystyle{ n\times n }[/math] matrices [math]\displaystyle{ A,B }[/math] and [math]\displaystyle{ C }[/math].
- Output: return "yes" if [math]\displaystyle{ C=AB }[/math] and "no" if otherwise.
A naive way of checking the equality is first computing [math]\displaystyle{ AB }[/math] and then comparing the result with [math]\displaystyle{ C }[/math]. The (asymptotically) fastest matrix multiplication algorithm known today runs in time [math]\displaystyle{ O(n^{2.376}) }[/math]. The naive algorithm will take asymptotically the same amount of time.
Freivalds Algorithm
The following is a very simple randomized algorithm, due to Freivalds, running in only [math]\displaystyle{ O(n^2) }[/math] time:
Algorithm (Freivalds) - pick a vector [math]\displaystyle{ r \in\{0, 1\}^n }[/math] uniformly at random;
- if [math]\displaystyle{ A(Br) = Cr }[/math] then return "yes" else return "no";
The product [math]\displaystyle{ A(Br) }[/math] is computed by first multiplying [math]\displaystyle{ Br }[/math] and then [math]\displaystyle{ A(Br) }[/math]. The running time is [math]\displaystyle{ O(n^2) }[/math] because the algorithm does 3 matrix-vector multiplications in total.
If [math]\displaystyle{ AB=C }[/math] then [math]\displaystyle{ A(Br) = Cr }[/math] for any [math]\displaystyle{ r \in\{0, 1\}^n }[/math], thus the algorithm will return a "yes" for any positive instance ([math]\displaystyle{ AB=C }[/math]). But if [math]\displaystyle{ AB \neq C }[/math] then the algorithm will make a mistake if it chooses such an [math]\displaystyle{ r }[/math] that [math]\displaystyle{ ABr = Cr }[/math]. However, the following lemma states that the probability of this event is bounded.
Lemma - If [math]\displaystyle{ AB\neq C }[/math] then for a uniformly random [math]\displaystyle{ r \in\{0, 1\}^n }[/math],
- [math]\displaystyle{ \Pr[ABr = Cr]\le \frac{1}{2} }[/math].
- If [math]\displaystyle{ AB\neq C }[/math] then for a uniformly random [math]\displaystyle{ r \in\{0, 1\}^n }[/math],
Proof. Let [math]\displaystyle{ D=AB-C }[/math]. The event [math]\displaystyle{ ABr=Cr }[/math] is equivalent to that [math]\displaystyle{ Dr=0 }[/math]. It is then sufficient to show that for a [math]\displaystyle{ D\neq \boldsymbol{0} }[/math], it holds that [math]\displaystyle{ \Pr[Dr = \boldsymbol{0}]\le \frac{1}{2} }[/math]. Since [math]\displaystyle{ D\neq \boldsymbol{0} }[/math], it must have at least one non-zero entry. Suppose that [math]\displaystyle{ D(i,j)\neq 0 }[/math].
We assume the event that [math]\displaystyle{ Dr=\boldsymbol{0} }[/math]. In particular, the [math]\displaystyle{ i }[/math]-th entry of [math]\displaystyle{ Dr }[/math] is
- [math]\displaystyle{ (Dr)_{i}=\sum_{k=1}^nD(i,k)r_k=0. }[/math]
The [math]\displaystyle{ r_j }[/math] can be calculated by
- [math]\displaystyle{ r_j=-\frac{1}{D(i,j)}\sum_{k\neq j}^nD(i,k)r_k. }[/math]
Once all [math]\displaystyle{ r_k }[/math] where [math]\displaystyle{ k\neq j }[/math] are fixed, there is a unique solution of [math]\displaystyle{ r_j }[/math]. That is to say, conditioning on any [math]\displaystyle{ r_k, k\neq j }[/math], there is at most one value of [math]\displaystyle{ r_j\in\{0,1\} }[/math] satisfying [math]\displaystyle{ Dr=0 }[/math]. On the other hand, observe that [math]\displaystyle{ r_j }[/math] is chosen from two values [math]\displaystyle{ \{0,1\} }[/math] uniformly and independently at random. Therefore, with at least [math]\displaystyle{ \frac{1}{2} }[/math] probability, the choice of [math]\displaystyle{ r }[/math] fails to give us a zero [math]\displaystyle{ Dr }[/math]. That is, [math]\displaystyle{ \Pr[ABr=Cr]=\Pr[Dr=0]\le\frac{1}{2} }[/math].
- [math]\displaystyle{ \square }[/math]